
Metrics in Distributed Product Development

Maarit Tihinen and Päivi
Parviainen

Software Technologies
VTT Technical Research Centre of

Finland
maarit.tihinen@vtt.fi

paivi.parviainen@vtt.fi

Rob Kommeren

Digital Systems & Technology
Philips,

The Netherlands
r.c.kommeren@philips.com

Jim Rotherham

Project Management Office
Symbio,
Finland

jim.rotherham@symbio.com

Abstract— Nowadays the products are increasingly developed
globally in collaboration between subcontractors, third party
suppliers and in-house developers. However, management of a
distributed product development project is proven to be more
challenging and complicated than traditional one-site
development. From the viewpoint of project management, the
measurements and metrics are important activities for
successful product development. This paper is focused on
describing a set of metrics that is successfully used in industrial
practice in distributed product development. Based on the
experiences, the reasoning for selecting these metrics was
similar: they are easy to capture and can be quickly calculated
and analysed on a regular interval. One of the most important
reasons for choosing these metrics was that they were aimed
especially to provide early warning signals, i.e., means to
proactively react to potential issues in the project. This is
especially important in distributed projects, where specific
means to track project status are needed.

Keywords-metrics; measurements; global software
development; distributed product development

I. INTRODUCTION
Globally distributed software development enables

product development to take place independently of the
geographical location of the individuals or organizations. In
fact, nowadays the products are increasingly developed
globally in collaboration between subcontractors, third party
suppliers and in-house developers [1]. In practice distributed
projects struggle with the same problems than single-site
projects including problems related to managing quality,
schedule and cost. Distribution only makes it even harder to
handle and control these problems [2][3][4][5]. These
challenges are caused by various issues, for example, less
communication – especially informal communication –
caused by distance between partners, and differences in
background knowledge of the partners. That’s why, in
distributed projects the systematic monitoring and reporting
of the project work is especially important, and measurement
and metrics are an important means to do that effectively.

Management of a distributed product development
project is more challenging than traditional development [6].

Based on an industrial survey [7], one of the most important
topics in the project management in distributed software
development is detailed project planning and control during
the project. In global software development (GSD), this
includes, e.g., dividing work by sites into sub-projects,
clearly defined responsibilities, dependencies and timetables,
along with regular meetings and status monitoring.

The main purpose of measurements and metrics in
software production is to create means for monitoring and
controlling and this way to provide support for decision
making [8]. Traditionally, the software metrics are divided
into process, product and resource metrics [9]. In the
comprehensive measurement program, all these dimensions
should be taken into consideration while interpreting
measurement results, otherwise, the interpretation may lead
to wrong decisions or incorrect actions. Successful
measurement program can prove to be an effective tool for
keeping on top of development effort, especially, for large
distributed projects [10]. However, many problems and
challenges have been identified that reduce and may even
eliminate all interests to the measurements. For example, not
enough time is allocated for measuring and metrics during a
project, or not enough benefit is visibly gained by the project
doing the measurement work (e.g., data is useful only at the
end of project, not during the project). In addition, the
“metric enthusiasts” may define too many metrics making it
too time consuming. Thus, it’s beneficial [10] to define core
metrics to collect across all projects to provide benchmarking
data for projects, and to build on measures that come
naturally out of existing processes and tools.

This paper is focused on describing a metrics set that are
successfully used in distributed product development. The
main purpose of the paper is to offer a set of essential metrics
with experiences of their use. The amount of the metrics is
knowingly kept as limited as possible. Also, the metrics
should be such, that they provide online information during
the projects, in order to enable fast reaction to potential
problems during the project. The metrics and experience
presented in the paper are based on metrics programs of two
companies, Philips and Symbio. Royal Philips Electronics is
a global company providing healthcare, consumer life-style

275

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

and lighting products and services. Digital Systems &
Technology is a unit within Philips Research that develops
first of a kind products in the area of healthcare, well-being
and lifestyle. The projects follow a defined process and are
usually distributed over sites and/or use subcontractors as
part of product development. Symbio Services Oy provides
tailored services to organizations seeking to build tomorrow's
technologies. Well-versed in a variety of software
development methodologies and testing best practices,
Symbio's specialized approaches and proprietary processes
begin with product design and stem through globalization,
maintenance and support. Symbio has built a team of
worldwide specialists that focus on critical areas of the
product development lifecycle. Currently Symbio employs
around 1400 people and their project execution is distributed
between sites in the US, Sweden, Finland and China.

The paper is structured as follows. Firstly, an overview of
related work – literature studies and their limitations related
to measurements and metrics of distributed product
development – is introduced in Section II. Then, proposed
metrics are presented using Rational Unified Process (RUP)
[11] approach as a framework. After that, industrial
experiences of using the metrics are discussed. Finally, the
conclusions are drawn in Section V.

II. MEASUREMENTS IN GSD
There are several papers that discuss globally distributed

software engineering and its challenges, for example, [10],
[12] and [13]. Also, metrics in general and for specific
aspects have been discussed in numerous papers and books
for decades. However, little global software development
(GSD) literature has focused on metrics and measurements
or even discusses the topic. Da Silva et al. [6] report similar
conclusion based on analysis of DSD literature published
during 1999 – 2009: they state as one of their key finding
that the “vast majority of the reported studies show only
qualitative data about the effect of best practices, models,
and tools on solving the challenges of distributed software
development (DSD) project management. In other words,
our findings indicate that strong (quantitative) evidence
about the effect of using best practices, models, and tools in
DSD projects is still scarce in the literature.”

The papers that have discussed some metrics for GSD
usually focus on some specific aspect, for example,
Korhonen and Salo [13], discuss quality metrics to support
defect management process in a multi-site organization.
Simmons and Ma [14] discuss a software engineering expert
system (SEES) tool where the software professional can
gather metrics from CASE tool databases to reconstruct all
activities in a software project from project initiation to
project termination. Misra [15] presents a cognitive weight
complexity metric (CWCM) for unit testing in a global
software development environment. Lotlikar et al. [16]
propose a framework for global project management and
governance including some metrics with main aim to support
work allocation to various sites. Peixoto et al. [12] discuss
effort estimation in global software development, and one of
their conclusions is that “GSD projects are using all kinds of

estimation techniques and none of them is being consider as
proper to be used in all cases that it has been used”, meaning,
that there is no established technique for GSD projects.

Some effort has also been invested in defining how to
measure success of GSD projects [17], and these metrics
mainly focus on cost related metrics and are done after
project completion. The focus of this paper is to discuss
metrics for monitoring ongoing GSD projects and that way
identify needs for corrective actions early.

A. Traditional metrics and project characteristics
Software measurements and metrics have been discussed

since 1960’s. The metrics have been classified many
different ways, for example, they can be divided into basic
and additional metrics [18] where basic metrics are size,
effort, schedule and defects, and the additional metrics are
typically metrics that are calculated or annexed from basic
metrics (e.g., productivity = software size per used effort).
The metrics can be divided also into objective or subjective
metrics [18]. The objective metrics are easily quantified and
measured, examples including size and effort, while the
subjective metrics include less quantifiable data such as
quality attitudes (e.g., excellent, good, fair, poor). An
example of the subjective metrics is customer satisfaction.
Furthermore, software metrics can be classified according to
the entities of product, processes and resources [9]. Example
metrics of product entities are size, complexity, reusability
and maintainability. Example metrics of process entities are
effort, time, number of requirements changes, number of
specification/coding faults found and cost. Furthermore,
examples of resource entities are age, price, size, maturity,
standardization certification, memory size or reliability.
These classifications, various viewpoints and the amount of
examples merely prove how difficult the selection of metrics
really can be during the project.

In addition to different ways of metrics classification,
development projects can also be classified. Typically, the
project classification is used as a baseline for further
interpretation of the metrics and measurements. For example,
all kind of predictions or comparison should be done within
the same kind of development projects, or the differences
should be taken into account. Traditional project
characteristics are, e.g., size and duration of a project, type of
a project (development, maintenance, operational lifetime
etc.), project position (contractor, subcontractor, internal
development etc.), type of software (hardware-related
software development, application software, etc.) or used
software development approaches (agile, open source,
scrum, spiral-model, test driven development, model-driven
development, V-model, waterfall model etc.). Furthermore,
different phases of development projects have to be taken
consideration while analyzing gathered measurement data.

B. Metrics and measurements during product development
A phase of lifecycle of development project affects to the

interpretation of the metrics. Thus, in this paper, proposed
metrics are introduced by using commonly known approach
of software development Rational Unified Process (RUP).
RUP is a process that provides a disciplined approach to

276

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

assigning tasks and responsibilities within a development
organization. Its goal is to ensure the production of high-
quality software that meets the needs of its end-users, within
a predictable schedule and budget [11].

The software lifecycle is divided into cycles, each cycle
working on a new generation of the product. RUP divides
one development cycle in four consecutive phases [11]: 1)
inception phase, 2) elaboration phase, 3) construction phase
and 4) transition phase. Furthermore, there can be one or
more iterations within each phase during the software
generation. The phases and iterations of RUP approach are
illustrated in following Figure 1.

Figure 1. Phases and Iterations of RUP approach [11].

From a technical perspective the software development is

seen as a succession of iterations, through which the software
under development evolves incrementally [11]. From
measurement perspective this means that some metrics can
be focused on one or two phases of the development cycle,
and some can be continuous metrics that can be measured in
all phases, and can be analysed, e.g., in iterations.

C. Measurements and metrics in GSD
Software measurement is defined by [19] as follows:

“The software measurements is the continuous process of
defining, collecting and analysing data on the software
development process and its products in order to understand
and control the process and its products and to supply
meaningful information to improve that process and its
products”. In the daily software development work, the
measurements are still seen as unfamiliar or even an extra
burden for projects. For example, project managers feel it as
time consuming to collect metrics for the organization (e.g.,
business-goal-related metrics) while they need to have
metrics that are relevant to the project. Furthermore, they
have impressed that there has not been budgeted enough time
for measurements, and that’s why it’s really difficult to get
approval from stakeholders for this kind of work [10].

Globally distributed development generates new
challenges and difficulties for the measurements. For
example, the gathering of the measurements data can be
problematic because of different development tools or their
versions, work practices with related concepts can vary by
project stakeholders or reliability of the gathered data can
vary due to cultural differences, especially, in subjective

evaluations. In addition, distributed projects are often so
unique (e.g., product domain and hardware-software balance
vary, or different subcontractors are used in different phases
of the project) that their comparison is impossible. Thus, the
interpretation of measurements data is more complicated in
GSD than one site projects. That’s why it’s recommended to
select moderate amount of metrics. In this paper we will
present a set of metrics to use during GSD. Also industrial
experiences about the metrics will be discussed.

The common metrics (effort, size, schedule etc.) are also
applicable for GSD projects. However, special attention may
be needed in training the metrics collection, to ensure
common understanding of them (e.g., used classifications).
Also, as measurements also tend to guide people’s behavior,
it’s important to ensure that all are aware of the purpose of
the metrics (i.e., not to measure individual performance),
specifically in projects distributed over different cultures.

III. EXAMPLES OF INDUSTRIAL PRACTICES
In this Section the metric set used in the companies is

introduced. The metrics are introduced according to the RUP
phases where the metric is seen most relevant to measure.
For each metric, a name, a notation and a detailed definition
is introduced. The main goal is to offer a useful, yet a
reasonable amount of metrics, for supporting the on-time
monitoring of the GSD projects. Thus, the indicators are
supposed to be leading indicators rather than lagging
indicators, for example, planned / actual schedule
measurements should be implemented as milestone trend
analysis: measure the slip in the first milestone and predict
the consequences for the other milestones and project end.

A. Metrics for Inception Phase
During the inception phase, the project scope has to be

defined and the business case has to be established. The
business case includes success criteria, risk assessment, and
estimate of the resources needed, and a phase plan showing
dates of major milestones. Inception is the smallest phase in
the project, and ideally it should be quite short. Example
outcomes of the inception phase are a general vision
document of the core project's requirements, main
constraints, an initial use-case model (10% -20% complete),
and a project plan, showing phases and iterations [20].
Proposed metrics to be taken consideration in this phase are
introduced in Table I.

TABLE I. METRICS FOR THE INCEPTION PHASE

Metric Notation Definition
Planned
Schedule

DPLANNED The planned Date of delivery (usually
the completion of an iteration, a
release or a phase)

Planned
Personnel

FTPLANNED The planned number of Full Time
persons in the project at any given
time

Proposed
Requirements

Reqs The number of proposed
requirements.

The metrics Planned Schedule and Planned Personnel are

mostly needed for comparison with actual schedule and

277

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

personnel, in order to identify lack of available resources as
well as delays in schedule quickly. The amount of Proposed
Requirements tells about the progress of the product
definition.

B. Metrics for Elaboration Phase
During the elaboration phase a majority of the system

requirements is expected to capture. The purpose of the
phase is to analyze the problem domain, establish a sound
architectural foundation, develop the project plan, and
eliminate the highest risk elements of the project. The final
Elaboration phase deliverable is a plan (including cost and
schedule estimates) for the construction phase. Example
outcomes of the elaboration phase are a use-case model (at
least 80% complete), a software architecture description,
supplementary requirements capturing the non-functional
requirements and any requirements that are not associated
with a specific use case, a revised risk list and a revised
business case, and a development plan for the overall project.
Proposed metrics to be taken consideration in this phase are
introduced in Table II.

TABLE II. METRICS FOR THE ELABORATION PHASE

Metric Notation Definition
Schedule:
Planned
/Actual Schedule

DPLANNED
DACTUAL

The planned/actual Date of
delivery (usually the
completion of an iteration, a
release or a phase)

Staff:
Planned
/Actual Personnel

#FTPLANNED

#FTACTUAL

The planned/actual number
of Full Time persons in the
project at any given time

Requirements
-Proposed
-Accepted
-Not implemented

#Reqs PROP.

#Reqs ACCEP.
#Reqs NOT_IMPL

The number (#) of
- proposed requirements
- reqs accepted by customer
- not implemented reqs

Tests
-Planned

#Tests PLANNED

The number (#) of
- planned tests

Documents:
-Planned
-Proposed
-Accepted

#Docs PLANNED
#Docs PROPOSED
#Docs ACCEPTED

The number (#) of
planned /proposed /accepted
documents to be reviewed
during the project.

The metrics related to requirements, tests and documents

indicate the technical progress of the project from different
viewpoints. Staffing metric may explain deviations in the
expected progress vs. the actual progress, both from
technical as well as from schedule viewpoint. Note that those
metrics that are more relevant to measure by iterations (e.g.,
effort and size) are introduced later (in Section E).

C. Metrics for Construction Phase
Construction is the largest phase in the project. During

the phase, all remaining components and application features
are developed and integrated into the product, and all
features are thoroughly tested. System features are
implemented in a series of short, time boxed iterations. Each
iteration results in an executable release of the software.
Example outcomes of the phase consist of a software product
integrated on the adequate platforms, user manuals, and a
description of the current release. Proposed metrics to be
taken consideration in this phase are introduced in Table III.

Note that those metrics that are continuously measured are
introduced later (in Section E).

TABLE III. METRICS FOR THE CONSTRUCTION PHASE

Metric Notation Definition
Planned
/Actual Schedule
Planned
/Actual Personnel

DPLANNED

DACTUAL
#FTPLANNED
#FTACTUAL

Defined in the elaboration
phase.

Requirements:
-Proposed
-Accepted
-Not implemented
-Started
-Completed

#Reqs PROP.
#Reqs ACCEP.

#Reqs NOT_IMPL
#Reqs STARTED
#Reqs COMPLETED

The number (#) of
- proposed requirements
- reqs accepted by customer
- not implemented reqs
- reqs started to implement
- reqs completed

Change Requests:
-New CR

-Accepted

-Implemented

#CRs NEW

#CRs ACCEPTED

#CRs IMPL.

The number (#) of
- identified new CR or
enhancement
- CRs accepted for
implementation
- CRs implemented

Tests:
-Planned
-Passed
-Failed
-Not tested

#Tests PLANNED.

#Tests PASSED
#Tests FAILED
#TestsNOT TESTED

The number (#) of
- planned tests
- passed tests
- failed tests
- not started to test

Defects
-by Priority: e.g.,
Showstopper,
Medium, Low

#Dfs PRIORITY

The number (#) of
- defects by Priority during
the time period

Documents:
-Planned
-Proposed
-Accepted

#Docs PLANNED

#Docs PROPOSED
#Docs ACCEPTED

Defined in the elaboration
phase.

The metrics related to requirements, tests and documents

indicate the technical progress of the project from different
viewpoints. Metrics related to changes indicate both on the
stability of the project technical content, and can explain
schedule delays, and unexpected technical progress. Defect
metrics tell both of the progress of testing, as well as
maturity of the product.

D. Metrics for Transition Phase
The final project phase of the RUP approach is transition.

The purpose of the phase is to transfer a software product to
a user community. Feedback received from initial release(s)
may result in further refinements to be incorporated over the
course of several transition phase iterations. The phase also
includes system conversions, installation, technical support,
user training and maintenance. From measurements
viewpoint the metrics identified in the phases relating to
schedule, effort, tests, defects, change requests and costs are
still relevant in the transition phase. In addition, customer
satisfaction is generally gathered in the transition phase.

E. Metrics for Iterations
Each iteration results in an increment, which is a release

of the system that contains added or improved functionality
compared with the previous release. Each release is
accompanied by supporting artifacts: release description,
user’s documentation, plans, etc. Although most iterations
will include work in most of the process disciplines (e.g.,

278

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

requirements, design, implementation, testing) the relative
effort and emphasis will change over the course of the
project. Proposed metrics to be taken consideration in this
phase are introduced in Table IV.

TABLE IV. METRICS FOR ITERATIONS

Metric Notation Definition
Effort:
-Planned Effort
-Actual Effort

EPLANNED
EACTUAL

The planned/actual effort
required of any given
iteration of the project.

Size:
-Planned size
-Actual size

SIZEPLANNED
SIZEACTUAL

The planned /actual size of
each iteration can be
measured as SLOC
(Source Lines of Code),
Points or any other
commonly accepted way.

Cost:
-Budgeted
-Expenditure

COSTBUDGET
COSTACTUAL

The budgeted cost /actual
expenditure for any given
iteration.

Velosity:
-planned /actual
story points

#PTS PLAN
#PTS ACT

How many story points are
planned to be /actually
implemented of any given
iteration of the project.

Productivity:

ACTUALPTS#
EACTUAL

Use effort per acutally
implemented story points
for each sprint /iteration

All of these metrics provide indication of the project

progress and reasons for deviations should be analysed.
These metrics should be analysed together with other metrics
results (presented in Tables I-III) in order to gain
comprehensive picture of the status.

IV. EXPERIENCES AND DISCUSSION
The metrics presented in previous section were common

for both of the companies. Although the metrics were chosen
independently by both companies, the reasoning behind
choosing these metrics was similar. An important reason was
to come from a re-active into a pro-active mode, i.e., to
introduce ‘early warning’ signals for the project and
management. Specifically these metrics have been chosen as
they indicate a well-rounded view of status in the various
engineering disciplines and highlight potential issues in the
project. This creates real possibilities to act proactively based
on signals gathered from various engineering viewpoints.
This is especially important in GSD, where information of
project status is not readily available but needs special effort,
distributed over sites and companies. Accordingly, the
metrics set can be seen as a ‘balanced score card’, on which
management can take the right measures, balancing insights
from time, effort (e.g., staffing), cost, functionality
(requirements) and quality (tests) perspective.

An important aspect was also that the metrics are easy of
capture and that they can be captured from the used tools
“for free”, or can be quickly calculated at regular intervals.
Costs and budgets are good examples of metrics that can be
easily captured from the tools. This is also important from
GSD viewpoint, as automated capturing reduces the chance
of variations caused by differences in recording the metrics

data in different sites. Neither of the companies use metrics
based on lines-of-code as they did not find it to be a reliable
indicator of progress, size or quality of design.

As can be seen, the metrics are quite similar as in single
site development. However, the metrics may be analysed
separately for each site, and comparisons between sites can
thus be made in order to identify potential problems early.
Also, while interpreting or making decisions based on the
measurement results the distributed development
implications need to be taken into account. Distributed
development requires ‘super-balancing’: how to come to the
right corrective action if for instance, in one side the % of
not accepted requirements is high, and in the other side the #
of passed tests is lagging behind. Distributed development
may also affect the actual results of the measurements. For
example, relating to subjective metrics, such as effort
estimation, differences between backgrounds of the people
(e.g., cultural or work experience) in different sites may
affect the result.

The companies also use the measurement results to gain
insight into why a measure varies between similar single site
and multi-site projects in order to try to reduce potential
variances. This also partially explains the use of the same
metrics as single-site development. Furthermore, the
challenges in communication and dynamics of distributed
teams mean that working practices need to be addressed
continuously. However, in addition to metrics results, paying
close attention and acting on feedback from retrospectives is
as important, if not more important than drawing strong
conclusions from metrics alone.

Currently, both companies are in process of revamping
their metric usage, but feel confident that these metrics are
the right ones. Easy implementation and by that easy
acceptance is the most crucial thing to get these metrics as
established practice within the company.

Both companies are careful in introducing new metrics,
as it’s well known that too many metrics leads to overkill
and rejection by the organization, and does not provide the
right insights and indication for control measures. However,
a potential measurement to be added to the set specifically
from distributed development viewpoint, could be
measurements related to time spent idling, i.e., waiting for
something, and the time blocked because of the impediments
elsewhere in the team as these affect productivity and
highlight when a team is not performing. These additional
metrics should be focused on measuring the project
performance, especially task and team performance in GSD.

V. CONCLUSION

The management of the increasingly common distributed

product development project is proven to be more
challenging and complicated than traditional one-site
development. Metrics are seen as important activities for
successful product development as they provide means to
effectively monitor the project progress. However, defining
useful, yet reasonable amount of metrics is challenging, and

279

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

there is little guidance available for a company to define
metrics for its distributed projects.

Globally distributed development generates new
challenges and difficulties for the measurements. For
example, the gathering of the measurements data can be
problematic because of different development tools or their
versions, work practices with related concepts can vary by
project stakeholders or reliability of the gathered data can
vary due to cultural differences, especially, in subjective
evaluations. Furthermore, especially interpretation and
decision-making based on the measurement results require
that the distributed development implications are taken
carefully into consideration.

This paper focused on describing a set of metrics that is
successfully used in industrial practice in distributed product
development. These metrics, are aimed especially to provide
means to proactively react to potential issues in the project,
and are meant to be used as a whole, not interpreted as single
information of project status.

The metrics presented in the paper were common for
both of the companies. Based on experiences, the reasoning
for selecting these metrics was similar: they are easy to
capture and can be quickly calculated and analysed at regular
interval. Also, one of the most important reasons was that
these metrics were aimed especially to provide means to
proactively react to potential issues in the project. The
balancing insights from time, effort, cost, functionality and
quality was also seen as very important aspect.

ACKNOWLEDGMENT
This paper was written within the PRISMA project that is

an ITEA 2 project, number 07024 [21]. The authors would
like to thank the support of ITEA [22] and Tekes (the
Finnish Funding Agency for Technology and Innovation)
[23].

REFERENCES

[1] J. Hyysalo, P. Parviainen, and M. Tihinen, "Collaborative
embedded systems development: Survey of state of the
practice," 13th Annual IEEE International Symposium and
Workshop on Engineering of Computer Based Systems
(ECBS 2006), IEEE, 2006, pp. 1-9.

[2] J. D. Herbsleb, "Global software engineering: The future of
socio-technical coordination," In Proceedings of Future of
Software Engineering FOSE '07, IEEE Computer Society,
2007, pp. 188-198.

[3] J. D. Herbsleb, A. Mockus, T. A. Finholt, and R. E. Grinter,
"Distance, dependencies, and delay in a global collaboration,"
In Proceedings of the ACM Conference on Computer
Supported Cooperative Work, ACM, 2000, pp. 319-328.

[4] M. Jiménez, M. Piattini, and A. Vizcaíno, "Challenges and
improvements in distributed software development: A
systematic review," Advances in Software Engineering, 2009,
pp. 14.

[5] S. Komi-Sirviö and M. Tihinen, "Lessons learned by
participants of distributed software development," Knowledge
and Process Management, vol. 12, (2), 2005, pp. 108-122.

[6] F. Q. B. da Silva, C. Costa, A. C. C. França, and R.
Prikladinicki, "Challenges and solutions in distributed
software development project management: A systematic
literature review," In Proceedings of International Conference

on Global Software Engineering (ICGSE2010), IEEE, 2010,
pp. 87-96.

[7] S. Komi-Sirviö and M. Tihinen, "Great challenges and
opportunities of distributed software development - an
industrial survey," 15th International Conference on Software
Engineering and Knowledge Engineering (SEKE2003), San
Francisco, USA, 2003, pp. 489-496.

[8] V. R. Basili, "Software modeling and measurement: The
Goal/Question/Metric paradigm," 1992.

[9] N. E. Fenton and S. L. Pfleeger, Software Metrics: A
Rigorous and Practical Approach. PWS Publishing Co.
Boston, MA, USA, 1998.

[10] M. Umarji and F. Shull, "Measuring developers: Aligning
perspectives and other best practices," IEEE Software, vol.
26, (6), 2009, pp. 92-94.

[11] P. Kruchten, The Rational Unified Process: An Introduction.
Addison-Wesley Professional, 2004.

[12] C. E. L. Peixoto, J. L. N. Audy, and R. Prikladnicki, "Effort
estimation in global software development projects:
Preliminary results from a survey," In Proceedings of
International Conference on Global Software Engineering,
IEEE Computer Society, 2010, pp. 123-127.

[13] K. Korhonen and O. Salo, "Exploring quality metrics to
support defect management process in a multi-site
organization - A case study," In Proceedings of 19th
International Symposium on Software Reliability Engineering
(ISSRE), IEEE, 2008, pp. 213-218.

[14] D. B. Simmons and N. K. Ma, "Software engineering expert
system for global development," In Proceedings of 18th IEEE
International Conference on Tools with Artificial Intelligence
(ICTAI'06), IEEE, 2006, pp. 33-38.

[15] S. Misra, "A metric for global software development
environment," In Proceedings of the Indian National Science
Academy 2009, pp. 145-158.

[16] R. M. Lotlikar, R. Polavarapu, S. Sharma, and B. Srivastava,
"Towards effective project management across multiple
projects with distributed performing centers," In Proceedings
of IEEE International Conference on Services Computing
(CSC'08), IEEE, 2008, pp. 33-40.

[17] B. Sengupta, S. Chandra, and V. Sinha, "A research agenda
for distributed software development," In Proceedings of the
28th International Conference on Software Engineering,
ACM, 2006, pp. 731-740.

[18] K. H. Möller and D. J. Paulish, Software Metrics: A
Practitioner's Guide to Improved Product Development.
Institute of Electrical & Electronics Enginee, London, 1993.

[19] R. Van Solingen and E. Berghout, The Goal/Question/Metric
Method: A Practical Guide for Quality Improvement of
Software Development. McGraw-Hill, 1999.

[20] P. Kruchten, "A rational development process," CrossTalk,
vol. 9, (7), 1996, pp. 11-16.

[21] PRISMA, Productivity in Collaborative Systems
Development, PRISMA project (2008-2011) homepage,
URL: http://www.prisma-itea.org/ (Accessed 1.6.2011).

[22] ITEA 2, Information Technology for European Advancement,
ITEA 2 homepage, URL: http://www.itea2.org/ (Accessed
1.6.2011).

[23] Tekes, the Finnish Funding Agency for Technology and
Innovation, Tekes homepage. URL: http://www.tekes.fi/eng/
(Accessed 1.6.2011).

280

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

