
Certification of MDA Tools: Vision and Application

Oksana Nikiforova, Natalja Pavlova, Antons Cernickins , Tatjana Jakona

Department of Applied Computer Science

Riga Technical University

Riga, Latvia

{oksana.nikiforova, natalja.pavlova, antons.cernickins, tatjana.jakona}@rtu.lv

Abstract—Currently software system development is under the

conversion, where traditional code oriented software

development is transformed into model driven approach. A lot

of methods and tools are proposed to support main statements

of the model driven software development. However, there do

not exist mechanisms for notification of how much valuable are

the Model Driven Architecture (MDA) support tools and how

close they are to the main idea of model usage for software

development. One of the possible solutions how to solve the

problem of selection of appropriate MDA tool can be

certification process similar to that in other industries. The

paper proposes the framework for such certification and shows

an application of it for several MDA support tools.

Keywords-MDA; CASE-tools; certification; modeling.

I. INTRODUCTION

The complexity of software systems permanently
increases. It requires from developers carefully select
technologies and tools, which will be used during software
development process. Researchers and developers try to
automate software development process in order to minimize
human and material resource costs. Therefore in one hand a
big number of CASE-tools were created, each of which
support some part of software lifecycle. Functionality of the
CASE-tools may be duplicated. The concurrence occurs on
this market. Unified opinion which tool is the best and how
tools could be evaluated does not exist.

In other hand there are developed different processes,
approaches and methods to software development. For
example such processes as Rational Unified Process (RUP)
[1], Microsoft Solutions Framework (MSF) [2], SCRUM [3],
Extreme Programming (XP) [4], etc. exist. Model Driven
Architecture (MDA) [5] proposed by Object Management
Group (OMG) is popular approach to software development
and can be applied within any software development process.
Therefore a set of CASE tools, which support also several
activities defined by MDA, also appear on the tool market.
And it became much more complicated to examine CASE-
tools, which also support model and transformation chain of
MDA.

The area of the described here research is software
development using CASE-tools in the framework of MDA.
Software market is crowded with a variety of CASE-tools
that automate stages of the development in the framework of
MDA. Not developed any standardized procedures or criteria

for how to assess compliance of CASE-tool to standards of
MDA, to evaluate what part of the MDA chain considered
CASE-tool supports. The goal of this paper is suggest the
possibility of certification of CASE-tools based on a
considered here evaluation criteria of compliance to the
MDA.

The second section describes the difference between the
term of Model Driven Software Development (MDSD) and
principles of MDA applied for the software development.
The third section describes existing researches in the area of
MDA tool certification. The fourth section shows example of
CASE-tool evaluation for functionality and portability
aspects. In the last section the described research is
concluded.

II. MODEL DRIVEN APPROACH IN SOFTWARE

DEVELOPMENT

Requirements of customers and hence the software
becomes more sophisticated and complex with the time.
Therefore, developers should be more qualitative and should
have tools to satisfy the needs of quality of the software on
the level, required by clients, to respect deadlines and to
deliver software that functions properly. According to
Standish Group [6], only 29% of projects have been
succeeded in 2004 (i.e. done in time, met client’s
expectations, while being not over budget). Paying attention
to the development processes of the typical software
development company, similar steps, tools and tests will be
seen [6]. In order to optimize these activities, model-based
approaches may be used, providing manipulations with
models under meta-modeling process, as well as the usage of
CASE tools for model transformation and generation. This
approach to software development is realized with MDD [7].

Model Driven Development appears because there was a
necessarily to decrease efforts, to create and use analysis and
design models at each stage of the software development
process and to automate the transformation of the models [6].
The separation of concerns is another foundation of MDD
that provides the separation of high-level business logic from
system’s architecture and deployment platform. MDA
initiative, the primary example of MDD, was introduced by
OMG in 2001 to satisfy the needs of the modern software
industry [5], [8].

MDA proposes to use models on every stage of software
development, specifying a set of tools that supports

393

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

construction of models with design and architectural patterns
[8]. According to traditional software development life cycle,
the application of Model Driven Development should
consider the modeling approach as such. Unlike MDD, the
MDA approach considers models as central part of the
development process (assuming that model represents a set
of diagrams, used to express the whole software system) [9].
MDA may be considered as a next stage in the evolution of
software development process, which tends to bring some
improvements into each step of the software development
life cycle [8]. MDA is a framework, which contains technical
standards developed in the supervision of OMG (in this case,
OMG provides the guidelines of MDA application to
software development) [8]. There are four principles that
underlie the MDA approach [10]:

1. Models constructed with a well-defined notation are a
milestones of system representation for enterprise-scale
solutions;

2. System development is performed with construction
of a set of models and execution of model transformations;

3. Models and transformations among them are
described in a formal form with meta-models on MOF this
description could serve as a basis for automation through
different CASE tools;

4. The broad usage of model-based approaches requires
standards to provide satisfaction of costumers and highest
qualification of developers.

One of the milestones of MDA considers the text
description of the models, formal descriptions of a system,
models and code and possibility to apply the formal
transformations on every model of a system, to refine it and
obtain model, which is closest to user needs [10].
Considering the resources needed for software development,
there is a need to reduce the overall production costs, making
the software development process more profitable [11].
Here, the reuse of the existing models, patterns or code may
be used (thought, it may be a way too complex or
impossible). MDA proposes the following set of activities,

which may improve the software development process and
make an easier reuse of some components [11]:

1. Choose application model that corresponds with a
problem domain;

2. Subset the model as necessary;
3. Choose models in accordance with the implementation

technology platform;
4. Define the interconnection between models;
5. Generate the program code for software system.
In many cases, the necessity of introducing some changes

into developed system (or system under development)
appears. From this point, changes are introduced into the
application model only (1) — changes will be automatically
provided to the lower models. When the environment of
system development should be changed, models for the new
environment should be selected (3); program code should
also be regenerated (5) [12]. Therefore, the application
models are not changed, meaning that costs are lower,
productivity is higher, as well as the maintenance of the
system becomes much cheaper. With this approach each
model, which is constructed in the framework of MDA
guidelines, can be subsequently reused [11]. Fig. 1 shows the
supporting component model of Model Driven Architecture.
Components in Fig. 1 are depicted into the framework of
MDA models and its transformations within the authors
defined levels for system domain abstractions [9].

The MDA proposes to construct four basic models for
developed system (Fig. 1):

1. Computation Independent Model (CIM) that reflects
to business and its models— defined at problem domain
level in Fig. 1;

2. Platform Independent Model (PIM) that reflects to
analysis and design models of software system to be
developed—defined at solution domain level in Fig. 1;

3. One or many Platform Specific Models (PSM) that
reflect to detailed design models of software system under
construction—defined at software domain level in Fig. 1;

Figure 1. The component model of MDA (adopted from [13])

394

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

4. One or many Implementation Specific Models (ISM)
that reflect to implementation and runtime models – defined
at implementation domain level in Fig. 1.

Also, MDA components may be reflected to the main
blocks of Model Driven Development. These blocks are the
following [14]:

1. A model repository;
2. One or more domain modeling languages;
3. One or more workbench environments;
4. One or more modeling tools;
5. One or more transformation tools.
The components of MDA, shown on Fig. 1 are

representing all of the activities included in the MDA-driven
software development process. Dependence on information
exchange, which is imported/exported from one component
to another, is written on the arrows between components on
Fig. 1.

Regular font on arrows between components means that
the ability of import/export of models is possible. Transitions
between components, which can be performed only by the
human at this time, are expressed in italic. Authors’ research
[15] discusses different types of model transformations (e.g.
formal, semi-formal, based on hints or manual) to satisfy the
statements of MDA on model transformations. Up to the
year 2006 the conclusion stated that there is no solution
available to define the complete transformation CIM-to-
PIM-to-PSM-to-Code. The weakest link here is exactly the
construction of PIM or transformation from CIM to PIM.
Solutions focused on construction of CIM and CIM-to-PIM
transformations cannot insure that PIM is containing all the
necessary information, as well as that the presentation of
PIM is formal enough to be able to transform it into correct
PSM [15]. Authors’ efforts to find CASE tools up to date for
CIM-to-PIM transformation and to state the component to
support that activity carry to the point, that still there is no
guarantee result of CIM-to-PIM transformations. Also, the
verification of model consistency is under investigations and
the role of model interchange and interchange standards
become more and more important.

III. MAIN CONCEPTS OF MDA TOOLS CERTIFICATIONS

The idea lying behind the research is to provide a set of
guidelines on the actual implementation of the MDA for the
purpose of promoting it as a holistic approach for software
development across the IT community. A branch of
standards provided within MDA is defined in a form of
specification, meaning that the specification-based testing
may be used as a basis for compliance assessment [16]. In
particular, the conformance statement for CORBA provided
by The Open Group [17] is done this way. In fact, the
compliance itself is nothing else but the satisfaction of
software implementation to the standard specification [16].
[16] comes with an idea of considering the compliance test
suite generation as a branch of constraint satisfaction
problem, in which the first-order predicate is given and
processed to find models that satisfy it. Following this work,
instead of starting from a concrete set of constraints and
trying to find the appropriate models, the construction (as

well as the further classification) of all possible models is
considered.

When it comes to development of a new certification
scheme, the first and the foremost task is to define the object
of certification [18]. According to [18], the following types
of certification are possible:

• Product certification (accordance with particular
technical standard);

• Process certification (accordance with ISO 9000 or
similar standard);

• Personnel certification;

• Accreditation of certification bodies (the
certification of certifiers).

[18] summarizes the study on various certification
schemes and categorizes them into several groups, also
providing a general structure of certification process itself, as
well as presenting a new certification scheme used in space
technology.

In fact, the type of certification procedure for current
research can be determined as a combination of both the
product and the process certification. Such a mixture of types
will provide a more detailed outlook on various options to be
considered in the certification scheme.

Basically, the former type of certification is considered,
as software development tools (i.e., software products) are
involved in the research. This may also include the
specification of the most common features and options
defined to clarify the accordance level of each tool from
various perspectives (discussed in [19]).

As far as MDA-oriented software development life cycle
represents the process, the latter type of certification should
also be considered.

In order to provide a solid background for the
certification scheme, as well as to clarify the means of the
MDA tool as such, [20] is considered. [20] reviews the MDA
approach within the variety of the CASE tools, which are
proposed as supporting for MDA activities. The provided
specification of MDA tools consists of seven categories,
which definition and details are described in [20]:
1. Accordance with MDA-oriented life cycle—the

accordance level of software development life cycle
supported by a tool, which includes MDA-oriented activities
combined into such subcategories as knowledge
formalization (CIM), system model refinement (PIM), PIM-
to-PSM mapping, system model implementation (PSM), and
transformation support;
2. Functional capabilities—the functional capabilities of a

tool in such fields as environment, modeling,
implementation, testing, documenting, project management,
configuration management;
3. Reliability—the capability of a tool to maintain the

appropriate level of performance under certain conditions for
a certain period of time, including repository management,
automatic backup capabilities, data access management,
error processing capabilities, as well as fault analysis
capabilities;
4. Usability—usage efforts and individual assessments of

such usage, including user interface, licensing and

395

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

localization options, ease of use, quality of documentation
etc.;
5. Efficiency—the amount of resources needed to

maintain the appropriate level of performance under certain
conditions, including technical requirements, workload
efficiency, as well as performance;
6. Maintainability—efforts needed to make specified

modifications;
7. Portability—ability of a tool to be transferred to another

environment.
The mentioned criteria involve several aspects of the

features of the CASE-tool, such as usability and application.
Current research is devoted to evaluation of CASE-tools
regarding to modeling and implementation capabilities as it
is important development property in the framework of
MDA [21].

In order to clarify a vision on a certification scheme to
assess the compliance of MDA tools, a conceptual
framework is proposed. In fact, this framework should be
used to verify the output produced by MDA tools. Whereas a
wide variety of the tools intended for specific purposes (e.g.,
mapping definition) may be used [19], an additional
specification-based assessment of these tools is considered
(discussed in [19]).

In short, models defined by MDA are used to describe
the MDA-oriented software development life cycle [11],
[19], [5], namely they are CIM, PIM , PSM and ISM .

However, the only models to be specified and promoted
by OMG (i.e., described in details) are PIM and PSM [11].
In fact, OMG does not provide any specific requirements for
CIM (meaning that it is not “computational,” not formal
enough, etc.), as well as ISM itself — the actual source code
generated from PSM—from modeling perspective looks out
of scope. Despite this, all four layers are somehow covered
by various software development tools.

The conceptual framework considers these four models
as individual blocks, each of them having their own input
and output. The origin of this idea has come from black box
testing [22]: whereas software system is considered as a
black box, the only thing to be analyzed is the output
produced by specific input. Therefore, developer does not
need to understand why the compiled code does what it does;
here, the requirements are used to determine the correct
output of black box testing.

In fact, the main artifacts for the conceptual framework
are inputs and outputs. As far as CIM and ISM are out of
scope from the perspective of OMG standards, the
conceptual framework does not cover the according artifacts.
The actual tool use in each block (i.e., what operations are
performed) is also not the matter of high importance.

However, the main concern for each tool is the support of
XMI standard [23]. In order to perform a transition from raw
output to qualified input, the conceptual framework assesses
the output from each tool. If tool conforms to OMG
standards, then the output from this tool should be opened in
other tool with no problems. If not, the conceptual
framework would provide an appropriate suggestion on
where the root of the problem lies.

While OMG does not provide any constraints (i.e., does
not restrict) on the modeling language notation used with
MDA (however, the use of UML is strongly recommended)
[11] [5], the use of XMI for assessment of software
development tools seems to be the only valuable option. This
assessment is considered to be formal: a specification is said
to be formal when it is based on a language that has a well-
defined semantic meaning associated with each of its
constructs [24]. It is this formalism, which allows the model
to be expressed in a format such as XML, in accordance with
a well-defined schema (XMI).

The specification of XMI standard as such is used to
create the XML Schema of XMI standard [25], which
provides a means by which the syntax and the semantics of
an XMI document can be validated. XMI Schemas must be
equivalent to those generated by the XMI Schema
production rules specified in [23]. Equivalence means that
XMI documents that are valid under the XMI Schema
production rules would be valid in a conforming XMI
Schema; in turn, those XMI documents that are not valid
under the XMI Schema production rules are not valid in a
conforming XMI Schema [23].

After the XML Schema of XMI standard is created, the
developed tool creates a document data model, which
consists of [25]:

• Vocabulary (element and attribute names);

• Content model (relationships and structure);

• Data types.
This model is used for further validation of XMI

documents. Validation can determine whether the XML
elements required by [23] are present in the XML document
containing model data, whether XML attributes that are
required in these XML elements have values for them, and
whether some of the values are correct.

IV. EXAMPLE OF TOOL CERTIFICATION PROCESS

In order to examine the modeling and implementation
capabilities of tools, a scope of correspondence should be
defined first. Considering the information from previous
Sections, the main concern is concentrated on PIM, its
refinement, as well as further transition to PSM with similar
concentration, accordingly. In addition, the specification of
MDA tools provided in Section 3 should also be considered.

Based on [26], the following tools have been selected for
evaluation:

• ArgoUML 0.28;

• Altova UModel 2009;

• Sparx Systems Enterprise Architect 7.5.843;

• IBM Rational Enterprise Architect 7.0.0;

• MyEclipse Enterprise Workbench 7.1.1.

• MS Visual Studio 2010
[26] considers these tools as UML tools, which provide

source code generation capabilities from UML diagrams, as
well as reverse engineering capabilities. However, the only
use of UML does not guarantee that tool is “MDA
complaint”. That is why the most important features of UML
tools should be mapped to the appropriate features of the
MDA tools.

396

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

The compliance to MDA is defined in Section 3 with 7
view points: accordance with MDA-oriented life cycle;
functional capabilities; reliability; usability; efficiency;
maintainability and portability. Currently selected CASE-
tools are evaluated according some of functional capabilities,
namely, modeling and implementation, which are
represented with UML support and programming languages
support. As well as for portability, this is presented with
supporting of different platforms, interchange format and
programming languages in source code generation and
reverse engineering. Therefore, a model defined in
appropriate modeling notation (as was mentioned before, the
use of UML is suggested), a model enrichment (transition) to
meet the specifics of selected platform, generation of
platform-specific source code, as well as support for
MOF/XMI should be considered as the most important
features of these tools.

Other features like configuration management, testing,
project management, etc. are the matter of secondary
importance.

These tools feature a source code generation approach
based on template definition, meaning that a file (i.e.,
template) describing the use of meta-data information should
be defined first. If several tasks are considered, it is possible
to define a set of templates, where each template deals with
an appropriate task (here, a nested hierarchy is considered,
where main template contains information about
complementary templates). Certain tools (such as UModel
and Enterprise Architect, namely) provide an ability to
redefine the set of supplied generation templates, whereas
other tools are unable to provide such a feature.

Table 1 provides an outlook on several features declared
by tool vendors that are important for correspondence with
the proposed approach (based on [26]).

TABLE I Declared features of corresponding UML tools (based
on [26])

A
rg
o
U
M
L

A
lt
o
v
a
U
M
o
d
el

S
p
ar
x
 S
y
st
em

s

E
n
te
rp
ri
se

A
rc
h
it
ec
t

IB
M
 R
at
io
n
al

R
o
se
 E
n
te
rp
ri
se

M
y
E
cl
ip
se

E
n
te
rp
ri
se

W
o
rk
b
en
ch

M
S
 V
is
u
al

S
tu
d
io
 2
0
1
0

Common features

UML 1.4 2.2 1.3, 1.4,

2.0, 2.1

1.4 2.1 2.0

UML Profiles • • • • •

MOF/XMI 1.1,
1.2

2.1 1.1, 1.2,
2.1

 1.0 2.1

XMI

import/export

• • • • •

UML Diagram support

Class • • • • • •

Component • • • • • •

Composite

structure

 • • •

Deployment • • • • •

Object • • • • • •

Package • • • •

Profile • • • •

Activity • • • • • •

State machine • • •

Statechart UML 1.x • • •

Use case • • • • • •

Communication • •

Collaboration
UML 1.x

• • •

Interaction

overview

 • •

Sequence • • • • •

Timing • •

Source code generation capabilities

CORBA IDL • •

Java • • • • •

C++ • • • • •

C# • • • • •

VB.NET • • • •

PHP • •

Other

A
d
a,
 P
y
th
o
n
,

A
ct
io
n
S
cr
ip
t

J#
,
JS
cr
ip
t

Reverse engineering capabilities

CORBA IDL • • •

Java • • • • • •

C++ • • • •

C# • • • •

VB.NET • • • •

PHP •

Other

C
,
P
y
th
o
n
,

V
is
u
al
 B
as
ic
,

A
ct
io
n
S
cr
ip
t

J#
,
JS
cr
ip
t

To sum up, UModel and Enterprise Architect provide the

richest set of functional features, with the latter being the
most functional one in terms of source code generation and
reverse engineering capabilities. However, when it comes
down to interoperability among the tools—the main concern
for the proposed conceptual framework—even those with
same version of XMI standard fail. In theory, the project
developed in ArgoUML should be operable in Enterprise
Architect easily due to the same version of XMI standard
used in both tools (and vice versa). Similar arguments are
also exposed on such tools as UModel and Enterprise
Architect for the same reason. The most common error
relates to incorrect syntax in XMI files, which clearly
outlines the problems with proper implementation of
standards from the side of vendors.

Microsoft Visual Studio could be used as logical sequel
of previously examined tool. This tool does not support
modeling activities, but support different programming
languages for software development.

V. CONCLUSIONS

The paper discusses possibility of certification of MDA
CASE-tools, to find out some standard in existing assortment
of tools. Basic principles of MDA were examined to achieve
this goal. The paper defines components of MDA, and
relationships among them. During this research basic

397

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

principles of certification and defined properties of
certification corresponding to MDA were found. Tool
certification principles are important milestone to understand
how certification could be performed and which result we
want to obtain.

During this research 6 tools were examined within the
correspondence to modeling capabilities in the framework of
MDA: ArgoUML, Altova UModel, Sparx System Enterprise
Architect, IBM Rational Enterprise Architect, My Eclipes
Enterprise Workbench and MS Visual Studio 2010. The first
five tools are pure modeling tools, and the last one is MS
Visual studio positioned as development tool with modeling
capabilities.

The main contribution of the paper is the stressed
necessity for CASE tools certification. The paper shows
possibility of CASE tools certification in the context of
existing concepts. Possibility of tool verification in
accordance to proposed framework is shown in example of 6
CASE tools analysis.

With such an abundance of various CASE-tools, both
commercial and open-source, their certification is required.
Due to the fact that MDA is now the most widely used
approach in software development, it makes sense to certify
the CASE-tools in the framework of MDA. It is important to
identify the main criteria to determine conformance of
CASE-tool to the standards of MDA, and in the same time
these criteria should display conformance of CASE-tool to
the tasks facing the developer. The entire certification
process as a whole will only improve the quality of CASE-
tools and provide the ability to track information about new
features in the developed CASE-tools.

ACKNOWLEDGMENT

The research reflected in the paper is supported by Grant
of Latvian Council of Science No. 09.1245 "Methods,
models and tools for developing and governance of agile
information systems" and by ERAF project “Evolution of
RTU international collaboration, projects and capacity in
science and technologies”.

REFERENCES

[1] I.Jacobson, G.Booch, J.Rumbaugh, “The Unified Software
Development Process”, Addison-Wesley, 1999.

[2] Microsoft Solution Framework:
http://technet.microsoft.com/en-us/library/bb497059.aspx

[3] Introduction to Scrum - an Agile Process:
http://www.mountaingoatsoftware.com/topics/scrum

[4] Extreme Programming: A gentle introduction:
http://www.extremeprogramming.org/

[5] MDA Guide, version 1.0.1:
http://www.omg.org/docs/omg/03-06-01.pdf

[6] R.Bendraou, P.Desfray, M.Gervais, A.Muller, “MDA Tool
Components: a proposal for packaging know-how in model
driven development,” Software and Systems Modeling, Vol.7,
No.3,. Springer, Berlin 2008, pp.329-343.

[7] J. Krogstie, “Integrating enterprise and IS development using
a model driven approach,” Proc. 13th International
Conference on Information Systems Development—
Advances in Theory, Practice and Education, Springer. New
York, 2005, pp.43-53.

[8] M.Guttman, J.Parodi, “Real-Life MDA: Solving Business
Problems with Model Driven Architecture,” Morgan
Kaufmann, San Francisco, 2007.

[9] O.Nikiforova, V.Nikulsins, U.Sukovskis, “Integration of
MDA Framework into the Model of Traditional Software
Development,” Frontiers in Artificial Intelligence and
Applications, Vol.187, IOS Press. Amsterdam, 2009, pp.229-
239.

[10] A.Brown, J.Conallen, D.Tropeano, “Models, Modeling, and
Model Driven Development,” S.Beydeda, M.Book, V.Gruhn,
(eds.) Model-Driven Software Development, Springer, Berlin,
2005, pp.1-17.

[11] S.Mellor, K.Scott, A.Uhl, D.Weise, “MDA Distilled:
Principles of Model-Driven Architecture,” Addison-Wesley,
San Francisco, 2004.

[12] A.Cernickins, O.Nikiforova, “An Approach to Classification
of MDA Tools,” The 49th Scientific Conference of Riga
Technical University, Computer Science, Applied Computer
Systems. Riga, 2008, pp 72-83.

[13] O.Nikiforova, A.Cernickins, N.Pavlova, “Discussing the
Difference between Model Driven Architecture and Model
Driven Development in the Context of Supporting Tools,”
The 4th International Conference on Software Engineering
Advances (ICSEA), International Workshop on Enterprise
Information Systems (ENTISY), IEEE Computer Society,
2009, pp.1-6.

[14] A.Uhl, “Model-Driven Development in the Enterprise,” IEEE
Software, Vol.25, IEEE Press, Washington, 2008, pp.46-49.

[15] O.Nikiforova, M.Kuzmina, N.Pavlova, “Formal Development
of PIM in the Framework of MDA: Myth or Reality,” The
46th Scientific Conference of Riga Technical University,
Computer Science, Applied Computer Systems, Riga, 2006,
pp. 42-53.

[16] P.Bunyakiati, A.Finkelstein, D.Rosenblum, “The Certification
of Software Tools with respect to Software Standards,” IEEE
International Conference on Information Reuse and
Integration, 2007.

[17] CORBA 2.3 Conformance statement template:
http://www.opengroup.org/csq/csqdata/blanks/OB1.html

[18] H.Schäbe, “A Comparison of Different Software Certification
Schemes”: http://www.sipi61508.com/ciks/schabe1.pdf

[19] A.Cernickins, O.Nikiforova, “On Foundation for Certification
of MDA Tools: Defining a Specification,” RTU 50th
International Scientific Conference, Computer Science,
Applied Computer Systems, 2010, pp.45-51.

[20] A.Cernickins, “An analytical review of Model Driven
Architecture (MDA) tools,” Master’s thesis. Riga, 2009.

[21] A.Cernickins, “Clarifying a Vision on Certification of MDA
Tools,” Scientific Papers, University of Latvia. Vol.757.
Computer Science and Information Technologies, Latvia,
Riga, 5.-7. July, 2010, pp 23-29.

[22] I.Sommerville, “Software Engineering” (8th edition),
Addison-Wesley, Wokingham, 2006.

[23] MOF 2.0/XMI Mapping, Version 2.1.1:
http://www.omg.org/spec/XMI/2.1.1/PDF

[24] Implementing Model Driven Architecture using Enterprise
Architect. Mapping MDA Concepts to EA Features:
http://www.sparxsystems.com/downloads/whitepapers/EA4M
DA_White_Paper_Features.pdf

[25] XML Schema: http://www.w3.org/XML/Schema

[26] A.Cernickins, O.Nikiforova, K.Ozols, J.Sejans, “An Outline
of Conceptual Framework for Certification of MDA Tools,”
Model-Driven Architecture and Modeling Theory-Driven
Development, Greece, Athens, 22.-24. July, 2010. - pp 60-69.

398

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

