
An Approach to Model, Configure and Apply QoS Attributes to Web Services

Ahmed Al-Moayed
Department of Computer Science

Furtwangen University of Applied Science
Furtwangen, Germany

ahmed.almoayed@hs-furtwangen.de

Bernhard Hollunder
Department of Computer Science

Furtwangen University of Applied Science
Furtwangen, Germany

bernhard.hollunder@hs-furtwangen.de

Abstract—Service-oriented architectures has become a com-
monly accepted solution for integrating enterprise applica-
tions around the globe. As the SOA environment grows, its
complexity and the complexity of modelling, configuring and
applying quality of service attributes to it increases. Though
there are some tools supporting these activities, they are either
limited to certain quality of service domains or dependent to
specific development environments. In this paper, we elaborate
a concept for managing quality of service attributes for Web
services. In particular, our approach covers the modelling
of arbitrary quality attributes based on a meta-model for
quality attributes. It also covers the generation of a graphical
user interface to configure the modelled quality of service
attributes and the transformation of the modelled QoS attribute
into policy descriptions. Finally, our approach outlines the
assignment of the policies to the target Web services. This
approach offers a solution, which reduces the cost and effort
by the creation of QoS-aware Web services.

Keywords-Service-oriented architecture, meta-model, model-
model transformation, QoS-aware Web services

I. INTRODUCTION

Service-oriented architectures (SOA) refers to a system
architecture that provides a variety of different and pos-
sibly incompatible methods and applications as reusable
services. As an enterprise may have a huge variety of service
providers, which offer the same functionality, the services
may differ in the non-functional requirements. A well de-
signed application should have a precise functional goal
and a set of non-functional requirements such as security
and performance, which must be full-filled during execution
time.

Applying quality of service (QoS) to distributed Web ser-
vices is an important process as the demand for high quality
Web services in terms of non-functional attributes raises.
One way to apply QoS to Web services is by associating it
with the Web Service Definition Language (WSDL). The
WS-Policy Framework [7] is an OASIS standard, which
allows Web services to express their capabilities, require-
ments and general characteristics in an XML form. However,
in order to create such policies, a certain policy grammar
knowledge is needed, which is not always acquired by Web
service developers. In this paper, we present an approach,
which offers an easy way to model quality of services for

Web services and applies them to any Web service without
being dependent on any kind of IDE (Integrated Develop-
ment Environment), implementation language or previous
knowledge of the implementation source code of a Web
service.

We distinguish two kinds of developers: a QoS developer
and Web service developer. The first one is responsible for
modelling and implementing new QoS attributes; the latter
one is responsible for applying the required QoS attributes
to Web service once they have been developed.

There are a few tools, which allow the Web service
developer to select certain QoS and apply them to a Web
service. The problem with existing tools is, they are either
hard to extend, mostly restricted to a certain policy domain,
such as WS-SecurityPolicy [9] and WS-ReliableMessaging
[8], or bundled with a specific IDE. To our best knowledge,
there is no tool support, which offers both QoS developers
and Web service developers the following features:

• A flexible, extended and simple meta-model for QoS
modelling.

• An easy way to model and create QoS attributes for
Web services and place them under a Web service
developer’s disposal.

• A dynamic graphical user interface, which allows the
developer to easily and separately configure the mod-
elled QoS attributes for each designated Web service.

• A QoS editor, which is not platform-, IDE- or language-
specific. An editor, which supports SOA as an archi-
tecture and not Web service as a language-specific
implementation.

• Automatic transformation of the configured QoS model
into an adequate policy and automatically associate the
created WS-Policy with the Web service.

• Association of the created policy description with the
Web service.

While developing a Web service, an IDE is more than just a
source code editor, which helps the Web service developer
to write source code and to offer the developer code sugges-
tions. It also automates many processes during development
such as code compiling, generation of proxies and stubs
and code deployment. However, there is only limited IDE

405

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

support for developing QoS-aware Web services. This paper
is one step to improve this support. It offers a solution,
which automate and simplify the modelling, configuring and
applying of QoS attributes to Web services. The Web service
developer will no longer be required to directly configure
the required set of low-level policy assertions and manually
configure steps in order to apply the modelled QoS to Web
services. This will reduce the developing effort and the costs
of creating a QoS-aware Web service.

This paper is structured as follows: Section II gives an
overview on our approach. Section III describes the QoS
meta-model used in this paper. The QoS model will be
explained in Section IV. Section V describes the dynamic
QoS graphical user interface, which is derived from the QoS
model. Section VI will shed a light on QoS model to policy
transformation. Related work will be discussed in Section
VII. Section VIII discusses future works. In the final section,
we will conclude this paper.

II. APPROACH

The first component is the meta-model. It describes ex-
actly how the QoS model is created or defined. There are
many QoS meta-model proposals, which can be used to
define and apply QoS models for Web services. Malfatti
[6] introduced a suitable meta-model for our approach. It
is simple, extensible, easy to understand and expressive
enough to model arbitrary QoS attributes. The meta-model
was created in Eclipse Modelling Framework (EMF) (Core)
meta-model, a powerful tool for designing models and their
runtime support.

The QoS model offers the QoS developer a way to
model QoS attributes within certain QoS categories. These
categories are already defined in the QoS meta-model. As we
will see in Section IV, with this meta-model, we will be able
to model different QoS attributes including some standard-
ized QoS attributes such as reliable messaging and security.
The QoS model is expressed in XML format. EMF, however,
provides Java interfaces, Java implementation classes and a
factory and package (meta data) implementation class, which
provides support for building and modifying EMF models.
The QoS developer will be able to use an EMF editor to
manually add or remove QoS attributes.

Once a QoS model has been created, a graphical user
interface will be automatically generated. The QoS model
includes essential information on how the graphical user
interface (GUI) should look like. Depending on certain
elements in the QoS model, the GUI will be able to adapt
to new changes. For example, depending on how many QoS
categories are modelled, the GUI will generate a tab for each
category. Within the same category, the QoS attribute will be
presented. The GUI will also collect additional data from the
Web service, such as the service endpoint interface methods,
which will be needed for later steps in order to generate
QoS policies. The main purpose of the GUI is to enable

the Web service developer to easily configure the modelled
QoS attributes and apply them to a Web service. Once this
step has been done, the GUI will write the configured QoS
attributes back to the QoS model in order to be transformed
into a policy representation. For the moment, the GUI is
implemented in Java as an Eclipse plug-in. It is, however,
our intention to support other GUI frameworks in the future.

Once all data for the generation of the QoS policies has
been configured in the GUI, component four in Figure 1 will
automatically transform the QoS model into a user defined
QoS policy. This component will be able to transfer the
QoS model to different QoS policies. In this approach, we
have used the WS-Policy to demonstrate this work. Figure
1 summarizes our approach.

III. QOS META-MODEL

The QoS meta-model in Figure 1 has two purposes;
saving monitoring data of existing SOA environments with
existing QoS attributes and the modelling of QoS. QoS
monitoring is not the focus of this work. However, it has
a great importance for future works. The meta-model for
QoS modelling was slightly modified for better flexibility.
The following changes were made in the meta-model:

• The CATEGORY attribute in the QOSPARAMETER was
modified to include only predefined values specified in
the enumeration class QOSCATAGORY.

The following elements were added:
• The QOSVALUE element was expanded to include a

new attribute DATATYPE. The new attribute is neces-
sary for the creating of the QoS graphical user interface
described in Section V.

• A new enumeration class QOSDATATYPE was added.
A predefined values, which are needed for defining the
DATATYPE attribute.

• A new enumeration class QOSCATAGORY was added.
A list of pre-defined categories the QoS model supports.

• A new QOSPROPERTIES element was added. A list of
properties, which could be used to add more informa-
tion to either the QOSPARAMETER or QOSVALUE.

The following element was not considered in the modified
meta-model:

• The QOSLEVEL was not considered in this work since
the modelled QoS is always fulfilled.

The meta-model enables the QoS developer to model QoS
attributes for Web services for different business domains.
A main characteristic of the QoS model is its simplicity and
the ability to model QoS attributes. The QoS model has the
following relationships:

• Every Web service or Web service method has 0..* QoS
parameters.

• Every QOSPARAMETER has exactly one QoS metric.
As described in [6], a metric specifies a measurement
unit used for describing the QOSVALUE.

406

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

GUI will be dynamic generated.
depending on the QoS model

QoS Model will be
instantiated and
filled with data

from GUI

metadata model
defines the structure

of the QoS model

Policy

QoS Model

QoS Model for „Weather Service“ QoS Graphical User Interface

OCL Constrains Performance ReliableMessaging Security

Cancel OK

…

getWeather(int plz)

Method Name QoSParameter

UserID>0

plz>00000 …

Invariant Predicate

 int devid (int a, int b)

Methode (var, var)

string Methode (var)

boolean Methode ()

QoS Meta-model

Quality of Service
meta-model to

model Transformation

 Service
 QoSParameter: Response Time

 QoSMetric: Milliseconds
 QoSAgreedValue:

 QoSParameter:Throughput
 QoSMetric: Request/s
 QoSAgreedValue :

 QoSParameter: Pre-Condition
 QoSMetric: Predicate
 QoSAgreedValue :

 QoSParameter: Pre-Condition
 QoSMetric: Predicate
 QoSAgreedValue :

 QoSParameter: Post-Condition
 QoSMetric: Predicate
 QoSAgreedValue :

 QoSParameter: Response Time
 QoSMetric: Milliseconds
 QoSAgreedValue: 30

 QoSParameter:Throughput
 QoSMetric: Request/s
 QoSAgreedValue : 150

 QoSParameter: Pre-Condition
 QoSMetric: Predicate
 QoSAgreedValue : plz>00000 && plz<99999

QoSParameter: Post-Condition
 QoSMetric: Predicate
 QoSAgreedValue : UserID>0

Category :
Performance

Category: OCL
Constrains

 QoS model instance will be evaluated and
will exported to different Policy languages

1 2

3

4

Name QoSValue QoSMetric

Post-Condition Predicate

Post-Condition Predicate

Post-Condition Predicate

age>0 && ..

Figure 1. An approach to model, configure and apply QoS attributes to Web services

• Every QOSPARAMETER has exactly one QoS value.
• Every QOSPARAMETER and QOSVALUE have 0..*

QoS properties. It is used to add extra information about
the QOSPARAMETER or QOSVALUE.

• Every QOSPARAMETER has 0..* monitored QoS val-
ues. The monitored QoS values are series of values
taken by the monitoring system in order to be either
compared to the QOSAGREEDVALUE or to be used to
compute instant or average values.

• Every QOSPARAMETER has 0..* QoS monitoring rules,
a rule defines how the QoS attributes in SOA should
be monitored.

This meta-model is based on EMF (Core), a modelling
framework and code generation facility, which is used to
building tools and applications based on a structured data
model.

IV. QOS MODEL

In this section, we will model three QoS attributes to
demonstrate the flexibility of the model. We will present
a standardized QoS attribute from the WS-* family and
introduce two non-standardized QoS attributes. The first QoS
attribute is from WS-ReliableMessaging. Listing 1 models
QoS attributes described as a RM policy assertion example
in [8], Section 2.4. In the following example, lines (2) -
(6) indicate that if the idle time exceeds ten minutes, the
sequence will be considered as terminated by the Service
Endpoint. lines (7) - (11) express that an unacknowledged
message will be transmitted after three seconds. Lines (12)
- (16) express that the exponential backoff algorithm will be

1<q o s s o a : S e r v i c e x m i : v e r s i o n =” 2 . 0 ”
2 <RQoSParameter name=” I n a c t i v i t y T i m e o u t ”
3 c a t a g o r y =” R e l i a b l e M e s s a g i n g ”>
4 <RQoSMetric name=” M i l l i s e c o n d ” />
5 <RQoSAgreedValue v a l u e =” 600000 ” da taType =” I n t e g e r ” />
6 </ RQoSParameter>
7 <RQoSParameter name=” B a s e R e t r a n s m i s s i o n I n t e r v a l ”
8 c a t a g o r y =” R e l i a b l e M e s s a g i n g ”>
9 <RQoSMetric name=” M i l l i s e c o n d ” />

10 <RQoSAgreedValue v a l u e =” 3000 ” da taType =” I n t e g e r ” />
11 </ RQoSParameter>
12 <RQoSParameter name=” E x p o n e n t i a l B a c k o f f ”
13 c a t a g o r y =” R e l i a b l e M e s s a g i n g ”>
14 <RQoSMetric />
15 <RQoSAgreedValue />
16 </ RQoSParameter>
17 <RQoSParameter name=” A c k n o w l e d g e m e n t I n t e r v a l ”
18 c a t a g o r y =” R e l i a b l e M e s s a g i n g ”>
19 <RQoSMetric name=” M i l l i s e c o n d s ” />
20 <RQoSAgreedValue v a l u e =” 200 ” da taType =” I n t e g e r ” />
21 </ RQoSParameter>
22 . . .
23</ q o s s o a : S e r v i c e>

Listing 1. QoS model for reliable messaging

used to retransmitted the message if the message was not
acknowledged. Lines (17) - (21) indicate that an acknowl-
edgement could be buffered up to two-tenths of a second by
the RM destination.

The following example models a QoS attribute, which
is not standardized. Listing 2 describes OCL constraints, a
well-known formalism for expressing constraints on classes
variables, methods parameters or methods return values.
The OCL constraints set preconditions, postconditions and
invariants for the Web service class or Web service methods.
The pre-condition in line (4), for example, indicate that the
given age must be within a range, a minimal age of 18

407

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

1<q o s s o a : S e r v i c e x m i : v e r s i o n =” 2 . 0 ”
2 xmlns :xmi =” h t t p : / /www. omg . org /XMI”
3 x m l n s : q o s s o a =” h t t p : / / q os so a / 1 . 0 ”>
4 <RQoSParameter name=” p r e C o n d i t i o n s ”
5 c a t e g o r y =” OCLConst ra ins ”>
6 <RQoSMetric name=” p r e d i c a t e ” />
7 <RQoSAgreedValue v a l u e =” age>=18 && age<=120”
8 da taType =” S t r i n g ” />
9 </ RQoSParameter>

10 <RQoSParameter name=” p r e C o n d i t i o n s ”
11 c a t e g o r y =” OCLConst ra ins ”>
12 <RQoSMetric name=” p r e d i c a t e ” />
13 <RQoSAgreedValue v a l u e =” zipCode >01000 &&
14 zipCode <99999 && zipCode . s i z e ==5”
15 da taType =” S t r i n g ” />
16 </ RQoSParameter>
17 . . .
18 <RQoSParameter name=” p o s t C o n d i t i o n ”
19 c a t e g o r y =” OCLConst ra ins ”>
20 <RQoSMetric name=” p r e d i c a t e ” />
21 <RQoSAgreedValue v a l u e =” user ID>0”
22 da taType =” S t r i n g ” />
23 </ RQoSParameter>
24 <RQoSParameter name=” I n v a r i a n t ”
25 c a t e g o r y =” OCLConst ra ins ”>
26 <RQoSMetric />
27 <RQoSAgreedValue />
28 </ RQoSParameter>
29</ q o s s o a : S e r v i c e>

Listing 2. QoS model for OCL constraints

years and maximum of 120 years. The pre-condition in line
(10) indicates that the given zip code must be within rang
between 01000 and 99999. It also implies that the zip code
must be of five digits since these pre-conditions must comply
with the zip code rules in Germany. The post-condition in
line (18) defines that the return value USERID shall not be
a negative number. The model offers also the possibility to
specify an OCL invariant condition as shown in line (24).

Another example of modeling QoS attributes is perfor-
mance. Response time and throughput are QoS attributes,
which are two of the most common used attributes in order
to measure performance. As response time refers to the
duration, which starts from the moment a request is sent
to the time a response is received, throughput refers to the
maximum amount of requests that the service provider can
process in a given period of time without having effect on
the performance of the Web service endpoint [10]. Listing
3 shows an example of how performance can be modelled.
Line (4) defines the QoS attribute “ResponseTime”, which
indicated that the Web service shall guarantee a response
time within 10 milliseconds. Line (9) indicated that the Web
service will be able to handle up to 120 request/second
without having any change on the Web service performance.

V. GRAPHICAL USER INTERFACE

The graphical user interface is a component, which uses
the QoS model to create its representation. Its main purpose
is to offer the Web service developer a graphical tool to
configure the QoS values of the modelled QoS attributes
and associate them with the Web service.

There are two factors, which decide how the GUI should
look like; the first factor is the QoS model. The QoS model

specifies how many categories shall be represented. Every
QoS category is represented by a GUI tab, where all QoS
attributes under the represented category will be represented.
For example, if the QoS model includes four QoS categories;
performance, OCL constraints, reliable messaging and secu-
rity. The QoS model will be transformed into a GUI, which
has four tabs. Each tab will represent a category. If the QoS
constraints, for example, has four QoS attributes, the QoS
constraints tab on the GUI will represent these four QoS
attributes as shown in Figure 1.

The element QOSMETRIC helps the GUI engine to de-
termin, how the QOSAGREEDVALUE shall be presented.
For example, if the QOSMETRIC indicates that the QoS
attribute is a string, the GUI engine will use a text field.
If the QOSMETRIC is a predicate, then the GUI engine will
use a check box for the presentation of this attribute.

The second factor is the Web service endpoint. A list of
the Web service methods will be extracted either directly
from the Web service endpoint interface (SEI) or from the
WSDL. Each extracted method has its own list of QoS
attributes. If, for example, two Web service methods have
two different “ResponseTime” values, a policy for each
method will be created. This will result in creating a separate
policy for each selected method. The created policy could
be also applied Web service wide. These possibilities give
the Web service more flexibility and dynamic.

VI. QOS POLICY

As a Web service developer configured the QoS attributes
on the graphical user interface, all QoS values will be
assigned to the QOSAGREEDVALUE element in the QoS
model. Once the QoS values has been assigned, a QoS policy
will be generated. If, for example, every Web service method
has different QoS attributes, a separate policy will be created
for every Web service method. A WS-Policy may include
the description of more than one QoS attribute depending
on the user input in the graphical user interface.

Listing 4 shows the modelled QoS in Listing 1 after being
transformed into reliable messaging policy assertion (also
described in [8]). The following transformation rules are
applied:

1<q o s s o a : S e r v i c e x m i : v e r s i o n =” 2 . 0 ”
2 xmlns :xmi =” h t t p : / /www. omg . org /XMI”
3 x m l n s : q o s s o a =” h t t p : / / qos so a / 1 . 0 ”>
4 <RQoSParameter name=” ResponseTime ”
5 c a t e g o r y =” Pe r fo rmance ”>
6 <RQoSMetric name=” M i l l i s e c o n d ” />
7 <RQoSAgreedValue v a l u e =” 10 ” da taType =” Double ” />
8 </ RQoSParameter>
9 <RQoSParameter name=” Troughpu t ” c a t e g o r y =” Pe r fo rmance ”>

10 <RQoSMetric name=” R e q u e s t s / s ” />
11 <RQoSAgreedValue v a l u e =” 120 ” da taType =” Double ” />
12 </ RQoSParameter>
13</ q o s s o a : S e r v i c e>

Listing 3. QoS model for performance

408

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

1<w s p : P o l i c y w su : Id =” MyPolicy ”>
2 <wsrm:RMAssert ion>
3 <w s r m : I n a c t i v i t y T i m e o u t M i l l i s e c o n d s =” 600000 ” />
4 <w s r m : B a s e R e t r a n s m i s s i o n I n t e r v a l
5 M i l l i s e c o n d s =” 3000 ” />
6 <w s r m : E x p o n e n t i a l B a c k o f f />
7 <ws rm :Ac kno wl edg em en t In t e r va l
8 M i l l i s e c o n d s =” 200 ” />
9 </ wsrm:RMAssert ion>

10</ w s p : P o l i c y>

Listing 4. Reliable messaging policy assertion

• The CATEGORY attribute in the QoS model de-
clares the name of the policy. For example, the
category “ReliableMessaging” is transformed into a
wsrm:RMAssertion element declaring a ReliableMes-
saging policy.

• The element RQOSPARAMETER in the QoS model
declares a QoS attribute. The RQOSPARAMETER el-
ement indicates the reliable messaging quality attribute
“InactivityTimeout” and is therefore transformed into
“wsrm:InactivityTimeout” element.

• The element RQOSMETRIC in the QoS model declares
a property or how the QoS should be measured. The
“Milliseconds” is transformed into “Milliseconds” at-
tribute within the “wsrm:InactivityTimeout” element.

• The element RQOSAGREEDVALUE in the QoS model
declares a QoS value. The value “600000” will be
mapped as a value for the QoS attribute.

Listing 5 shows the modelled QoS in Listing 2 after the
transformation into an OCL policy assertion. The same
transformation rules apply as already described above.

Once the policies have been created, component four in
Figure 1 will assign the created policies to the Web service
endpoint interface. In our proof of concept, we use the CXF
policy engine to attach the corresponding policy to either the
selected Web service methods or the Web service endpoint
interface. CXF uses the @POLICY annotation to signal the
compiler that there are policies, which should be considered
and assigned to the correspond at Web service while creating
the Web service WSDL.

VII. RELATED WORK

In our research for related work, a recent approach, which
nearly investigates our approach or even a part of it was
not found. Most of the recent works on QoS-aware Web
services focus on QoS-aware Web services compositions.
They investigate methods, algorithm or frameworks in order
to better compose Web services according to their QoS

1<OCLConst ra ins c o n t e x t =” R e g i s t r a t i o n S e r v i c e ”>
2 <P r e c o n d i t i o n p r e d i c a t e =” zipCode >01000 &&
3 zipCode <99999 && zipCode . s i z e ==5” />
4 <P r e c o n d i t i o n p r e d i c a t e =” age>=18 && age<=120” />
5 . . .
6 <P o s t c o n d i t i o n p r e d i c a t e =” UserID>0”>
7 <I n v a r i a n t />
8</ OCLConst ra ins>

Listing 5. OCL policy assertion

attribute. Such works could be found in [1] [2] [5]. In this
section, we will describe papers, which propose either QoS
meta-models or policy editors.

Tondello et al. [12] proposes a QoS-Modelling Ontology,
which allows QoS requirements to be specified in order
to fully describe a Web service in terms of quality. How-
ever, this proposal focuses on using QoS specification for
semantic Web services description and Web service search.
This approach, however, contains many variables and many
characteristics in ontology for semantic Web services, which
does not flow in the same direction as this work intends to.

Suleiman1 et al. [11] addresses the problem with Web
service management policies during design. The authors
presented a solution, which uses a novel mechanism. It gen-
erates W-Policy4MASC policies from corresponding UML
profiles semi-automatically and feedback information moni-
tored by the MASC middleware into a set of UML diagram
annotations.

D’Ambrogio [3] introduced a WSDL extension for de-
scribing the QoS of a Web service. It uses a meta-model
transformation according to MDA standards. The WSDL
meta-model is extended and transformed into a new WSDL
model called Q-WSDL, which supports QoS description. As
D’Ambrogio favour an approach, which does not support
introducing a new additional language on top of WSDL, our
approach uses standards for the description of QoS attribute
in Web services.

WSO2 WS-Policy editor [14] offers an integrated WS-
Policy editor with the WSO2 application server. The editor
offer two policy views; a source view and a design view.
The source view shows the policy in its XML format and
the design view shows the policy as a tree view. The user
will be able to add and remove element to and from the
policy. However, this policy editor only offers support for
WS-Security and WS-ReliableMessaging. A support for new
QoS attributes is not mentioned.

NetBeans offers a graphical tool, which allows users to
graphically configure security and reliable messaging to a
Web service. Extending this tool, however, is complex due to
the lack of documentation and its dependability to NetBeans
API and Glassfish.

All the these works discuss QoS attributes after the Web
services is developed. Our approach offers a solution to
develop a QoS-aware Web service.

VIII. FUTURE WORK

In [4], we presented the design of a comprehensive tool
chain that facilitates development, deployment and testing
of QoS-aware Web services. This paper is a part of the
work presented in the tool chain, which elaborates a concept
for managing quality of service attributes for Web services.
Future works will include different tasks, which will be
individually explained in this section.

409

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

In Section V, we introduced a GUI, which is dynamically
generated depending on the QoS attributes modelled in the
QoS model described in Section IV. However, the generation
of the GUI is platform-specific. This GUI is only a proof
of concept in order to demonstrate the feasibility of this
approach. Our goal is to create a GUI using MDA as a
base for our approach, which will allow the dynamic GUI
generation to different platform.

Section IV indicates that the QoS model will be trans-
formed to a QoS policy. In this paper, we have only
considered WS-Policy as a policy language in order to prove
that the concept really works. It is the intention of this
approach to offer QoS model transformation support to more
than one policy language. This will increase the flexibility
of our approach.

In [13], we offered a solution architecture, which collects
real time data about applied QoS attributes from the SOA
environment: The purpose of this architecture is to evaluate
the compliance of the entire SOA with the QoS attributes
described in the SOA QoS policy. It is our intention to use
the meta-model mentioned in Section IV for the evaluation
and monitoring of the SOA environment.

This paper presents an approach of how QoS attributes
could be easily modelled and transformed into an adequate
policy language. However, a policy without a handler, which
enforces the policy on the Web service is only half the
solution. Future works include a repository component,
which is designed to store QoS handlers. This repository
will include everything a Web service developer needs to
implement a Web service Handler. This includes handler
implementation, handler configurations and test cases.

IX. CONCLUSION

There are tools and IDEs, which help developers to ease
the process of creating programs and minimizes their error
rates. Nowadays, it is hardly imaginable to start designing
and implementing complex systems without them. To create
a QoS policy and conjugate it with a Web service requires a
good knowledge of its grammar and its mechanism. Tools,
which help developers to model QoS attributes, simplify
the configuration and automate applying QoS attributes to
Web services still has a long way to completion. In this
paper, an approach, which relieve a Web service developer
with this burden, was presented. It offers an easy way to
model QoS attributes. It also supports the modelling of new
QoS attributes, simplifies the configuration and automatize
applying QoS attributes to Web services. It is a step forward
to completing a tool chain for constructing QoS-aware Web
services and reducing a lot of development effort and cost.

X. ACKNOWLEDGMENT

This work has been supported by the German Ministry
of Education and Research (BMBF) under research contract
017N0709.

REFERENCES

[1] M. H. Agdam and S. Yousefi. A Flexible and Scalable
Framework For QoS-aware Web Services Composition. In
Proc. 5th Int Telecommunications (IST) Symp, pages 521–
526, 2010.

[2] P. Bartalos and M. Bielikova. QoS Aware Semantic Web Ser-
vice Composition Approach Considering Pre/Postconditions.
In Proc. IEEE Int Web Services (ICWS) Conf, pages 345–352,
2010.

[3] A. D’Ambrogio. A Model-driven WSDL Extension for
Describing the QoS ofWeb Services. In Web Services, 2006.
ICWS ’06. International Conference on, pages 789–796, sept.
2006.

[4] B. Hollunder, A. Al-Moayed, and A. Wahl. Performance and
Dependability in Service Computing: Concepts, Techniques
and Research Directions, chapter A Tool Chain for Construct-
ing QoS-aware Web Services, pages 172–188. IGI Global,
2011.

[5] H. Kil and W. Nam. Anytime Algorithm for QoS Web
Service Composition. In Proceedings of the 20th international
conference companion on World wide web, WWW ’11, pages
71–72, New York, NY, USA, 2011. ACM.

[6] D. Malfatti. A Meta-Model for QoS-Aware Service Compo-
sitions. Master’s thesis, University of Trento, Italy, 2007.

[7] OASIS. Web Services Policy Framework - Version 1.5,
September 2007. http://www.w3.org/TR/ws-policy/. Last Ac-
cess: 17.04.2011.

[8] OASIS. Web Services Reliable Messaging Policy - Ver-
sion 1.2, February 2009. http://docs.oasis-open.org/ws-
rx/wsrm/v1.2/wsrm.pdf. Last Access: 23.04.2011.

[9] OASIS. Web Services Security Policy - Version 1.3, April
2009. http://docs.oasis-open.org/ws-sx/ws-securitypolicy/.
Last Access: 17.05.2011.

[10] OASIS. Web Services Quality Factors Version 1.0,
July 2010. http://docs.oasis-open.org/wsqm/wsqf/v1.0/WS-
Quality-Factors.html. Last Access: 17.05.2011.

[11] B. Suleiman and V. Tosic. Integration of UML Modeling and
Policy-Driven Management of Web Service Systems. In Proc.
ICSE Workshop Principles of Engineering Service Oriented
Systems PESOS 2009, pages 75–82, 2009.

[12] G Tondello and F. Siqueira. The QoS-MO Ontology For
Semantic QoS Modeling. In Proceedings of the 2008 ACM
symposium on Applied computing, SAC ’08, pages 2336–
2340, New York, NY, USA, 2008. ACM.

[13] A. Wahl, A. Al-Moayed, and B. Hollunder. An Architecture
to Measure QoS Compliance in SOA Infrastructures. In
Proceedings of the Second International Conferences on
Advanced Service, pages 27–33, Los Alamitos, CA, USA,
2010. IEEE Computer Society.

[14] WSO2. WSO2 WSAS: The WS-Policy Editor 3.2.0 -
User Guide, April 2010. http://www.wso2.org/project/wsas/
java/3.2.0/docs/policyeditor/docs/userguide.html. Last Ac-
cess: 17.05.2011.

410

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

