
Design Patterns for Model Transformations

Kevin Lano
Dept. of Informatics

King’s College London
London, UK

Email: kevin.lano@kcl.ac.uk

Shekoufeh Kolahdouz-Rahimi
Dept. of Informatics

King’s College London
London, UK

Email: shekoufeh.kolahdouzrahimi@kcl.ac.uk

Abstract—Model transformations are a central element of
model-driven software development. This paper defines design
patterns for the specification and implementation of model
transformations. These patterns are commonly recurring struc-
tures and mechanisms which we have identified in many specific
transformations. In this paper we show how they can be used
together to support an overall development process for model
transformations from high-level specifications to executable
Java implementations.
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I. I NTRODUCTION

Design patterns for software development were introduced
by Gamma et al [5]. Subsequently, many hundreds of pat-
terns have been identified, including patterns for specialised
forms of development such as enterprise information sys-
tems [3]. Patterns for model transformations were proposed
by [1]. In this paper, we consider further patterns, based on
a large number of case studies which we have carried out or
analysed. These patterns are inter-related and can be used
together to support the development of transformations from
high-level specifications as sets of constraints, to executable
implementations in Java. They have been incorporated into
our transformation environment, UML-RSDS [10].

Section II describes related work, Section III defines
a general development process for model transformations.
Section IV describes specification patterns, Section V de-
scribes implementation patterns and Section VI gives con-
clusions.

II. RELATED WORK

General design patterns can be used for model trans-
formations. For example, the Builder and Abstract Factory
patterns are directly relevant to transformation implementa-
tion, in cases where complex platform-specific structures of
elements must be constructed from semantic information in
a platform-independent model, such as the synthesis of J2EE
systems from UML specifications. The Visitor pattern can
be used for model-to-text transformations [4]. The Model-
view-controller pattern is relevant for change-propagating
model transformations, where changes to the source model
are propagated to the target (view).

Patterns specific to model transformations have been
identified and used previously. In [2], specifications of
the conjunctive-implicative form (Section IV) are derived
from model transformation implementations in triple graph
grammars and QVT, in order to analyse properties of the
transformations, such as definedness and determinacy. This
form of specification is therefore implicitly present in QVT
and other transformation languages.

In [14], [15] the concept of the conjunctive-implicative
form was introduced to support the automated derivation of
transformation implementations from specifications written
in a constructive type theory.

In [1], a transformation specification pattern is intro-
duced, Transformation parameters, to represent the case
where some auxiliary information is needed to configure
a transformation. This could be considered as a special
case of the auxiliary metamodel pattern (Section IV). An
implementation patternMultiple matching is also defined,
to simulate rules with multiple element matching on their
antecedent side, using single element matching. We also
use this pattern, via the use of multiple∀ quantifiers in
specifications and multiplefor loops at the design level to
select groups of elements.

Our work extends previous work on model transformation
patterns by combining patterns into an overall process for
developing model transformation designs and implementa-
tions from their specifications. The patterns are an essential
part of the UML-RSDS development process for model
transformations.

III. D EVELOPMENT PROCESS FOR MODEL

TRANSFORMATIONS

In this section, we outline a general development pro-
cess for model transformations specified as constraints and
operations in UML. We assume that the source and target
metamodels of a transformation are specified as class dia-
grams,S andT, respectively, possibly with OCL constraints
defining semantic properties of these languages.

For a transformationτ from S to T, there are three
separate predicates which characterise its global properties,
and which need to be considered in its specification and
design [10]:
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1) Asm– assumptions, expressed in the union language
LS∪T of the source and target metamodels, which can
be assumed to be true before the transformation is
applied. These may be assertions that the source model
is syntactically correct, that the target model is empty,
or more specialised assumptions necessary forτ to be
well-defined. These are preconditions of the use case
of the transformation.

2) Ens – properties, usually expressed inLT, which the
transformation should ensure about the target model
at termination of the transformation. These properties
usually include the constraints ofT, in order that
syntactic correctness holds. For update-in-place trans-
formations, where the source and target languages are
the same,Ens may refer to the pre-state versions of
model data.

3) Cons– constraints, expressed inLS∪T, which define
the transformation as a relationship between the ele-
ments of the source and target models, which should
hold at termination of the transformation. Update-
in-place transformations can be specified by using a
syntactically distinct copy of the source language, for
example by postfixing all its entity and feature names
by @pre.
Conscorresponds to the postconditions of the use case
of the transformation.

We can express these predicates using OCL notation, this
corresponds directly to a fully formal version in the ax-
iomatic UML semantics of [8]. Together these predicates
give a global and declarative definition of the transformation
and its requirements, so that the correctness of a transforma-
tion may be analysed at the specification level, independently
of how it is implemented.

The following should be provable:

Cons,ΓS ⊢
LS∪T

Ens

whereΓS is the semantic representation of the source lan-
guage as a theory.

Development of the transformation then involves the
construction of a design which ensures that the relationship
Cons holds between the source and target models. This
may involve decomposing the transformation intophasesor
sub-transformations, each with their own specifications. By
reasoning using the weakest-precondition operator[ ] the
composition of phases should be shown to achieveCons:

ΓS ⊢
LS∪T

Asm ⇒ [activity]Cons

whereactivity is the algorithm of the transformation. Each
statement form of the statement language (Chapter 6 of [8])
has a corresponding definition of[ ].

IV. SPECIFICATION PATTERNS

In this section we describe characteristic patterns for the
specifications of model transformations.

A. Conjunctive implicative form

Synopsis:To specify the effect of a transformation in a
declarative manner, as a global pre/post predicate, consisting
of a conjunction of constraints with a∀ ⇒ ∃ structure.

Forces: Useful whenever a platform-independent spec-
ification of a transformation is necessary. The conjunctive-
implicative form can be used to analyse the semantics of a
transformation, and also to construct an implementation.

The pattern typically applies whenS and T are sim-
ilar in structure, for example in the UML to relational
database mapping of [13], [10], the source structure of
Package, Class, Attribute corresponds to the target structure
of Schema, Table, Column.

Solution: The Cons predicate should be split into
separate conjunctsCn each relating one (or a group) of
source model elements to one (or a group) of target model
elements:

∀ s : Si · SCondi,j implies ∃ t : Ti,j · LPosti,j and GPosti,j

where theSi are source entities, theTi,j are target model
entities, SCondi,j is a predicate ons (identifying which
elements the constraint should apply to), andLPosti,j defines
the attributes oft in terms of those ofs. GPosti,j defines the
links of t in terms of those ofs.

Figure 1 shows a schematic structure of this pattern.

Si

SSub

sr*

Tj

TSub

tr*

{SCond}

{LPost}

{GPost}

Figure 1. Conjunctive-implicative form

We distinguish three cases of constraintsCn:

1) Type 1 constraints:rd(Cn) ∩ wr(Cn) = {} where
rd is the read frame andwr the write frame of the
constraint: the set of features and entities which it
(conceptually) reads and updates.

2) Type 2 constraints:Si 6∈ wr(Cn) and rd(SCond) ∩
wr(Cn) = {} but rd(Cn) ∩ wr(Cn) 6= {}.

3) Type 3 constraints: all other cases.
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For type 2 or type 3 constraints, suitable metrics are
needed to establish termination and correctness of the de-
rived transformation implementation: There should exist a
measureQ : N on the state of a model, such thatQ is
decreased on each step of the transformation (application of
a constraint to a particular domain element), and withQ = 0
being the termination condition of the transformation.

There are also special cases of the pattern forentity split-
ting, when the data of one source entity is used to produce
the data of several target entities, andentity merging, when
data from several source entities is used to produce the data
of a single target entity.

Consequences:The Ensproperties should be provable
directly from the constraints: typically by using theCons
constraints that relate the particular entities used in specific
Ensconstraints.

Implementation:Implementation can be either by the
phased creation or recursive descent implementation patterns
(Section V). For phased creation the constraints can be
individually implemented as phases, with different strategies
being used for each type of constraint.

Individual constraintsCn:

∀ s : Si · SCond implies∃ t : Tj · LPost and GPost

are examined to identify which implementation strategy
can be used to derive their design. This depends upon the
features and objects read and written within the constraint
(Table I).

Constraint type Implementation choice
Type 1 Approach 1: single for loop
constraint

for s : Si do s.op()
Type 2 Approach 2: while
constraint iteration of for loop.
Type 3 Approach 3: while iteration of
constraint search-and-return for loop

Table I
DESIGN CHOICES FOR CONSTRAINTS

Code examples:A large example of this approach for
a migration transformation is in [9]. The UML to relational
mapping is also specified in this style in [10].

A simple example of the pattern is the specification of the
three-cycles graph analysis in Section IV-C.

B. Recursive form

Synopsis:To specify the effect of a transformation in
a declarative manner, as a global pre/post predicate, usinga
recursive definition of the transformation relation.

Forces: Useful whenever a platform-independent spec-
ification of a transformation is required, and the conjunctive-
implicative form is not applicable, because an explicit de-
scription of the transformation relation as a single relation
between the source and target models cannot be defined.

Solution: The Cons predicate should be split into
separate disjuncts each relating one (or a group) of source
model elements to one (or a group) of target model elements:

∃ s : Si · SCondi,j and ∃ t : Ti,j · Posti,j

where theSi are source entities, theTi,j are target model
entities, SCondi,j is a predicate ons (identifying which
elements the constraint should apply to), andPosti,j defines
the mappingτ(s) of s in terms ofs, t and other mapping
forms τ(s′) for somes′ derived froms.

There should exist a measureQ : N on the state of
a model, such thatQ is decreased on each step of the
recursion, and withQ = 0 being the termination condi-
tion of the recursion (no rule is applicable in this case).
Q is an abstract measure of the time complexity of the
transformation, the maximum number of steps needed to
complete the transformation on a particular model. For
quality-improvement transformations it can also be regarded
as a measure of the (lack of) quality of a model.

Consequences:The proof ofEnsproperties fromCons
is more indirect for this style of specification, typically
requiring induction using the recursive definitions.

Implementation:The constraints can be used to define
a recursive function that satisfies the specification, or an
equivalent iterative form. The constraints can also be used
to define pattern-matching rules in transformation languages
such as ATL [6] or QVT [12].

Code examples:Many computer science problems can
be expressed in this form, such as sorting, searching and
scheduling. Update-in-place transformations, which usually
employ a fixpoint iteration of transformation steps, can be
specified using this pattern. For example, a transformation
to remove multiple inheritance from a class diagram can be
specified by constraints:

(∃ c : Class; g : c.generalization·
c.generalization→size() > 1 and

∃a : Association· a.end1 = c and
a.end2 = g.general and
a.multiplicity1 = ONE and
a.multiplicity2 = ZEROONE and

g.isDeleted()) or
(∀ c : Class· c.generalization→size() ≤ 1)

In this case

Q(smodel) =
Σc:Class non root(c.generalization→size() − 1)

C. Auxiliary metamodel

Synopsis:The introduction of a metamodel for auxil-
iary data, neither part of the source or target language, used
in a model transformation.
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Forces: Useful whenever auxiliary data needs to be
used in a transformation: such data may simplify the trans-
formation definition, and may permit a more convenient use
of the transformation, eg., by supporting decomposition into
sub-transformations. A typical case is a query transformation
which counts the number of instances of a complex structure
in the source model: explicitly representing these instances
as instances of a new (auxiliary) entity may simplify the
transformation.

Solution: Define the auxiliary metamodel as a set of
(meta) attributes, associations, entities and generalisations
extending the source and/or target metamodels. These ele-
ments may be used in the succedents ofConsconstraints (to
define how the auxiliary data is derived from source model
data) or in antecedents (to define how target model data is
derived from the auxiliary data).

Figure 2 shows a typical structure of this pattern. The
auxiliary metamodel simplifies the mapping between source
and target by factoring it into two steps.

Si Tj

TSub

Aux1

Aux2

TSub2

1

Source metamodel Auxiliary metamodel Target metamodel

Figure 2. Auxiliary metamodel structure

Consequences:It may be necessary to remove auxiliary
data from a target model, if this model must conform to a
specific target language at termination of the transformation.
A final phase in the transformation could be defined to delete
the data (cf. the construction and cleanup pattern).

Code example:An example is a transformation which
returns the number of cycles of three distinct nodes in a
graph. This problem can be elegantly solved by extending
the basic graph metamodel by defining an auxiliary entity
ThreeCyclewhich records the 3-cycles in the graph (Figure
3).

The auxiliary language elements are shown with dashed
lines.

The specificationConsof this transformation then defines
how unique elements ofThreeCycleare derived from the
graph, and returns the cardinality of this type at the end

GraphEdge

Node ThreeCycle

name : String elements

*

*

cycles*

11

1*
edges

nodes
*src 0..10..1

trg

* *

IntResult

num: Integer

Figure 3. Extended graph metamodel

state of the transformation:

(C1) :
∀g : Graph· ∀e1 : g.edges; e2 : g.edges; e3 : g.edges·

e1.trg = e2.src and e2.trg = e3.src and
e3.trg = e1.src and
(e1.src∪ e2.src∪ e3.src)→size() = 3 implies

∃
1

tc : ThreeCycle·
tc.elements= (e1.src∪ e2.src∪ e3.src)

and tc: g.cycles

(C2) :
∀g : Graph· ∃ r : IntResult· r.num= g.cycles→size()

The alternative to introducing the intermediate entity would
be a more complex definition of the constraints, involving
the construction of sets of sets using OCLcollect.

Tracing is another example, which is often carried out by
using auxiliary data to record the history of transformation
steps within a transformation.

This pattern is referred to asintermediate structurein [4].
Related patterns:This pattern extends the conjunctive-

implicative and recursive form patterns, by allowing con-
straints to refer to data which is neither part of the source
or target languages.

D. Construction and cleanup

Synopsis:To simplify a transformation specification by
separating it into a phase which constructs model elements,
followed by a phase which deletes elements.

Forces: Useful when a transformation needs to create
and delete elements of entities. For example, because an
auxiliary metamodel is being used, whose elements must be
removed from the final target model.

Solution: Separate the creation phase and deletion
phase into separate sets of constraints, usually the creation
(construction phase) will precede the deletion (cleanup).
These can be implemented as separate transformations, each
with a simpler specification and coding than the single rule.
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Consequences:The pattern leads to the production
of intermediate models (between construction and deletion)
which may be invalid as models of either the source or target
languages. It may be necessary to form an enlarged language
for such models.

Code examples:An example is migration transforma-
tions where there are common entities between the source
and target languages [11]. A first phase copies/adapts any
necessary data from the old version (source) entities which
are absent in the new version (target) language, then a second
phase removes all elements of the model which are not in
the target language. The intermediate model is a model of a
union language of the source and target languages.

Another example are complex quality improvement trans-
formations, such as the removal of duplicated attributes
[7]. These can involve addition and removal of elements
in a single step, and can be re-expressed more simply by
separating these actions into successive steps.

Another implementation strategy for this pattern is to
explicitly mark the unwanted elements for deletion in the
first phase, and then to carry out the deletion of marked
elements in the second phase.

V. I MPLEMENTATION PATTERNS

In this section we define patterns to organise the imple-
mentation of model transformations.

A. Phased creation

Synopsis:Construct target model elements in phases,
‘bottom-up’ from individual objects to composite structures,
based upon a structural dependency ordering of the target
language entities.

Forces: Used whenever the target model is too complex
to construct in a single step. In particular, if an entity
depends upon itself via an association, or two or more
entities are mutually dependent via associations. In such
a case the entity instances are created first in one phase,
then the links between the instances are established in a
subsequent phase.

Solution: Decompose the transformation into phases,
based upon theConsconstraints. These constraints should
be ordered so that data read in one constraint is not written
by the same or a subsequent constraint, in particular, phase
p1 must precede phasep2 if it creates instances of an entity
T1 which is read inp2.

Figure 4 shows the schematic structure of this pattern.
Consequences:The stepwise construction of the tar-

get model leads to a transformation implementation as a
sequence of phases: earlier phases construct elements that
are used in later phases.

Implementation:The constraints are analysed to deter-
mine the dependency ordering between the target language
data and entities.T1 < T2 means that aT1 instance is used
in the construction of aT2 instance. Usually this is because

Si Tj

Phase 1

Phase 2

SSub1

SSub2

TSub

Figure 4. Phased creation structure

there is an association directed fromT2 to T1, or because
some feature ofT2 is derived from an expression usingT1
elements.

If the order< is a partial order (transitive, antisymmetric
and irreflexive) then the corresponding ordering of phases
follows directly from <: a phase that createsT2 instances
must follow all phases that createT1 instances, whereT1 <

T2. However, if there are self-loopsT3 < T3, or longer
cycles of dependencies, then the phases creating the entities
do not set the links between them, instead there must be a
phase which follows all these phases which specifically sets
the links.

Code examples:TheThreeCycleexample illustrates the
simple case. HereThreeCycle< IntResult, so the phase
implementingC2 must follow that forC1.

B. Unique instantiation

Synopsis: To avoid duplicate creation of objects in
the target model, a check is made that an object satisfying
specified properties does not already exist, before such an
object is created.

Forces: Required when duplicated copies of objects in
the target model are forbidden, either explicitly by use of
the∃

1
t : Tj ·Postquantifier, or implicitly by the fact thatTj

possesses an identifier (primary key) attribute.
Solution: To implement a specification∃

1
t : Tj · Post

for a concrete classTj , test if ∃ t : Tj · Post is already true.
If so, take no action, otherwise, create a new instancet of
Tj and establishPost for this t.

In the case of a specification∃ t : Tj · t.id = x and Post
whereid is a primary key attribute, check if aTj object with
this id value already exists:x ∈ Tj .id and if so, use the object
(Tj [x]) to establishPost.

Consequences:The pattern ensures the correct imple-
mentation of the constraint. It can be used when we wish
to share one subordinate object between several referring
objects: the subordinate object is created only once, and is
subsequently shared by the referrers. There is, however, an
additional execution cost of carrying out checks for existing
elements.
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Implementation:The executable ‘update form’ in Java
of ∃

1
t : Tj · Post for a concrete classTj is:

if (qf) { }
else
{ uf }

whereqf is the query form of∃ t : Tj · Post, and uf is its
update form.

The pattern is used in a number of model transformation
languages, such as QVT-R, to avoid recreating target ele-
ments with required properties. In QVT-R it is known as
the ‘check before enforce’ strategy.

Related patterns:Object Indexing can be used to
efficiently obtain an object with a given primary key value
in the second varient of the pattern.

C. Object indexing

Synopsis:All objects of a class are indexed by a unique
key value, to permit efficient lookup of objects by their key.

Forces: Required when frequent access is needed to
objects or sets of objects based upon some unique identifier
attribute (a primary key).

Solution: Maintain an index map data structurecmap
of type IndType→ C, whereC is the class to be indexed,
andIndTypethe type of its primary key. Access to aC object
with key valuev is then obtained by applyingcmap to v:
cmap.get(v).

Figure 5 shows the structure of the pattern. The mapcmap
is a qualified association, and is an auxiliary metamodel
element used to facilitate separation of the specification into
loosely coupled rules.

System C

x: IndType
0..1

cmap
cId: IndType

{identity}

Figure 5. Object indexing structure

Consequences:The key value of an object should not
be changed after its creation: any such change will require
an update ofcmap, including a check that the new key value
is not already used in another object.

Implementation:When a newC object c is created,
addc.ind 7→ c to cmap. Whenc is deleted, remove this pair
from cmap. To look upC objects by their id, applycmap.

In QVT-R the pattern is implemented by definingkey
attributes by which objects can be uniquely identified.

VI. CONCLUSION

We have described four specification patterns and three
implementation patterns, which can be used together within
a development process for model transformations. These

have been implemented within the UML-RSDS toolset.
Other patterns which are widely used in model transfor-
mations are theRecursive descentpattern, where an imple-
mentation is structured as a series of recursive operations,
using the hierarchical structure of source and target language
entities [13].
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