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Abstract—A micromechanics damage model is presented to 
examine the effect of microstructures on the fiber–matrix 
debonding for unidirectional carbon fiber reinforced metal 
matrix composites under the transverse loading. 
Microstructure is represented by a repeating unit cell 
(RUC). Two fiber arrays are considered including ideal 
square fiber packing and random fiber packing defined by 
random sequential algorithm. A cohesive zone model is used 
to predict the onset of fiber–matrix debonding while the 
non-linear behavior in the matrix phase is modeled using the 
von-Mises plasticity theory. The micromechanical results 
show that the damage evolution starts at a lower stress level 
in the microstructure with random fiber packing compared 
to the regular microstructure and the transverse stress 
converges to the same level in both microstructures at high 
strain value. Micromechanical modeling procedure provides 
detail viewpoint into the microscopic damage accumulation 
prior to ultimate failure and highlights the different roles of 
the fiber–matrix debonding and matrix plasticity in the 
macroscopic response of the composite. 
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I.  INTRODUCTION 

Metal matrix composites have found many applications 
as constructional and functional materials in different 
industries.  The presence of reinforcement in metal matrix 
materials improves the properties such as the tensile 
strength, creep resistance, fatigue strength, thermal shock 
resistance, and corrosion resistance. Transverse strength of 
composite materials is one of the limiting design criteria in 
composite structures. Fiber-matrix interfaces are subjected 
to high local stress levels and have a greater propensity to 
undergo damage nucleation than those in dilute regions 
[1]. Transverse fracture is a result of fiber–matrix 
debonding and/or matrix micro-cracking which can induce 
further damages in laminates such as inter-ply 
delamination or fiber fracture in adjacent plies through the 
process of damage accumulation [2, 3]. Due to the 
complex nature of damage progression, many 
micromechanical studies have focused on transverse 
fracture behavior from viewpoint of damage initiation and 
evolution [4-7]. 

The micromechanics techniques yield information on 
both macroscopic and microscopic levels which are used 
for the prediction of the overall characteristics in view of 
continuum mechanics as well as the evaluation of the 

potential failure modes leading to the ultimate failure of 
heterogeneous materials [8, 9]. The micromechanical 
model provides an efficient procedure to determine and 
design the properties of composite materials. 

Fiber-matrix interfaces have been modeled in a number 
of ways including a narrow region of continuum with 
graded properties, an infinitely thin surface separated by 
springs, and cohesive zones with specific traction–
separation relations [6]. In the spring layer model [7], a 
stress based criterion for debonding and a frictional 
resistance based criterion for interfacial sliding have been 
used to capture debonding and sliding. Debonding is 
postulated to occur under the combined loading conditions 
at the interface. The cohesive zone approach is being 
increasingly used in describing fracture and failure 
behavior in a number of material systems [4, 5]. 

The transverse fracture behavior of composite 
materials depends on numerous contributing factors, such 
as constituent properties, interfacial strength, process 
related defects, and local morphological parameters like 
volume fraction, size, shape and spatial distribution of 
reinforcements. The present research works determines the 
influence of microstructure on the elastic-plastic properties 
of metal matrix composites considering the debonding at 
the fiber-matrix interface at high transverse loading. A 
micromechanical modeling procedure is implemented to 
evaluate the response of unidirectional continuous fiber 
composites subjected to finite axial deformation. The 
microstructure of the metal matrix materials is represented 
by a repeating unit cell (RUC) considering two fiber 
arrangements including ideal square fiber packing and 
random fiber packing defined by random sequential 
algorithm. The Volume averaging scheme is implemented 
to apply the local macroscopic deformation gradient tensor 
to the RUC assigned to the microstructure. The 
micromechanical modeling procedure is implemented for 
graphite/aluminum metal matrix composite in which the 
reinforcement behaves as elastic, isotropic solids and the 
matrix was modeled as an isotropic elastic-plastic solid 
following the von Mises criterion with isotropic hardening 
[10] and the Ramberg-Osgood relationship [11] is 
assumed between equivalent true stress and logarithmic 
strain. A cohesive zone model is used to predict the onset 
of fiber–matrix debonding, in which the damage initiation 
is defined based on the normal and shear strength at the 
interfacial zone. The damage evolution is model 
considering a exponential softening curve for the 
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degradation rate of the cohesive stiffness. The RUC is 
subjected to uniaxial deformation increased to a 
considerable value to evaluate both elastic and plastic 
behaviors of metal matrix composites. The yields strength 
and true elastic-plastic stress are determined for 
graphite/aluminum composites. 

II. MICROSTRUCURE CONFIGURATION 

The microstructures of unidirectional fiber reinforced 
composites are commonly described by three fiber 
arrangement including square, hexahedral and random 
fiber-packing patterns. The micromechanical results for 
linear anisotropic elastic materials revealed that the 
calculated elastic stiffness values for axial and shear 
deformation are dependent on the fiber packing [12]. Since 
the microstructures with square and hexahedral fiber-
packing patterns are idealized geometrical representations 
for fiber arrangement, the microstructure with random 
fiber packing yields more accurate results. At large plastic 
deformation of anisotropic materials, the results highly 
depends on the fiber packing and for some fiber 
arrangement, the deformation locking may be observed at 
lower strain. 

Since the heterogeneities are orders of magnitude 
smaller than the total body, the deformation field in the 
vicinity of one inclusion is approximately the same as the 
deformation field near neighboring inclusions [13]. 
Experimental observations [5-7] have shown that 
deformation field in the vicinity of a subvolume is 
approximately the same as deformation field of the near 
neighboring subvolumes. The size of subvolume is small 
enough compared to the total microstructure size so that 
the effective properties computed from the subvolume are 
independent of its size and position within the 
microstructure. Therefore, the microstructure is 
represented by a periodic unit cell that deforms in a 
repetitive way. The periodic modeling can be quite useful, 
because it provides rigorous estimations with a priori 
prescribed accuracy for various material properties. 
Microstructure shown in Fig. 1 is considered for the 
unidirectional continuous fiber composites. The circular 
fibers with identical radius are dispersed in the 
microstructure in a random and isotropic manner. It is 
assumed that the composite material has a periodic 
microstructure which can be obtained by translating RUC 
along three orthogonal axes. The fiber distribution in the 
unit cell is generated using the random sequential 
adsorption algorithm [14] which ensures a random, 
isotropic and homogeneous distribution for the fibers 
within the RUC. The random coordinates in the cross-
section of microstructure are generated for the center of 
circular fibers with specific diameter, denoted by d. When 
a fiber intersects the boundaries of unit cell, another fiber 
is generated on the neighboring unit cell in order to obtain 
periodic unit cell. The new fiber is added to the 
microstructure when the distance between the center of a 
given fiber and the closest fibers previously generated is 
greater than a minimum values (1.1d). Such condition 
prevents overlapping fibers as well as ensuring adequate 

mesh geometry for the matrix material located between 
fibers. To prevent element distortion during mesh 
generation, the fiber surface should not be too close 
(greater than 0.1d) to the boundary surfaces of the RUC. 
When such conditions are satisfied, the fiber is added to 
the unit cell at the generated random coordinates. The 
procedure is repeated until the fiber volume fraction 
reaches close to a pre-defined value. The square cross 
section is considered for unit cell (b2 = b3) and the ratio of 
fiber diameter to unit cell dimension (d / 2b2) is set to 0.05. 

III. MICROMECHANICAL MODEL 

Micromechanical model provides efficient tool to 
characterize composite materials from known properties of 
their constituents and the distribution of the reinforcement 
in the microstructure through the analysis of a RUC. The 
essence in micromechanical approach is to replace the 
heterogeneous structure of the composite by a 
homogeneous medium with anisotropic properties. 

A Lagrangian viewpoint is used to describe the 
material motion and the components of vectors and tensors 
are described in a fixed rectangular coordinate system. In 
the reference configuration of RUC, the position of a 
typical material particle is expressed with vector X 
(components Xi). In the deformed configuration at instance 
t, the particle moves to a position described with vector 
x(X,t) (components xi) corresponding to the displacement 
vector u(X,t) (components ui). The deformation is typically 
described using the deformation gradient tensor, 
designated by F, whose components are given by 


j

i
ij X

x
F




  

 
Figure 1.  Microstructure of metal matrix composite with random fiber 

packing. 
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The reference geometry of RUC is assumed to be a 
rectangular prismatic volume whose surfaces are parallel 
to the surfaces defined in a fixed Cartesian coordinate 
system with origin located at the centre of RUC. The 
initial dimension of RUC is 2b12b22b3. The boundary 
surfaces of reference geometry perpendicular to i-axis are 
designated with Si

+ and Si
–  intersecting i-axis at Xi = +bi 

and Xi = –bi, respectively. The displacement of the points 
located on each boundary surface is measured respect to 
corner points labeled as points P0, P1, P2 and P3. Such 
points are called reference points. The current position of 
points located on surface Si– is measured respect to point 
P0, while the position of points located on S1

+, S2
+ and S3

+ 
is measured respect to points P1, P2 and P3, respectively. 
To enforce the periodicity constraint, the current position 
of boundary surface is described by [9]:  
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where  
 j

tix are the components of current position vector of 

corner point Pj. 
To relate the macrostructure deformation to the 

microstructure deformation, it is assumed that the local 
macroscopic deformation gradient tensor at a given point 
to be equal the volume average deformation gradient 
tensor of RUC assigned at that point. Using the periodicity 
constraining equations (1), it can be shown [9] that the 
macroscopic deformation gradient tensor is a function of 
current position of corner points P0, P1, P2 and P3 as 
follows:  
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It should be noted that no summation is considered on j 
superscript in Eq. (3). 

An energy balance is considered to relate stress tensor 
in the macroscopic and microscopic scales. The internal 
power at macroscopic level at a given point is set equal to 
the internal power in RUC assigned at the corresponding 
point in a given deformed configuration. It was shown [9] 
that the energy balance results in 
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where the dot superscript denotes to the time derivative, Pij 
are the components of nominal stress tensor defined in 
macroscopic levels, tj are the components of traction force 
and si

+ is the deformed geometry of boundary surface Si
+. 

IV. MATERIAL BEHAVIOR 

Aluminum alloy reinforced with stiff graphite fibers is 
considered. The fibers behaved as elastic, isotropic solids 
characterized by the elastic modulus Ef = 250 GPa and the 
Poisson's ratio υf = 0.2. The matrix is modeled as an 
isotropic elastic-plastic solid following the von Mises 
criterion with isotropic hardening [10]. The matrix elastic 
constants are Em = 70 GPa and υm = 0.33, and the 
Ramberg-Osgood relationship [11] is assumed between 
equivalent true stress, σm

eq, and logarithmic strain, εm, i.e., 
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where K = 400 MPa is the strength coefficient and n = 0.1 
is the matrix strain hardening exponent [14]. Regarding 
these data, an initial yield stress of 225.3 MPa is obtained. 
The aluminum material is reinforced with 0.4 fiber volume 
fraction. 

The damage initiation is defined based on the normal 
and shear strengths of the cohesive zone in the fiber-matrix 
interface. Damage is assumed to initiate when the 
maximum nominal stress ratio reach to a unit value, 
namely, 
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where symbol < > is Macaulay brackets [15] to signify that 
a pure compressive deformation or stress state does not 
initiate damage, tn

0 and ts
0 are the normal and shear 

strengths of the fiber-matrix interfacial zone, respectively. 
The damage evolution law describes the degradation rate 
of the cohesive stiffness when the criterion of damage 
initiation is reached. A scalar damage variable, D, is 
introduced to characterize the stiffness degradation as 
follows: 
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The initial value of scalar damage variable is zero 
before the damage initiation and it is continuously 
increased up to a unit value as the debonding occurs in the 
fiber-matrix interface.  The damage evolution is modeled 
based on the level of applied traction or displacement. To 
describe the evolution of damage under a combination of 
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normal and shear deformation across the interface, it is 
useful to introduce an effective displacement defined as 
[15] 

 222

tsneq    

A exponential softening curve is considered to model 
damage evolution at the interface once the maximum 
stress ratio becomes greater than unit value. The element 
stiffness reduces until complete failure when the effective 
displacement reaches to a specific value (δ 

f), as shown in 
Fig. 2. The area under the traction separation determines 
the fracture energy of cohesive material. 

V. RESULTS 

Based on the fiber volume fraction of 0.4, the radius of 
fiber for microstructure with square fiber packing is 
0.714b2. The fiber-matrix interaction is assumed to be a 
ring with negligible thickness set to 0.01b2 and the internal 
surface of ring is tied to the external surface of fiber. The 
behavior of the fiber–matrix interface is modeled using 
cohesive elements introducing a displacement 
discontinuity at the interface when the local stress reaches 
to the debonding critical condition. A traction–separation 
law is considered for the fiber-matrix interface to relate the 
displacement between the top and bottom faces of the 
cohesive element to the applied normal and shear traction 
vectors. An initial elastic stiffness was used to ensure the 
displacement continuity at the interface in the absence of 
damage. Based on the elastic stiffness values for axial and 
shear deformation of matrix material and the initial 
thickness of fiber-matrix interface, the axial and shear 
stiffness values are set to 70.0×1014 Pa/m and 26.3×1014 
Pa/m, respectively. 

A. Transverse Loading without Damge Evolution 

To validate the number of cohesive elements and the 
corresponding properties of the fiber-matrix interface, the 
elastic-plastic response is examined before damage 
initiation for the microstructure with cohesive elements 
having a perfect bonding between the fiber and matrix 
materials. The material behavior should be the same in 
both microstructures before damage evolution. The RUC 
is subjected to axial transverse strain up to 5% to observe 
the elastic-plastic behavior of metal matrix composites.  
The micromechanical modeling procedure is used to apply 
axial transverse strain to the RUC of the microstructures 
with random and ideal square fiber packing patterns. The 
perfect bonding between the fiber and matrix causes 
considerable distortion in matrix elements at the vicinity of 
fibers. The presence of cohesive elements considered in 
the fiber-matrix interface permits radial or tangential 
separations between fiber and matrix material as the 
traction vectors exceed a specific critical value. Since no 
damage evolution criterion is considered in the cohesive 
elements, the cohesive elements are deformed without 
decreasing stiffness. When lower axial and shear stiffness 
values are selected for cohesive elements, negligible strain 

is observed in the matrix and fiber materials and the 
deformation is limited to the cohesive elements and low 
stress value is determined for composite material. More 
axial and shear stiffness values considerably reduce the 
deformation of cohesive elements and simulate perfect 
bonding at the fiber-matrix interface. The higher stiffness 
of cohesive elements causes that the numerical procedure 
tends to diverge when the damage evolution is considered. 
Fig. 3 illustrates the Cauchy stress-strain curves obtained 
for RUC with cohesive elements in the microstructures 
with square and random fiber packing patterns. Since 
negligible difference is observed between graphs obtained 
for each microstructure, the presence of cohesive elements 
predicts the response of perfect microstructure. Both 
microstructures predict the same yield strength for 
composite materials. Since the fibers can move between 
each other in axial deformation of the microstructure with 
random fiber packing, lower stress requires applying 
plastic strain compared to microstructure with square 
fiber-packing. 

 
Figure 2.  Traction–separation behaviour of cohesive elements. 

 
Figure 3.  Cauchy stress required to applied elastic-plastic tensile 

transverse deformation to graphite/aluminum composite with different 
microstructures. 
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B. Transverse Loading with Damge Evolution 

The damage initiation is defined based on the normal 
and shear strengths of the cohesive elements considered at 
the fiber–matrix interface in graphite/aluminum metal 
matrix composite. The shear strength is related to the 

normal strength as 3/000
nts ttt   and the normal 

strength is varied to evaluate the effects of bonding 
strength on stress-strain graph of composite material. The 
fiber-matrix debonding is assumed to be occurred when 
the effective displacement reaches to 100 μm. The 
interfacial fracture energy in Mode I and II can be 
calculated based on the area under the traction-separation 
curve. Fig. 4 illustrates the deformed geometry of RUC 
considered for microstructures with square and random 
fiber packing patterns, in which the normal strength of 
cohesive zone is 200 MPa. The deformation of RUC 
corresponds to the local macroscopic transverse strain of 
0.02 which leads to the dobonding in the fiber-matrix 
interface considering normal strength of tn=100 MPa. In 
the microstructure with regular square packing, the applied 
tensile strain causes that lateral compressive stress is 
observed in the cohesive zones at the plane normal to the 
loading direction. Since the cohesive failure is insensitive 
to compressive stress, no separation is observed at this 
region, as shown in Fig. 4a. On the other hand, the 
interface starts to separate at the plane parallel to the 
loading direction located on the lines at the top and bottom 
surfaces of fiber because of cohesive failure at the tensile 
loading. After the separation at top and bottom surface of 
fiber, combined tensile and shear loadings are applied to 
the cohesive elements causing to propagate the separation 
toward the plane normal to the transverse loading. In the 
microstructure with random fiber packing, there is no 
symmetry for loading condition of fibers and the fiber-
matrix separation may be observed at different points, as 
observed in Fig. 4b.  

The stress-strain curves of the graphite/aluminum 
metal matrix composite are shown in Fig. 5 considering 
the damage evolution in the fiber-matrix interface. The 
graphs start with a linear elastic region with the same 
transverse elastic modulus. Based on the normal strength 
of cohesive elements, nonlinear plastic deformation is 
observed at different stress levels. As shown in Fig. 5a, the 
stress-strain graphs of RUC with regular fiber packing 
have abrupt stress falls as the debonding occurs, because 
the applied stress to the fiber drops and the matrix should 
carry the transverse loading. Since the matrix is the only 
material subjected to the transverse loading when the 
complete debonding occurs in the fiber-matrix interface, 
the stress level decreases to the same level in different 
values for cohesive strength. The transition between ideal 
stress-strain graph to stress level in the matrix material is 
observed in more strain for cohesive material with higher 
strength. The multiple stress drops are observed for the 
microstructure with random fiber packing, as shown in 
Fig. 5b. Each stress drop corresponds to the initiation of 
matrix separation from the fibers distributed in the 
microstructure. Since progressive damage correlates with 

the experimental observation, the micromechanical 
modeling yields accurate results for microstructure with 
random fiber packing  

 

 
(a) 

 
(b) 

Figure 4.  Deformed geometries of matrix, fiber and cohesive elemets 
subjected to tensile axial deformation normal to fiber direction in the 

RUC of graphite/aluminum composite having 0.4 fiber volume fraction 
and tn=100 MPa and microstructures with a) square fiber packing b) 

random fiber packing. 
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(a) 

 
(b) 

Figure 5.  Cauchy stress required to applied elastic-plastic tensile 
transverse deformation to graphite/aluminum composite in different 

strength of fiber-matrix interface for microstructures with a) square fiber 
packing b) random fiber packing.  

VI. CONCLUSIONS 

The local fiber distribution significantly affects the 
interfacial stress state and the onset and evolution of fiber–
matrix debonding. As the local damage is initiated at the 
fiber-matrix interface of the microstructure with ideal 
square fiber packing, it propagates to the total interfacial 
zone for a negligible strain increase. In the microstructures 
with ideal square fiber packing, the stress drop is observed 
in the stress-strain curve due to stress releasing in the fiber 
materials. As the complete debonding occurs in the fiber-
matrix interface, the matrix is the only material subjected 
to the transverse loading. Therefore, the stress level 
decreases to the same level for microstructures having 
cohesive elements with different strength values. 
Progressive damage evolution is observed in the fiber-
matrix interfaces of the microstructure with random fiber 
packing, in which each stress drop corresponds to the 
initiation of matrix separation from the fibers distributed in 
the microstructure. The transition between ideal stress-
strain curves to stress levels in the matrix material is 
observed in more strain for cohesive material with higher 
strength. The damage evolution starts at lower stress level 
in the microstructure with random fiber packing compared 

to the regular microstructure and the transverse stress 
converges to the same level in both microstructures at high 
strain value.  
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