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Abstract—Model transformations are a central element of Patterns specific to model transformations have been

model-driven software development. This paper defines design jdentified and used previously. In [2], specifications of
patterns for the specification and implementation of model the conjunctive-implicative form (Section IV) are derived

transformations. These patterns are commonly recurring strue f del t f tion impl tati in triol h
tures and mechanisms which we have identified in many specific "0 MOodel transiormation impiementations in triple grap

transformations. In this paper we show how they can be used grammars and QVT, in order to analyse properties of the
together to support an overall development process for model transformations, such as definedness and determinacy. This

transformations from high-level specifications to executable form of specification is therefore implicitly present in QVT

Java implementations. and other transformation languages.
Keywords—- Design patterns; model transformations; In [14], [15] the concept of the conjunctive-implicative
UML. form was introduced to support the automated derivation of
transformation implementations from specifications \@ritt
. INTRODUCTION in a constructive type theory.

Design patterns for software development were introduced In [1], a transformation specification pattern is intro-
by Gamma et al [5]. Subsequently, many hundreds of patduced, Transformation parametersto represent the case
terns have been identified, including patterns for spesgieli where some auxiliary information is needed to configure
forms of development such as enterprise information sysa transformation. This could be considered as a special
tems [3]. Patterns for model transformations were proposedase of the auxiliary metamodel pattern (Section V). An
by [1]. In this paper, we consider further patterns, based ommplementation patterMultiple matchingis also defined,

a large number of case studies which we have carried out do simulate rules with multiple element matching on their
analysed. These patterns are inter-related and can be usadtecedent side, using single element matching. We also
together to support the development of transformationmfro use this pattern, via the use of multipte quantifiers in
high-level specifications as sets of constraints, to exttet specifications and multipléor loops at the design level to
implementations in Java. They have been incorporated intselect groups of elements.

our transformation environment, UML-RSDS [10]. Our work extends previous work on model transformation

Section Il describes related work, Section Il definespatterns by combining patterns into an overall process for
a general development process for model transformationsleveloping model transformation designs and implementa-
Section IV describes specification patterns, Section V detions from their specifications. The patterns are an essenti
scribes implementation patterns and Section VI gives conpart of the UML-RSDS development process for model
clusions. transformations.

Il. RELATED WORK Ill. DEVELOPMENT PROCESS FOR MODEL

General design patterns can be used for model trans- TRANSFORMATIONS

formations. For example, the Builder and Abstract Factory In this section, we outline a general development pro-
patterns are directly relevant to transformation impletaen cess for model transformations specified as constraints and
tion, in cases where complex platform-specific structuffes ooperations in UML. We assume that the source and target
elements must be constructed from semantic information irmetamodels of a transformation are specified as class dia-
a platform-independent model, such as the synthesis of J2Egfams,S and T, respectively, possibly with OCL constraints
systems from UML specifications. The Visitor pattern candefining semantic properties of these languages.

be used for model-to-text transformations [4]. The Model- For a transformationr from S to T, there are three
view-controller pattern is relevant for change-propatgsti separate predicates which characterise its global piepert
model transformations, where changes to the source modahd which need to be considered in its specification and
are propagated to the target (view). design [10]:
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1) Asm- assumptions, expressed in the union languagdé. Conjunctive implicative form

Lg,7 of the source and target metamodels, which can . . L
be assumed to be true before the transformation is Synopsis:To specify the effect of a transformation in a

applied. These may be assertions that the source modgfclaratwe mannetr, as a glpbal pre/post predicate, dongsis
. : : of a conjunction of constraints with & =- 3 structure.
is syntactically correct, that the target model is empty, i
Forces: Useful whenever a platform-independent spec-

or more specialised assumptions necessary farbe = o . )
well-defined. These are preconditions of the use Casgmanon of a transformation is necessary. The conjunetive

of the transformation implicative form can be used to analyse the semantics of a
2) Ens-— properties, usually expressed A, which the

transformation, and also to construct an implementation.

transformation should ensure about the target mode| The pattern typically applies whes and T are sim-
at termination of the transformation. These propertiedlar in structure, for example in the UML to relational
usually include the constraints of, in order that database mapping of [13], [10], the source structure of

syntactic correctness holds. For update-in-place trand?ackage Class Attribute corresponds to the target structure

formations, where the source and target languages adf SchemaTable Column

the sameEns may refer to the pre-state versions of Solution: The Cons predicate should be Sp'lt into

model data. separate conjunct€n each relating one (or a group) of
3) Cons— constraints, expressed s 1, which define source model elements to one (or a group) of target model

the transformation as a relationship between the eleelements:

ments of the source and target models, which should o

hold at termination of the transformation. Update-  ¥S: S -SCong; implies 3t:T;; - LPost; and GPos;

in-place transformations can be specified by using a

syntactically distinct copy of the source language, forWh(,a,re thes are source e;tltles, th@”. dare .ta'rget rr;lgdhel
example by postfixing all its entity and feature namesSntties, SCond; is a pre icate ors (identifying Whic
by @pre. elements the constraint should apply to), &fbst; defines

{ahe attributes of in terms of those o$. GPost; defines the
inks of t in terms of those o§.
Figure 1 shows a schematic structure of this pattern.

Conscorresponds to the postconditions of the use cas
of the transformation.
We can express these predicates using OCL notation, this
corresponds directly to a fully formal version in the ax- (LPost}
iomatic UML semantics of [8]. Together these predicates
give a global and declarative definition of the transforomati : .
and its requirements, so that the correctness of a tranaform S T
tion may be analysed at the specification level, indepehdent | {SCond}
of how it is implemented.
The following should be provable:

ConsTI's Fre, ENS

whereT's is the semantic representation of the source lan- (GPost}
guage as a theory.

Development of the transformation then involves the B
construction of a design which ensures that the relatipnshi g, TSub
Cons holds between the source and target models. This
may involve decomposing the transformation ipteasesor
sub-transformations, each with their own specifications. B
reasoning using the weakest-precondition operatprthe Figure 1. Conjunctive-implicative form
composition of phases should be shown to achieeas

sk Asm = [activityjCons We distinguish three cases of constraifts
Lsut

whereactivity is the algorithm of the transformation. Each 1) Type 1 constraintsrd(Cn) N wr(Cn) = {} where
statement form of the statement language (Chapter 6 of [8])  'd is the read frame andr the write frame of the

has a corresponding definition pf. constraint: the set of features and entities which it
(conceptually) reads and updates.
IV. SPECIFICATION PATTERNS 2) Type 2 constraints§ ¢ wr(Cn) and rd(SCond N
In this section we describe characteristic patterns for the wr(Cn) = {} butrd(Cn) nwr(Cn) # {}.
specifications of model transformations. 3) Type 3 constraints: all other cases.
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For type 2 or type 3 constraints, suitable metrics are Solution: The Cons predicate should be split into
needed to establish termination and correctness of the deeparate disjuncts each relating one (or a group) of source
rived transformation implementation: There should exist anodel elements to one (or a group) of target model elements:
measureQ : N on the state of a model, such th@ is
decreased on each step of the transformation (applicafion o~ 3s: § - SConglj and 3t : Tj; - Post,

a constraint to a particular domain element), and \@th- 0 .
being the termination condition of the transformation. where theS are source entities, th&; are target model

There are also special cases of the patterrefaity split-  €ntities, SCongl; is a predicate ors (identifying which
ting, when the data of one source entity is used to produc&'€ments the constraint should apply to), &tst; defines
the data of several target entities, agmtity mergingwhen  the mappingr(s) of s in terms ofs, t and other mapping
data from several source entities is used to produce the dafgrms () for somes' derived froms.
of a single target entity. There should exist a measuf@ : N on the state of

ConsequencesThe Ens properties should be provable @ model, such thaQ is decreased on each step of the
directly from the constraints: typically by using tf@ons recursion, and withQ = 0 being the termination condi-

constraints that relate the particular entities used imifpe  tion of the recursion (no rule is applicable in this case).
Ens constraints. Q is an abstract measure of the time complexity of the

Implementation: Implementation can be either by the transformation, the maximum number of steps needed to
phased creation or recursive descent implementationrpatte complete the transformation on a particular model. For
(Section V). For phased creation the constraints can buality-improvement transformations it can also be regard
individually implemented as phases, with different sgage ~ @s @ measure of the (lack of) quality of a model.
being used for each type of constraint. ConsequencesThe proof ofEnsproperties fronCons

Individual constraintn: is more indirect for this style of specification, typically
L requiring induction using the recursive definitions.

¥s: S -SCond implies3t: T; - LPost and GPost Implementation: The constraints can be used to define
are examined to identify which implementation strategya recursive function that satisfies the specification, or an
can be used to derive their design. This depends upon thgfuivalent iterative form. The constraints can also be used
features and objects read and written within the constrainto define pattern-matching rules in transformation langsag
(Table ). such as ATL [6] or QVT [12].

Code examplesMany computer science problems can

(T:;;esiamt e Z:azlgrgsat?g?nggoﬁ? oop be expressed in this form, such as sorting, searching and
constraint ' scheduling. Update-in-place transformations, which lgua
for s:§ do sop() employ a fixpoint iteration of transformation steps, can be
Type 2. Approach 2: while specified using this pattern. For example, a transformation
constraint iteration of for loop. . . . .
Type 3 Approach 3: while fteration of to remove multiple |r_1her|tance from a class diagram can be
constraint search-and-return for loop specified by constraints:
Table | .
DESIGN CHOICES FOR CONSTRAINTS (3c: Class g: c.generalization:

c.generalization-size&) > 1 and
Ja: Association a.endl = ¢ and
a.en2 = g.general and
a.multiplicityl = ONE and
a.multiplicity2 = ZEROONE and
g.isDeleted)) or
(Vc: Class: c.generalizatior-sizg) < 1)

Code examplesA large example of this approach for
a migration transformation is in [9]. The UML to relational
mapping is also specified in this style in [10].
A simple example of the pattern is the specification of the
three-cycles graph analysis in Section IV-C.

B. Recursive form In this case

Synopsis: To specify the effect of a transformation in
a declarative manner, as a global pre/post predicate, asing
recursive definition of the transformation relation.

Forces: Useful whenever a platform-independent spec-
ification of a transformation is required, and the conjuresti
implicative form is not applicable, because an explicit de- Synopsis: The introduction of a metamodel for auxil-
scription of the transformation relation as a single relati iary data, neither part of the source or target languagel use
between the source and target models cannot be defined.in a model transformation.

Q(smode) =
Yc.class non roofC-generalization-size) — 1)

C. Auxiliary metamodel
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. d
Forces: Useful whenever auxiliary data needs to be Edge S 7| Graph IntResult
. . . . N
used in a transformation: such data may simplify the trans- num: nteger
formation definition, and may permit a more convenient use E 1 1

of the transformation, eg., by supporting decompositida in }
sub-transformations. A typical case is a query transfaonat }
which counts the number of instances of a complex structure 3
in the source model: explicitly representing these instanc trg . 3

. e . . . 0.1 |0.1 * 1 cycles
as instances of a new (auxiliary) entity may simplify the — °¢ oa nodes T ThreeCvole
transformation. o i e

. . . name : String |elements * !
Solution: Define the auxiliary metamodel as a set of
(meta) attributes, associations, entities and genetialisa
extending the source and/or target metamodels. These ele- Figure 3.  Extended graph metamodel

ments may be used in the succedent€ohsconstraints (to
define how the auxiliary data is derived from source model
data) or in antecedents (to define how target model data iiate of the transformation:
derived from the auxiliary data).
Figure 2 shows a typical structure of this pattern. The (C1):
auxiliary metamodel simplifies the mapping between source  Vg: Graph- Vel : g.edges €2 : g.edges €3 : g.edges

and target by factoring it into two steps. el.trg = e2.src and &.trg = e3.src and
e3.trg = el.src and
Source metamodel Auxiliary metamodel Target metamodel (el,SrCU e2.srcy e3,SrC)~>SiZQ) =3 ImplleS
3, tc: ThreeCycle
Si Tj tc.elements= (el.srcU e2.srcU €3.src)

and tc: g.cycles

DAl (C2) -
| : vV g: Graph- 3r : IntResult r.num= g.cycles—sizg)

,,,,,,,,,,

The alternative to introducing the intermediate entity ldou
,,,,,,,,,,,, TSubl be a more complex definition of the constraints, involving
Awz the construction of sets of sets using O€allect
: Tracing is another example, which is often carried out by
using auxiliary data to record the history of transformatio
steps within a transformation.
This pattern is referred to astermediate structurén [4].
Related patternsThis pattern extends the conjunctive-
implicative and recursive form patterns, by allowing con-
Consequencedt may be necessary to remove auxiliary straints to refer to data which is neither part of the source
data from a target model, if this model must conform to aor target languages.
specific target language at termination of the transforonati
A final phase in the transformation could be defined to deletd?. Construction and cleanup

the data (cf. the construction and cleanup pattern). Synopsis:To simplify a transformation specification by
Code exampleAn example is a transformation which separating it into a phase which constructs model elements,

returns the number of cycles of three distinct nodes in dollowed by a phase which deletes elements.

graph. This problem can be elegantly solved by extending  Forces: Useful when a transformation needs to create

the basic graph metamodel by defining an auxiliary entityand delete elements of entities. For example, because an

ThreeCyclewhich records the 3-cycles in the graph (Figure auxiliary metamodel is being used, whose elements must be

o 1 TSub2

Figure 2. Auxiliary metamodel structure

3). removed from the final target model.
The auxiliary language elements are shown with dashed  Solution: Separate the creation phase and deletion
lines. phase into separate sets of constraints, usually the aneati

The specificatiorConsof this transformation then defines (construction phase) will precede the deletion (cleanup).
how unigue elements ofhreeCycleare derived from the These can be implemented as separate transformations, each
graph, and returns the cardinality of this type at the endwvith a simpler specification and coding than the single rule.
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Phase 2

ConsequencesThe pattern leads to the production
of intermediate models (between construction and delgtion
which may be invalid as models of either the source or target
languages. It may be necessary to form an enlarged language
for such models.

Code examplesAn example is migration transforma-
tions where there are common entities between the source
and target languages [11]. A first phase copies/adapts any
necessary data from the old version (source) entities which
are absent in the new version (target) language, then agecon
phase removes all elements of the model which are not in
the target language. The intermediate model is a model of a Figure 4. Phased creation structure
union language of the source and target languages.

Another example are complex quality improvement trans-
formations, such as the removal of duplicated attributeshere is an association directed frorg to T1, or because
[7]. These can involve addition and removal of elementssome feature o2 is derived from an expression usifig
in a single step, and can be re-expressed more simply bylements.
separating these actions into successive steps. If the order< is a partial order (transitive, antisymmetric
Another implementation strategy for this pattern is toand irreflexive) then the corresponding ordering of phases
explicitly mark the unwanted elements for deletion in thefollows directly from <: a phase that creatd® instances
first phase, and then to carry out the deletion of markednust follow all phases that creafd instances, whergl <
elements in the second phase. T2. However, if there are self-loop§3 < T3, or longer
cycles of dependencies, then the phases creating theeentiti
do not set the links between them, instead there must be a
In this section we define patterns to organise the implephase which follows all these phases which specifically sets
mentation of model transformations. the links.

Code examplesThe ThreeCycleexample illustrates the
simple case. Her&hreeCycle< IntResulf so the phase

Synopsis: Construct target model elements in phasesjmplementingC2 must follow that forC1.

‘bottom-up’ from individual objects to composite structar ) ) o
based upon a structural dependency ordering of the targ&: Unique instantiation
language entities. Synopsis: To avoid duplicate creation of objects in

Forces: Used whenever the target model is too complexthe target model, a check is made that an object satisfying
to construct in a single step. In particular, if an entity specified properties does not already exist, before such an
depends upon itself via an association, or two or morebject is created.
entities are mutually dependent via associations. In such  Forces: Required when duplicated copies of objects in
a case the entity instances are created first in one phasge target model are forbidden, either explicitly by use of
then the links between the instances are established in the 3, t : T, - Postquantifier, or implicitly by the fact thaf;
subsequent phase. possesses an identifier (primary key) attribute.

Solution: Decompose the transformation into phases,  Solution: To implement a specificatios, t : T; - Post
based upon th€onsconstraints. These constraints shouldfor a concrete clas$;, test if 3t : T; - Postis already true.
be ordered so that data read in one constraint is not writtelf so, take no action, otherwise, create a new instanck
by the same or a subsequent constraint, in particular, phasg and establistPostfor this t.
pl must precede phage if it creates instances of an entity  In the case of a specificatiofit : T - t.id = x and Post
T1 which is read inp2. whereid is a primary key attribute, check if § object with

Figure 4 shows the schematic structure of this pattern. thisid value already existx € T;.id and if so, use the object

ConsequencesThe stepwise construction of the tar- (Tj[x]) to establishPost
get model leads to a transformation implementation as a  ConsequencesThe pattern ensures the correct imple-
sequence of phases: earlier phases construct elements thaéntation of the constraint. It can be used when we wish
are used in later phases. to share one subordinate object between several referring

Implementation:The constraints are analysed to deter-objects: the subordinate object is created only once, and is
mine the dependency ordering between the target languageibsequently shared by the referrers. There is, however, an
data and entitiesT1 < T2 means that &1 instance is used additional execution cost of carrying out checks for erigti
in the construction of &2 instance. Usually this is because elements.

SSub1l TSub

SSub2

V. IMPLEMENTATION PATTERNS

A. Phased creation
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Implementation: The executable ‘update form’ in Java have been implemented within the UML-RSDS toolset.
of 3,t: T, - Postfor a concrete clas§; is: Other patterns which are widely used in model transfor-
it o(af) {} mation_s are th&kecursive descerpattern, wherg an implg-

ol se mentation is structured as a series of recursive operations
using the hierarchical structure of source and target laggu

{ uf } i
entities [13].

wheregf is the query form ofdt : T, - Post anduf is its

update form.

The pattern is used in a number of model transformation This paper describes work carried out in the UK HoRT-
languages, such as QVT-R, to avoid recreating target eldVloDA project, funded by EPSRC.
ments with required properties. In QVT-R it is known as

the ‘check before enforce’ strategy. o )
[1] J. Bezivin, F. Jouault, J. Palie$pwards Model Transforma-

. .Related p.attemS:QbJeCt. '”de)f'”g C"’T” be used to tion Design PatternsATLAS group, University of Nantes,
efficiently obtain an object with a given primary key value 2003,

in the second varient of the pattern.
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