
An Improved Hirata Algorithm for Quantum Circuit LNN Conversion

Angel Amarilla, Joaquı́n Lima, Benjamı́n Barán
Facultad Politécnica

Universidad Nacional de Asunción
San Lorenzo, Paraguay

e-mail: fangelith@gmail.com, joaquin.lima@pol.una.py, bbaran@pol.una.py

Abstract—Hirata et al. proposed an efficient technique for
converting general quantum circuits to Linear Nearest Neighbor
architecture where an optimal transformed circuit is calculated
from the original circuit. However, for some circuits, this algo-
rithm still requires a considerable amount of running time for the
conversion. Therefore, in this paper, additional techniques based
on Dynamic Programming and Branch & Bound are proposed
in order to improve the running time. Several test circuits
from the state of the art have been tested. Experimental results
demonstrate the effectiveness of the proposed improvements to
reduce the original running time without any loss in solution
quality measured as the number of SWAP gates that have been
added.

Keywords—Quantum Computation; Quantum Circuit Conver-
sion; Linear Nearest Neighbor; Dynamic Programming; Branch
& Bound.

I. INTRODUCTION

A quantum computer is a device whose operation is based
on the principles of quantum mechanics. Essentially, these
devices allow the implementation of State Models based on
performing gates operations over qubits, allowing algorithms
that may potentially be exponentially faster than their classic
counterparts [1]. Currently, these algorithms are implemented
in quantum circuits. The theoretical design of quantum circuits
generally assume the possible interaction of any pair of qubits.
However, today quantum computers can only make operations
between physically adjacent qubits [2][3]. The architecture of
quantum circuits that only consider the interaction of adjacent
qubits is called Linear Nearest Neighbor (LNN) [4].

Hirata et al. [5] present a traditional computing algorithm
for the conversion of arbitrary quantum circuits to the LNN
architecture. This technique is based on inserting SWAP gates
within the original circuit in order to leave all operations
between adjacent qubits. The SWAP gates are inserted taking
into account the conversion efficiency of up to w subsequent
gates, being w a depth value that defines the local search
intensity. An appropiate depth value represents a trade-off
between the conversion time and the quality of the solutions.
Thus, a lower w value might result in a smaller solution quality
while a higher w would result in a large calculation time.

This paper proposes two improvements that reduces the
running time of Hirata algorithm for the same w values
without loss of solution quality. The first approach is based
on Dynamic Programming [6], in which the solution of circuit
patterns are stored and reapplied when these patterns appear
again. The second improvement is based on Branch & Bound
[7], and reduces the time of exploration of the search tree when

the next gates are considered for the conversion, avoiding path
exploration that will not provide an improvement.

The rest of this work is organized as follows. The next
section introduces quantum circuits. Section III presents the
LNN Architecture. Section IV discusses the conversion of
quantum circuits to an LNN Architecture. Later, in Section
V the proposed methods are exposed. Finally, Section VI
presents experimental results and the conclusions of this work.

II. QUANTUM CIRCUITS

A quantum bit or qubit [4] is modeled as a mathematical
entity that can hold two basic states |0〉 and |1〉, which are
analogous to states 0 and 1 of classics bits, and also can hold
a lineal combination of the basic states: α|0〉 + β|1〉, called
superposition of states [8].

|q1〉 •
|q2〉 • • •

|q3〉

|q4〉

Figure 1. Example of a general quantum circuit with 4 qubits and 4 gates.

On other hand, quantum gates are capable of taking as input
the states of a given number of qubits and to change the states
of these qubits in a desired manner. In practice, a number
of consecutive quantum gates conforms a quantum circuit.
Figure 1 illustrates a quantum circuit, where the horizontal
lines represent qubits being operated by quantum gates, which
are shown transversely, taking as input one or more qubits.
Thus, Figure 1 shows a circuit of 4 qubits and 4 gates.

III. LINEAL NEAREST NEIGHBOR ARCHITECTURE

In designing a quantum circuits, it is generally supposed that
the quantum gates can operate any pair of qubits for example
in [9] and [10]. However, quantum computers that allow a real
implementation of quantum circuits with current technology,
may not support the interaction of arbitrary further qubits.
Indeed, some quantum architectures require circuits in where
its quantum gates can only operate qubits that are physically
adjacent [2][3]. The architecture of quantum circuits in which
only adjacent qubits interact through a gate is called LNN [4].

A quantum gate of special attention is the SWAP gate, that is
capable of taking two input qubits and interchange their states.
The operation of a SWAP gate is given by swap(|a, b〉) =

45Copyright (c) IARIA, 2015. ISBN: 978-1-61208-431-2

ICQNM 2015 : The Ninth International Conference on Quantum, Nano/Bio, and Micro Technologies

|b, a〉. The representation of a SWAP gate in quantum circuits
is given by the symbol × on two adjacent qubits as shown in
Figure 2.

|q1〉 •

|q2〉 • × ×

|q3〉 × × × • • ×

|q4〉 × ×

Figure 2. LNN circuit that is obtained adding four SWAP gates to circuit of
Figure 1.

|q1〉 •

|q2〉 × ×

|q3〉 × • • • ×

|q4〉

Figure 3. LNN circuit that is obtained adding two SWAP gates to circuit of
Figure 1.

In general, quantum circuits can be converted to an LNN
architecture by inserting additional SWAP gates within them.
Figures 2 and 3 show two LNN circuits that are obtained by
inserting additional SWAP gates in the general quantum circuit
of Figure 1. It is interesting to note that in Figure 2 four new
SWAP gates have been added to the original circuit, while in
Figure 3 only two new SWAP gates are needed for the same
task. In those cases, the insertion of a smaller number of new
SWAP gates is preferred.

IV. LNN CONVERTION OF QUANTUM CIRCUITS

The conversion of a general quantum circuit to LNN archi-
tecture is defined by Hirata [5] as:

• Input: A general quantum circuit.
• Output: An equivalent LNN quantum circuit.
• Objective: Minimize the number of added SWAP gates.
• Restriction: the equivalent circuit output should have all

qubits in the same original order.

|q1〉 |q4〉 |q2〉 |q3〉
|q2〉 |q1〉 |q4〉 |q3〉
|q2〉 |q3〉 |q1〉 |q4〉

Figure 4. Permutations considered for the Hirata algorithm.

One possible strategy to solve this problem is to convert
each original gate inserting the smaller possible number of new
SWAP gates. After the conversion of an original gate it must
be proceed to converting the next original gate, taking into
account the new order of the qubits according to the SWAP
gates inserted before. Finally, after the conversion of the last

original gate a small number of new SWAP gates it must be
inserted in order to get the order of qubits given by the original
circuit. This algorithm is known as Greedy Strategy [5], which
is always able to find reasonable (sub-optimal) solutions.

V. HIRATA ALGORITHM

Hirata et al. [5] proposed an efficient algorithm to convert
general quantum circuits to an LNN architecture.

|q1〉 • •

|q2〉
|q3〉
|q4〉

Figure 5. Quantum circuit of example.

1

2

3

4

2 2 2

1

1

1

1111

1

2 2

2 2

22

2

3 3

3

3

3

333

4

4

4

4

4 4

4

4

1

2

3

4

2

22

111 0

3 11

2

Figure 6. Whole search Tree for the quantum circuit of Figure 5.

For each pair of non-adjacent operated qubits that have m
intermediate qubits, Hirata algorithm take into account (m+1)
possible permutations. For example, for the case of converting
the first gate of the circuit of Figure 5, the qubits to be operated
are |q1〉 and |q4〉, the value of m is 2 and the permutations
considered by the algorithm are listed in the Figure 4. Note that
in all cases, |q1〉 and |q4〉 are become neighbors, preserving
the original order between them.

In Hirata algorithm [5], each considered permutation is
called a candidate. Each candidate represents a possible re-
order of the qubits to convert the current gate and it is a
part of one or more solutions. In Figure 6, the conversion
of the first gate of the quantum circuit from Figure 5 have
3 candidates. The numerical value over each candidate repre-
sents its required number of SWAP gates. Thus, the cost for
each complete solution is given by the sum of these numerical

46Copyright (c) IARIA, 2015. ISBN: 978-1-61208-431-2

ICQNM 2015 : The Ninth International Conference on Quantum, Nano/Bio, and Micro Technologies

values. The desired solution is the one with the lowest cost,
that is illustrated in Figure 6 by the central path, with a final
cost of 2 + 0 + 2 = 4 additional swap gates.

1 swaps = 0
2 l o r d e r = { 1 , 2 , . . . , n}
3 c o r d e r = l o r d e r
4 w = l o c a l s e a r c h deep
5 K = t o t a l o f o r i g i n a l g a t e s
6 procedure H i r a t a A l g o r i t h m () {
7 f o r i =1 t o K do
8 v a l f u n c m i n = ∞
9 S = ∅

10 f o r j = 1 t o c a n d i d a t e s (i) do
11 v a l f u n c = l o c a l s e a r c h (n orderij ,w)
12 +calc swap (c o r d e r , n orderij)
13 + ck

K+1−i
calc swap (n orderi,j , l order)

14 i f (v a l f u n c < v a l f u n c m i n) t h e n
15 v a l f u n c m i n = v a l f u n c
16 S = {n orderi,j}
17 e l s e i f (v a l f u n c = v a l f u n c m i n) t h e n
18 S = S ∪ n orderi,j
19 end i f
20 end f o r
21 Sp = random (1 , |S|)
22 swap = swap + calc swap (c o r d e r , Sp)
23 c o r d e r = Sp

24 end f o r
25 swap = swap + calc swap (c o r d e r , l o r d e r)
26 re turn swap
27 end procedure H i r a t a A l g o r i t h m

Figure 7. Hirata algorithm from LNN convertion.

Hirata algorithm [5], presented in Figure 7, performs the
selection of a candidate for each gate considering:

• a Local Search procedure that evaluates the quality of the
candidates orders (indicated by n order) considering the
following w gates;

• the amount of SWAP gates to be added to obtain the can-
didate order (n order) from the current order (c order);

• and, the cost of converting the candidate order (n order)
to the original order (l order) of the quantum circuit,
weighted by a value that takes precedence towards the
end of the circuit.

VI. PROPOSED IMPROVEMENTS

This section presents two improvements for the algorithm
of Hirata et al. [5]: one based on Dynamic Programming [6]
[11] and the other based on Branch & Bound [7].

A. Branch & Bound improvement

This improvement is applied in the local search procedure
to prevent the exploration of branches of the search tree that
will not lead to a better solution than the one in search [7].

Figure 8 illustrates a complete local search tree corre-
sponding to candidate |q1q2q4q3〉. Initially there is no selected
solution. The calculation begins considering the first candidate
that is considered as the selected one. For example, consider
as the first selected solution the candidate most in the left of

candidate |q1q2q4q3〉
C=0

|q2q1q3q4〉
C=2

|q2q4q1q3〉
C=2

4

|q1q3q2q4〉
C=2

4

|q1q2q4q3〉
C=2

4

|q1q3q2q4〉
C=2

|q1q3q2q4〉
C=0

2

|q2q4q1q3〉
C=2

|q2q3q4q1〉
C=2

4

|q4q2q3q1〉
C=2

4

|q4q1q2q3〉
C=2

4

Figure 8. Local search tree corresponding only to candidate |q1q2q4q3〉 of
the first gate of Figure 1 circuit.

the tree (see Figure 8) whose evaluation equals to 4 at the
end of the local search tree. Note also that the height of local
search tree is defined by w = 2.

Afterward, the algorithm proceed in evaluating the next
candidate, whose evaluation culminate only if it is not worse
than the current selected solution. This is determined taking
into account the amount of SWAP gates accumulated during
the search tree exploration. If the amount of SWAP gates
corresponding to the current candidate is larger than the
amount of the current selected solution, then the exploration
is stopped and the candidate is discarded.

When the evaluation of a candidate ends with a lower
amount of SWAP gates than the corresponding amount of the
current selected solution, the candidate is chosen as the new
selected solution. Consider again the search tree of Figure 8.
Initially, the selected solution is the candidate most in the left,
that is subsequently replaced by the candidate of the center.

With this improvement, the local search procedure can find
the same solution as the original local search algorithm, but
with the advantage of not fully evaluating the search tree,
reducing this way its processing time. Figure 9 illustrates
the search tree that is explored when the Branch & Bound
improvement is applied. Note that it is not necessary to fully
evaluate the final candidate

The local search procedure with the improved proposal of
Branch & Bound is presented in Figure 10.

B. Dynamic Programming improvement

Dynamic Programming [6] is a technique that solves a
problem P based on recursively solving all sub-problems Si

therein. Each sub-problem Si is solved only once and its
solution is saved in a table T [Si]. When the sub-problem Si

is found once again, the solution saved in T [Si] is reapplied;
therefore, the time and effort spent in solving Si is saved.

The proposed improvement apply Dynamic Programming
[6] in the Hirata algorithm considering as a sub-problem Si

each current order of qubits c order and its w corresponding
successive pairs of qubits.

47Copyright (c) IARIA, 2015. ISBN: 978-1-61208-431-2

ICQNM 2015 : The Ninth International Conference on Quantum, Nano/Bio, and Micro Technologies

candidate |q1q2q4q3〉
C=0

|q2q1q3q4〉
C=2

|q2q4q1q3〉
C=2

4

|q1q3q2q4〉
C=2

4

|q1q2q4q3〉
C=2

4

|q1q3q2q4〉
C=2

|q1q3q2q4〉
C=0

2

|q2q4q1q3〉
C=2

Figure 9. Local search tree explored for candidate q1q2q4q3 of the first gate
of circuit of Figure 1 when considering the Branch & Bound improvement.

1 K = t o t a l o f o r i g i n a l g a t e s
2 c swap = SWAP g a t e s i n c u r r e n t s o l u t i o n
3 min swap = SWAP g a t e s i n c a n d i d a t e s o l u t i o n
4 k = c u r r e n t g a t e i n c o n v e r t i o n
5 i = c u r r e n t g a t e i n l o c a l s e a r c h
6 w = deep v a l u e
7

8 p r o c e d u r e l o c a l s e a r c h (c swap , i , c o r d e r , k)
9 i f (i > K) or (i > k + w) t h e n

10 i f c swap < min swap t h e n
11 min swap = c swap
12 end i f
13 e l s e
14 f o r j = 1 t o (m+1) c a n d i d a t e s do
15 n swap=c swap + calc swap (c o r d e r , n orderi,j)
16 i f n swap < min swap t h e n / / Branch&Bound
17 min swap =
18 l o c a l s e a r c h (n swap , i +1 , n orderi,j , k)
19 end i f
20 end f o r
21 end i f
22 re turn min swap
23 end p r o c e d u r e l o c a l s e a r c h

Figure 10. Local Search procedure with Branch & Bound.

|q1〉 • • • •
|q2〉 • •

|q3〉

|q4〉

Figure 11. Example circuit for illustrate the Dynamic Programming improve-
ment

For example, consider the circuit of Figure 11 and w = 2.
The sub-problem in the first gate is as follows:

• c order1 = q1q2q3q4
• w next pairs of qubits = [(q1, q3), (q2, q3)]

Considering that the calculated solution for this sub-problem
adds the SWAP gates between (q1, q2) and between (q3, q4)
before the first gate, as shown in Figure 12; then, the corre-
sponding input in the table T of patterns is as follows:

T [q1q2q3q4, (q1, q3), (q2, q3)] = (q1, q2), (q3, q4) (1)

Later, this sub-problem could need to be considered again.
For example, when the conversion reaches up to the fourth
gate, as shown in Figure 12. Here, the solution of equation

|1〉 × × • •
|2〉 × • • × • •

|3〉 × ×

|4〉 × ×

Figure 12. LNN conversion of the circuit 11 for the first 3 gates

|q1〉 × × × •
|q2〉 × • • × • × • •

|q3〉 × × ×
|q4〉 × × ×

Figure 13. LNN conversion of the circuit 11 for the gate k = 4

(1) saved in the Table T is reapplied without recalculating the
same pattern, as shown in Figure 13.

VII. EXPERIMENTAL RESULTS

A. Combination of the proposed improvements

This section presents the experimental results obtained by
the implementation of both proposed improvements in the
original Hirata algorithm [5]. Nine test circuits were consid-
ered: three Shor circuits, three Modmulti circuits and three
random circuits, also used in Hirata et al. [5].

For the performed experiments, a computer with 3 GHz
Dual Core i5 processor, 8 GB RAM and the implementation
of the algorithms in Java 7 were set. The values of w ∈ {8,
9, 10} have been considered. Given the randomness of the
algorithm in case of ties, each test circuit has been converted
10 times using each algorithm:

• H: the original Hirata algorithm,
• H-BB-PD: Hirata algorithm with both proposed improve-

ments (Dynamic Programming and Branch & Bound);
• H-PD: Hirata algorithm with Dynamic Programming; and
• H-BB: Hirata algorithm with Branch & Bound.
Thus, a total of 360 runs were considered, obtaining in each

test the following metrics:
• the average running time (T) and its standard deviation

(σ(T)); and
• the average number of SWAP gates of the calculated

solution (S) and its standard deviation (σ(S)).
A comparison of results of the original Hirata algorithm (H)

versus the same algorithm with both proposed improvements
(H-BB-PD) are shown in table I. In general, it can be ob-
served that proposed improvements can achieve a significant
reduction in running time without an appreciable difference
with respect to the number of calculated SWAP gates by the
original Hirata Algorithm.

On the other hand, another considered experiment consists
in taking into account both the elapsed running time and
the total number of SWAP gates after each 50 processed
original gates. Thus, Figure 14 presents a comparison of the

48Copyright (c) IARIA, 2015. ISBN: 978-1-61208-431-2

ICQNM 2015 : The Ninth International Conference on Quantum, Nano/Bio, and Micro Technologies

TABLE I. RESULTS OF THE ORIGINAL HIRATA ALGORITHM COMPARED TO THE PROPOSED IMPROVED ALGORITHM.

W=8 W=9 W=10
Time (ms.) SWAPs Time (ms.) SWAPs Time (ms.) SWAPs

Circuit Algorithm T/σ(T) S/σ(S) T/σ(T) S/σ(S) T/σ(T) S/σ(S)

Shor 3
H 721 / 125.79 1876 / 34.78 1255 / 138.00 1870 / 25.64 2674 / 235.20 1880 / 0.0

H-BB-PD 92 / 49.78 1876 / 34.78 106 / 12.59 1870 / 25.64 146 / 10.62 1880 / 0.0

Shor 5
H 21780 / 1375.69 11346 / 110.69 65072 / 3770.91 10959 / 0.0 194128 / 14956.65 11968 / 233.01

H-BB-PD 765 / 111.05 11346 / 110.69 1484 / 324.06 10959 / 0.0 2380 / 301.39 11968 / 233.01

Shor 6
H 75134 / 3033.71 21000 / 520.83 244525 / 8562 21184 / 306 769350 / 47910 21198 / 253

H-BB-PD 2636 / 491.29 21000 / 520.83 3752 / 799 21184 / 306 7004 / 1711 21198 / 253

Random 500
H 2004 / 153.46 748 / 1.15 5686 / 159.28 742 / 0.0 18419 / 482.62 752 / 3.02

H-BB-PD 270 / 31.47 748 / 1.15 480 / 44.69 742 / 0.0 915 / 90.36 752 / 3.02

Random 1000
H 4076 / 202.39 1492 / 12.08 11914 / 394.75 1464 / 1.05 38652 / 271.91 1462 / 1.70

H-BB-PD 563 / 55.94 1492 / 12.08 1000 / 103.17 1464 / 1.05 1866 / 147.84 1462 / 1.70

Random 2000
H 8920 / 126.29 3084 / 4.94 26650 / 659.38 3000 / 1.63 86859 / 868.22 3004 / 6.60

H-BB-PD 1211 / 86.96 3084 / 4.94 2149 / 156.11 3000 / 1.63 4111 / 159.87 3004 / 6.60

Modmulti 3
H 143 / 12.56 322 / 7.73 307 / 31.82 320 / 6.82 740 / 78.67 328 / 1.15

H-BB-PD 32 / 5.07 322 / 7.73 67 / 7.54 320 / 6.82 90 / 12.38 328 / 1.15

Modmulti 4
H 663 / 64.13 648 / 2.00 1714 / 113.42 654 / 3.89 5014 / 224.46 654 / 7.73

H-BB-PD 142 / 19.94 648 / 2.00 256 / 16.39 654 / 3.89 425 / 35.33 654 / 7.73

Modmulti 5
H 2444 / 308.53 1138 / 10.80 6195 / 152.92 1124 / 1.94 19662 / 1022.59 1180 / 2.83

H-BB-PD 535 / 54.45 1138 / 10.80 803 / 76.47 1124 / 1.94 1323 / 182.54 1180 / 2.83

performance of both algorithms for a value of w = 8 in
test circuit Shor 6. It can be observed that the proposed
improvements allow an equivalent solution in a shorter running
time.

0 0.5 1 1.5 2 2.5

·104

101

102

103

104

105

Converted gates

Ti
m

e
(m

s)

Shor 6

H
H-BB-PD

Figure 14. Evolution of conversion versus the conversion time between the
original algorithm and both improvements.

B. Comparison between both methods

In order to determinate the individual advantage of using
both improvement proposals, each of these two improvements
were separately applied and then compared to the original
Hirata algorithm [5]. Table II shows the normalized results of
this experiment, using the notation:

Tnorm =
T alg

TH

(2)

where Tnorm is the normalized running time, T alg is the value
of the average running time of the considered algorithm, TH

0 0.5 1 1.5 2 2.5

·104

101

102

103

104

105

Converted gates

Ti
m

e
(m

s)

Shor 6

H
H-PD
H-BB

0 500 1,000 1,500 2,000

102

103

104

Converted gates

Ti
m

e
(m

s)

Random 2000

H
H-PD
H-BB

Figure 15. Evolution of conversion versus the conversion time for each
improvement.

is the average running time for the original Hirata algorithm.
Thus, lower values of Tnorm are preferred.

49Copyright (c) IARIA, 2015. ISBN: 978-1-61208-431-2

ICQNM 2015 : The Ninth International Conference on Quantum, Nano/Bio, and Micro Technologies

TABLE II. NORMALIZED COMPARISON BETWEEN IMPROVEMENTS.

H-BB H-DP H
Benchmark w Tnorm Tnorm Tnorm

Shor 3
8 0,2927 0,3536 1
9 0,2153 0,3593 1

10 0,1622 0,3144 1

Shor 5
8 0,2012 0,1505 1
9 0,1287 0,1509 1

10 0,0730 0,1426 1

Shor 6
8 0,2069 0,1314 1
9 0,1006 0,1177 1

10 0,0565 0,1303 1

Random 500
8 0,1342 0,9017 1
9 0,0818 0,8994 1

10 0,0482 0,8912 1

Random 1000
8 0,1418 0,8929 1
9 0,0833 0,8989 1

10 0,0489 0,8880 1

Random 2000
8 0,1381 0,9863 1
9 0,0819 1,0288 1

10 0,0494 1,0386 1

Modmulti 3
8 0,2917 0,9375 1
9 0,2016 0,8638 1

10 0,1233 0,8657 1

Modmulti 4
8 0,2280 0,8297 1
9 0,1578 0,9185 1

10 0,0871 0,8961 1

Modmulti 5
8 0,2270 0,8996 1
9 0,1241 0,8661 1

10 0,0658 0,8738 1

Considering the improvement based on the Dynamic Pro-
gramming technique, it can be seen that the test circuits Shor
3, Shor 5 and Shor 6 were converted in a shorter running time
because several subcircuits are repeated during calculation.
However, when there are few or no subcircuits that repeat
within the original circuit to convert, such as in Random and
Modmulti circuits, this improvement can not reach a better
running time compared to the original Hirata algorithm. Thus,
this method is only effective in circuits with repetitive patterns.

On the other hand, considering the Branch & Bound im-
provement, the results in all test circuits show a significant
decrease in running time respect to the original Hirata algo-
rithm. Therefore, this improvement is of general application
in contrast to the Dynamic Programming approach which is
more selective in its applicability.

There also have been taken samples to show the evolution
of the resolution time versus the original number of converted
gates. Figure 15 confirms that Dynamic Programming im-
provement only contribute to a reduction of the running time
in circuits with repetitive patterns, such as in Shor circuits.
On the other hand, all the plots in Figure 15 show a shorter
running time when the improvement based on the Branch &
Bound technique is applied. This result confirms the general
application of the Branch & Bound improvement and the
advantage of using it in almost any case.

VIII. CONCLUSIONS

In this work, it has been presented two proposals that
improve the running time of the original Hirata algorithm

[5] for the conversion of arbitrary quantum circuits to LNN
architecture without any loss of quality in the calculated
solutions.

The first improvement based on Dynamic Programming
[6], proved to be effective converting circuits with repetitive
constructions as Shor circuits, avoiding the recalculation of
patterns that repeats; however, the improvement is only effec-
tive in such circumstances, and not in every studied circuit.

On the other hand, the second improvement based on
Branch & Bound [7], has proved to be an improvement of
general application with a positive effect over the original
algorithm in all studied cases.

In general, the experimental results demonstrates that ap-
plying the two proposed improvements can achieve the same
quality results that the original Hirata algorithm with a smaller
running time without any loss of solution quality. Therefore,
both proposals can be considered in order to implement an
efficient version of the Hirata algorithm.

ACKNOWLEDGMENT

Special thanks to the Nara Institute of Science and Technol-
ogy (NAIST) in the person of Yasuhiko Nakashima, Hiroyuki
Seki, Masaki Nakanishi, Shigeru Yamashita and Yuichi Hirata,
for all help and for providing the test circuits.

REFERENCES

[1] E. Strubell, “An introduction to quantum algorithms,” COS498 Chawathe
Spring, 2011.

[2] H. Häffner et al., “Scalable multiparticle entanglement of trapped ions,”
Nature, vol. 438, no. 7068, 2005, pp. 643–646.

[3] M. Laforest, D. Simon, J.-C. Boileau, J. Baugh, M. J. Ditty, and
R. Laflamme, “Using error correction to determine the noise model,”
Physical Review A, vol. 75, no. 1, 2007, p. 012331.

[4] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum
information. Cambridge university press, 2010.

[5] Y. Hirata, M. Nakanishi, S. Yamashita, and Y. Nakashima, “An efficient
conversion of quantum circuits to a linear nearest neighbor architecture,”
Quantum Info. Comput., vol. 11, no. 1, Jan. 2011, pp. 142–166.

[6] S. Dreyfus, “Richard bellman on the birth of dynamic programming,”
Operations Research, vol. 50, no. 1, 2002, pp. 48–51.

[7] J. Clausen, “Branch and bound algorithms-principles and examples,”
Department of Computer Science, University of Copenhagen, 1999, pp.
1–30.

[8] R. P. Feynman, “Quantum mechanical computers,” Foundations of
physics, vol. 16, no. 6, 1986, pp. 507–531.

[9] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms
and factoring,” in Foundations of Computer Science, 1994 Proceedings.,
35th Annual Symposium on. IEEE, 1994, pp. 124–134.

[10] S. A. Cuccaro, T. G. Draper, S. A. Kutin, and D. P. Moulton, “A new
quantum ripple-carry addition circuit,” arXiv preprint quant-ph/0410184,
2004.

[11] R. E. Bellman and S. E. Dreyfus, Applied dynamic programming. Rand
Corporation, 1962.

50Copyright (c) IARIA, 2015. ISBN: 978-1-61208-431-2

ICQNM 2015 : The Ninth International Conference on Quantum, Nano/Bio, and Micro Technologies

