
Component-oriented Software Development with UML

Nara Sueina Teixeira
Graduate Program in Computer Science

Federal University of Santa Catarina - UFSC
Florianópolis, Brasil

E-mail: narasueina@inf.ufsc.br

Ricardo Pereira e Silva
Department of Informatics and Statistics - INE
Federal University of Santa Catarina - UFSC

Florianópolis, Brasil
E-mail: ricardo@inf.ufsc.br

Abstract— This paper proposes to automate the process of
structural and behavior analysis of component-oriented
software fully specified in UML. The structural specification
uses component, class and deployment diagrams, and the
behavior specification, state machine diagram. The produced
structural analysis tool analyzes a connection between pairs of
components at a time. The produced behavioral analysis tool
considers the behavior of the system as a whole, leading to
behavioral specification of the application automatically from
the machine state of each connected component. It is
performed the convertion of the state machines of the
individual components and of the application to Petri nets in a
transparent manner to the user. The behavioral assessment is
done by analyzing Petri net properties, considering the context
of the components. Analysis results are produced without
demand effort, allowing early location of design problems.

Keywords-Component-oriented development; structural
compatibility analysis; behavioral compatibility analysis; UML;
Petri Nets.

I. INTRODUCTION

For the component-based software development
approach, software construction consists in an
interconnection of a collection of units: the components. “A
component represents a modular part of a system that
encapsulates its contents and whose manifestation is
replaceable within its environment” [1]. “A component
interface (CI) is a collection of service access points, each
one with a defined semantics” [2]. The latter establishes the
services required and provided by a component, not
considering implementation details.

Some research efforts suggest the automation of
component compatibility analysis evaluating their CIs. Dias
and Vieira [3] use the Argus-I tool integrated to the SPIN
tool [4] for the component compatibility analysis, in which
specifications are produced in ADL (Architecture
Description Language) and state machine diagram is
converted to PROMELA [5]. The architectural analysis
considers the "super state model", but the authors do not
detail how it is generated.

Chouali and Souquières [6] use refinement in B to prove
the compatibility between two interfaces, through the tool
AtelierB [7]. The CI specification is converted to the formal
method B and consists of a data model associated with each
component provided and the required interface. The
interoperability does not cover behavioral aspects, therefore
it does not assess the feasibility of the component-based
application.

Mouakher, Lanoix and Souquières [8] improved the
approach [6] by adding an interface protocol, described in
PSM (Protocol State Machine), to the CI specification and
proposing adapters when incompatible interfaces were
identified. However, the analysis is also performed between
two connected interfaces, disregarding problems associated
with the whole set of application components. In [6] and [8]
the notion of component port is not treated.

Bracciali, Brogi and Channel [9] describe the interface of
components through IDLs (Interface Description Language)
and they use a subset of Lambda Calculus to represent the
behavior of components. This low level solution becomes
difficult to be applied to describe complex systems.

The component compatibility analysis should be
performed based on the CI specification and must consider
three distinct aspects: structural, behavioral, and functional.
“The structural aspect concerns the static features of a
component and corresponds to the set of required and
provided operation signatures of the CI. The behavioral
aspect defines constraints in the invocation order of provided
and required operations. The functional aspect describes
what the component does, not necessarily going into details
of its implementation” [10].

The lack of a widely accepted standard for the
specification of CI makes the analysis of compatibility
between components difficult and hence, their reuse. The
second version of UML, called henceforth UML [1] provides
mechanisms to deal with components, but does not establish
a standard for complete specifications.

In a previous publication [11] were proposed ways of
specifying component-oriented software and CI, in which the
specification is based on the object-oriented paradigm and
uses only UML diagrams. For the CI structural specification
component and class diagrams are used and for the CI
behavioral specification is utilized the state machine
diagram. Thus, each component has its own state machine
(SM) representing its externally observable behavior – being
this observable behavior the sequence of required and
provided operations performed during the component’s
operation. The organization of components of an application
is described by using the deployment diagram.

This paper proposes the automation of the component’s
compatibility analysis process from the component-based
software specification [11]. The approach used in this paper
is implemented in the current version of the SEA
environment [10] [12] [13], which uses UML. SEA is a
development environment in which the object-oriented
paradigm is used for production and use of reusable software

269

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

artifacts. Some tools were built in this environment to
automate the analysis of structural and behavioral
compatibility.

The structural analysis tool (SAT) handles at each time,
pairs of connected ports. The behavioral analysis tool (BAT)
considers not only the individual behavior of each
component, but also the behavior of the system as a whole. It
involves the entire set of application’s interconnected
components at the same time. In this work, the application
SM is automatically obtained from the union of the SMs of
each connected component.

For the behavioral analysis, the UML state machine
diagram is converted in Petri net (PN). This conversion is
done automatically in a transparent way to the user, who
does not need any knowledge of this modeling technique.
Behavioral problems are identified through the
interpretation of PN properties, considering the component
context. The conversion method (of SM to PN) used in this
study is similar to that proposed in [14], however, it only
handles PNs of the ordinary kind and presents particularities
of the treaty context.

Functional compatibility analisys consists in evaluate if
the execution steps of an operation are in agreement with
the need of the component that invokes the operation. This
kind of analisys is not automatable and is beyond the scope
of this work.

The following sections are organized as: Section II
presents concepts related to OCEAN / SEA, and Section III
presents the approach to specify component-based software.
In Section IV, the automated structural compatibility analysis
is described, while in Section V, the behavioral analysis is
presented. Software specification and analysis are supported
by the tools inserted in SEA environment. Section VI
presents how the evaluation of the produced tools occurred.
The article ends with conclusions, in Section VII.

II. OCEAN/SEA IMPLEMENTATION

OCEAN [10] is an object-oriented framework for the
domain of the software development environments. From
this framework, SEA environment, a software development
support, was built.

The software development using SEA starts with the
production of a UML design specification. In this
environment, a design specification is an object that
aggregates models and concepts (that are objects) and
includes relationships between these objects. Each kind of
UML diagram is defined as a class related to the proper
diagram elements, that is, to the classes that model the
diagram elements.

In the SEA environment, tools are also defined as classes
and they are related to one or more kinds of specification –
the ones that can be handled by these tools. The tools can be
produced to be accessed by a menu or to be automatically
called in a specific situation.

Tools of an OCEAN-based environment are produced by
means of framework extension (subclassing). There are three
kinds of tool: editors (such as a diagram editor), converters
(such as a code generator), and analyzers. The analyzers read

a design specification without changing it and produce
reports with the specification features. The tools SAT and
BAT are analyzers.

III. SPECIFICATION OF COMPONENT-BASED SOFTWARE

A. Structural Specification
The structural specification concerns to all the operation

signatures of the CI. “The CI refers to the portion of the
component responsible for communicating with its external
environment. Taking into account the nomenclature of UML,
the CI is composed by a port collection, each one associated
to one or more UML interfaces” [11].

In this approach, producing the CI structural specification
requires the specification of all interfaces associated with the
component (in class diagram) and the definition of the
component ports, associating required or provided interfaces
to each of them in component diagram.

With the establishment of the interfaces related to the
component ports through realization or dependency
relationship, it becomes possible to check what operations
are provided or required from a component’s port.

Figure 1 illustrates the structural specification of a
hypothetical component, CompB, made in the SEA
environment. At the right side there is the class diagram
with the interfaces; at the left side, a component, in a
component diagram, that is related to the declared interfaces.

In the SEA environment, the connection between
components is made in the deployment diagram, linking the
ports of connected components. Figure 2 illustrates a
deployment diagram with a hypothetical software artifact
consisting of the interconnection of three components. All
the components must be declared in component diagram and
all the interfaces, in class diagram.

B. Behavioral Specification
The CI behavioral specification sets restrictions on the

invocation order of operations provided and required by the
component. In this approach, the behavioral specification is
represented by a UML state machine diagram. The basic idea
is that each state represents a situation that occurs during the
operation of a component, which is characterized by the
operations required and provided that can be performed at
the time. Each transition leaving a state represents the
execution of an operation – provided or required – that can
leave the component in the same state or lead to another
state. Some conventions have been established:

Figure 1. Component structural specification in the SEA environment.

270

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Figure 2. Software artifact consisting of the interconnection of components

CompA, CompB, CompC.

Figure 3. Behavioral specification of components CompA, CompB and

CompC.

- The state identifiers are combinations of letters and
numbers, which only differentiate a state of the others (the
transitions are the elements that define the semantics of the
model).

-The transitions are labeled according to the following
convention: <direction> <port> <operation>, where
<direction> may be <<out>> for the operations invoked by
the component and <<in>> for provided operations.

Figure 3 illustrates the SMs of the components CompA,
CompB and CompC (mentioned in Figure 2).

IV. AUTOMATION OF STRUCTURAL COMPONENTS’S

COMPATIBILITY ANALYSIS

Figure 4 illustrates the SAT performance. Its purpose is
to perform structural analysis, which consists in the
following actions:

A. Structural Specification Consistency Analysis

The structural specification consistency analysis verifies
if the system is specified with all restrictions set forth in
approach, such as:

- All components are specified in a component diagram
with at least one port associated to each one.

- Each port is associated with at least one required or
provided interface.

- Each interface referenced in the component diagram is
described in a class diagram.

Figure 4. Structural Analysis Tool of the SEA environment (SAT).

- Each interface defined in the class diagram has at least

one declared operation.
- At least two components are connected in a deployment

diagram.

B. Connected Port Analysis

The structural compatibility is evaluated for each pair of
connected ports of the application components. “The set of
required operations by a port includes the operations of all
interfaces related to that port by dependency. These
operations should be provided by the port on the other side
of the connection through its set of provided operations,
in other words, the set of operations of all interfaces related
to that port by realization” [11]. Otherwise, structural
incompatibility is identified in the connection.

The analysis of the connected ports compares, for each
pair of connected ports, the operations required in the port of
a component with the operations provided by the port of the
other component attached to it, considering operation name,
return type, number of parameters and parameter type.

At the end of the analysis, SAT reports the results, with
the structural incompatibilities found.

V. AUTOMATION OF THE COMPONENT BEHAVIORAL

COMPATIBILITY ANALYSIS

Figure 5 illustrates the BAT operation in the SEA
environment. In this approach, the behavioral analysis of
components involves the following actions:

A. Behavioral Specification Consistency Analysis

The behavioral specification consistency analysis checks
whether the specification complies with the restrictions
established in the approach, such as those mentioned in
Section III-B.

Figure 5. Behavioral Analysis Tool of the SEA environment (BAT).

271

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

For each analyzed SM, a behavioral specification
evaluation report is generated, assessing the respective
component, with the found errors.

B. Generation of the application behavioral
specification

“Behavioral compatibility is observed between
components if the restrictions on the operation invocation
order of the required and provided operations established in
each component are compatible with the other components
connected to it. This type of evaluation involves the whole
set of connected components” [11].

The method for generating the application SM was
proposed in a previous work [11] and consists of:

1. Identifying pairs of related transitions. Two transitions
are related if they involve interconnected ports and execution
of the same operation, which is required on one side and
provided by the other side;

2. Inserting fork and join pseudostates (a single syntactic
element) that synchronizes the related transitions of the
different machines. This link will convert the set of SMs in a
single one – the component-based application SM – and
synchronizes an operation invocation with its execution;

3. Synchronize the transitions of the initial pseudostates
of various machines with a fork pseudostate (inserting a
single initial pseudostate for the application SM). This step
preserves the initial state of all SMs.

From this algorithm, the application SM will include the
states of all involved components. Figure 6 illustrates the SM
(automatically generated by BAT) of the application,
consisting of the interconnection of components CompA,
CompB and CompC, illustrated in the Figures 2 and 3.

C. Conversion of State Machines in Petri Nets

The user of the SEA environment manipulates only UML
diagrams to specify component-based software. The SMs are
converted into the corresponding PNs automatically, in a
completely transparent way to the user, who never see PN
diagrams.

The algorithm for conversion of the SMs in PNs is
summarized in the following steps:

1. For each state of the SM, create a place in the PN.
2. Identify the states related to the initial pseudostate and

mark the corresponding places with a token at each PN.
3. For each SM transition not related to another, create a

transition and connect it with arcs to its input and output
places (it applies to the SM transitions of the individual
components and the application SM transitions
corresponding to unconnected ports).

4. For each set of SM transitions related to a fork/join in
the application, create a transition with a set of arcs
connecting it to their respective input and output places.

Figure 7 illustrates the PN obtained from the conversion
of the SM showed in Figure 6.

D. Petri net properties analysis

The Pipe analyzer tool – Platform Independent Petri net
Editor 2, version 2.5 [15] – was integrated to the SEA
environment, with adaptations and extensions. Given a PN,

the analyzer, through state enumeration, reports whether or
not it has a certain property. The interpretation of each
property is done for the treated context. The following
properties are considered:

1. Safeness: the PNs that represent component-based
applications must be safe. Otherwise, it denotes behavioral
error.

2. Reversibility: in this study, the conclusion that a PN
that represent component-based applications is not reversible
causes a warning which should be evaluated by the user.

3. Deadlock: a deadlocked PN characterizes a behavioral
error. This can occur for two reasons: one is because the
restrictions associated to the execution order of the
operations, established by a component, are not respected by
other components connected to it. Another reason is the
occurrence of unconnected port(s) in one or more application
components. It occurs when the component requires or
provides operations, through this port, which are essential to
its operation.

4. Liveness: an alive PN representing a component-based
application characterizes a behavioral specification without
errors. However, the absence of this property does not
necessarily denote behavioral error. A not alive PN may
have almost alive or dead transitions and is the user's
responsibility to assess whether or not this is a behavioral
compatibility problem.

5. Almost alive transitions: this characteristic leads to a
warning, because it is necessary that the user evaluates if the
unavailability of an operation, at a certain moment of the
execution, is a behavior compatibility problem.

6. Dead transitions: this feature also requires the user
evaluation, that is, if the permanent unavailability of an
operation is a problem for the application.

7. Transition invariants: In the analysis of the application
PN, the invariants are identified and compared with the
invariants of the individual component PNs, because
possible cyclic sequences of operations of a component may
not be possible when it is connected to others.

The analysis of the PN properties is made for both
application PN and individual component PNs. The
interpretation that occurs to this case is the same as the
application PN, except for the property deadlock:
considering the specification of an individual component,
deadlock means modeling inconsistency. It is necessary to
compare situations that occur in the component behavior, but
that no longer occur in the application, when the component
is connected to others.

VI. PROPOSED APPROACH EVALUATION

Two emphases have been adopted in the evaluation
process: the tools’s ability to identify errors and suspicious
situations (reported as warnings) and the appropriateness of
the analysis approach. The evaluation of the implemented
tools was performed with small applications, with a
maximum of ten components. Specifications without errors
and specifications with purposely inserted errors were
treated by the analysis tools in order to evaluate all
situations in which they should work.

272

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Figure 6. Behavioral specification corresponding to the application of the figure 2.

Figure 7. Petri net obtained from the conversion of the SM showed in Figure 6.

The analysis approach showed to be adequate when

comparing their results with the conclusions of not
automatic analysis. The tools were not submitted to stress
test. The following are some analysis examples.

Figure 8 shows an exaple of a structural analysis report
with error detection – in this case, operation not provided
and problems with parameteres. Figure 9 shows an example
of behavioral analysis report with errors due to unconnected
port, that is, a deadlock caused by the need of operation
invocation in an unconnected port. Figure 10 shows another
example of behavioral analysis report with warnings due
the possible changes that may occur in the component
behavior when it becomes part of a component connection.
In this case, possible service execution cycles of an
individual component not be preserved when it is connected
to other components. Besides that, operations always
available in the components become temporarily
unavailable in the application that contains the components.

Based on reports like the ones showed, the user can
make decisions and define corrective action related to the
component and application specifications. For situations
that represent warnings, the user must evaluate whether or
not they mean a problem for the application.

VII. CONCLUSION AND FUTURE WORKS

This paper has presented an automatic procedure for the
structural and behavioral compatibility analysis. The
approach was implemented in the SEA environment, using
tools embedded in it.

Component and class diagrams have been used for the
CI structural specification. The behavioral aspect is
defined using the state machine diagram. The component
organization is defined using the deployment diagram.

The structural analysis tool evaluates whether the
operations required on one side of the connection are
provided by the component on the other side.

The behavioral analysis tool generates the application
SM automatically. All SMs are converted into PNs, which
are analyzed and interpreted in the given context.

The main advantages of this proposal are: the
specification is made with just a single language, UML; the
application behavioral specification is generated
automatically, reducing the design effort; the behavioral
analysis considers the behavior of individual components
and application, comparing them and identifies errors and
suspicious situations reported as warnings.

273

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Figure 8. Connected Port Analysis Report with error.

Figure 9. Behavioral Analysis Report with error.

The developed tools automate the proposed analysis
approach and the tests have shown the ability to
automatically locate structural and behavioral errors.

As future work, we highlight the need of assessing the
produced automatic support in the development of larger
applications, the development of automated support to assist
the creation of component adapters and to find alternatives
to assess functional compatibility. Thus, we expect the
possibility of producing component-oriented software
specification more accurately, less prone to error, and
improve its quality.

REFERENCES

[1] Object Management Group. Unified Modeling Language:
Superstructure version 2.4. Available in:
<http://www.omg.org/spec/UML/2.4/Superstructure/Beta2/PDF>.
Access: 20 January 2011.

[2] C. Szyperski, Component Software: beyond object-oriented
programming, 2.ed. Boston, EUA: Addison-Wesley Professional,
2002.

[3] M. S. Dias, and M.E.R. Vieira, “Software Architecture Analysis
based on Statechart Semantics” in Proceedings of the 10th
Internacional Workshop on Software Specification and Design. [S.1]:
IEEE Computer Society, 2000.p.133.ISBN 0-7695-0884-7.

[4] SPIN. Available in: <http://spinroot.com/spin/whatispin.html>.
Access: 10 November 2010.

Figure 10. Behavioral analysis report with warnings.

[5] PROMELA. Process or Protocol Meta Language. Available in:
<http://www.dai-arc.polito.it/dai-
arc/manual/tools/jcat/main/node168.html>. Access: 10 November
2010.

[6] S. Chouali, M. Heisel, and J. Souquières, “Proving Component
Interoperability with B Refinement,” in International Workshop on
Formal Aspect on Component Software, H. R. Arabnia and H.Reza,
Eds. CSREA Press, 2005, to appear in ENCTS 2006.

[7] Atelier-B. Available in: <http://www.atelierb.eu/index-en.php>.
Access: 10 November 2010.

[8] I. Mouakher, A. Lanoix, and J. Souquières, “Component Adaptation:
Specification and Verification,” in Proceedings of the International
Workshop on Component-Oriented programming, (WCOP). 2006

[9] A. Braccialia, A. Brogi, and C. Canal, "A formal
approach to component adaptation", in Journal of Systems and
Software Volume 74, Issue 1, 1 January 2005, Pages 45-54.

[10] R. P e Silva, “Suporte ao Desenvolvimento e Uso de Frameworks e
Componentes,” PhD Dissertation , Porto Alegre, UFRGS/II/PPGC,
march 2000.

[11] R. P e Silva, Como Modelar com UML 2, Florianópolis: Visual
Books, 2009. ISBN: 978-85-7502-243-6.

[12] A. Coelho, “Reengenharia do Framework OCEAN,” M.Sc. Thesis,
Florianópolis, UFSC. 2007.

[13] T. C. de S. Vargas, “Suporte à Edição de UML 2 no Ambiente SEA,”
M.Sc. Thesis, Florianópolis, UFSC. 2008.

[14] J. A. Saldhana and S. M. Shatz, “UML Diagrams to Object Petri Net
Models: An Approach for Modeling and Analysis,” in International
Conference on Software Engineering and Knowledge Engineering.
Proc. of the Int. Conf. On Software Eng. and Knowledge Eng.
(SEKE), Chicago, 2000.

[15] Pipe. Platform Independent Petri net Editor 2, versão 2.5. Available
in: <http://pipe2.sourceforge.net/>. Access: 20 January 2011.

274

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

