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Abstract—The paper proposes a gradient-based feedback
control approach to the stabilization of quantum systems. The
spin model is used to define the eigenstates of the quantum
system. Using Lindblad’s differential equation an estimate of
the state of the quantum system is obtained. Moreover, by
applying Lyapunov’s stability theory and LaSalle’s invariance
principle a gradient control law is derived which assures that
the quantum system’s state will track the desirable state within
acceptable accuracy levels. The performance of the control loop
is studied through simulation experiments for the case of a two-
qubit quantum system.

Keywords-gradient-based feedback control, quantum sys-
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I. INTRODUCTION

The main approaches to the control of quantum systems are:
(i) open-loop control and (ii) measurement-based feedback
control [1]. In open-loop control, the control signal is
obtained using prior knowledge about the quantum system
dynamics and assuming a model that describes its evolution
in time. Some open-loop control schemes for quantum
systems have been studied in [2-3]. Previous work on quan-
tum open-loop control includes flatness-based control on a
single qubit gate [4]. On the other hand measurement-based
quantum feedback control provides more robustness to noise
and model uncertainty [5]. In measurement-based quantum
feedback control, the overall system dynamics are described
by the estimation equation called stochastic master equation
or Belavkin’s equation [6]. An equivalent approach can be
obtained using Lindblad’s differential equation [1]. Several
researchers have presented results on measurement-based
feedback control of quantum systems using the stochastic
master equation or the Lindblad differential equation, while
theoretical analysis of the stability for the associated control
loop has been also attempted in several cases [7-8].
In this paper, a gradient-based approach to the control of
quantum systems will be examined. Previous results on
control laws which are derived through the calculation of
the gradient of an energy function of the quantum system
can be found in [9-12]. Convergence properties of gradient
algorithms have been associated to Lyapunov stability theory
in [13]. The paper considers a quantum system confined in
a cavity that is weakly coupled to a probe laser. The spin

model is used to define the eigenstates of the quantum sys-
tem. The dynamics of the quantum model are described by
Lindblad’s differential equation and thus an estimate of the
system’s state can be obtained. Using Lyapunov’s stability
theory a gradient-based control law is derived. Furthermore,
by applying LaSalle’s invariance principle it can be assured
that under the proposed gradient-based control the quantum
system’s state will track the desirable state within acceptable
accuracy levels. The performance of the control loop is
studied through simulation experiments for the case of a
two-qubit quantum system.
The structure of the paper is as follows: In Section II the spin
eigenstates are used to define a two-level quantum system.
In Section III the Lindblad and Belavkin description of the
quantum system dynamics are introduced as an analogous to
Schrödinger’s equation. In Section IV the feedback control
approach to quantum system stabilization is explained. A
gradient-based feedback control law is derived using Lya-
punov stability analysis and LaSalle’s invariance principle,
both for the case that Schrödinger’s equation and Lindblad’s
equation are used to describe the evolution of the quantum
system in time. In Section V simulation tests are given on the
performance of the proposed measurement-based feedback
control scheme for the case of a two-qubit (four level)
quantum system. Finally, in Section VI concluding remarks
are stated.

II. THE SPIN AS A TWO-LEVEL QUANTUM SYSTEM

A. Description of a particle in spin coordinates

The basic equation of quantum mechanics is Schrödinger’s
equation, i.e.

i
∂ψ

∂t
= Hψ(x, t) (1)

where |ψ(x, t)|2 is the probability density function of finding
the particle at position x at time instant t, and H is the
system’s Hamiltonian, i.e. the sum of its kinetic and potential
energy, which is given by H = p2/2m+V , with p being the
momentum of the particle, m the mass and V an external
potential. The solution of Eq. (1) is given by ψ(x, t) =
e−iHtψ(x, 0) [14].
However, cartesian coordinates are not sufficient to describe
the particle’s behavior in a magnetic field and thus the

12

ICQNM 2011 : The Fifth International Conference on Quantum, Nano and Micro Technologies

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-151-9



spin variable taking values in SU(2) has been introduced.
In that case the solution ψ of Schrödinger’s equation can
be represented in the basis |r, ϵ > where r is the position
vector and ϵ is the spin’s value which belongs in {−1

2 ,
1
2}

(fermion). Thus vector ψ which appears in Schrödinger’s
equation can be decomposed in the vector space |r, ϵ >
according to |ψ >=

∑
ϵ

∫
d3r|r, ϵ >,< r, ϵ|ψ >. The

projection of |ψ > in the coordinates system r, ϵ is denoted
as < r, ϵ|ψ >= ψϵ(r). Equivalently one has ψ+(r) =<
r,+|ψ > and ψ−(r) =< r,−|ψ >. Thus one can write
ψ(r) = [ψ+(r), ψ−(r)]

T .

B. Measurement operators in the spin state-space

It has been proven that the eigenvalues of the particle’s
magnetic moment are ±1

2 or ±h̄ 1
2 . The corresponding

eigenvectors are denoted as |+ > and |− >. Then the
relation between eigenvectors and eigenvalues is given by
σz|+ >= +(h̄/2)|+ >, σz|− >= +(h̄/2)|− >, which
shows the two possible eigenvalues of the magnetic moment
[14]. In general the particle’s state, with reference to the spin
eigenvectors, is described by

|ψ >= α|+ > +β|− > (2)

with |α|2 + |β|2 = 1 while matrix σz has the eigenvectors
|+ >= [1, 0] and |− >= [0, 1] and is given by

σz =
h̄

2

(
1 0
0 −1

)
(3)

Similarly, if one assumes components of magnetic moment
along axes x and z, one obtains the other two measurement
(Pauli) operators

σx =
h̄

2

(
0 1
1 0

)
, σy =

h̄

2

(
0 −i
i 0

)
(4)

C. The spin eigenstates define a two-level quantum system

The spin eigenstates correspond to two different energy
levels. A neutral particle is considered in a magnetic field
of intensity Bz . The particle’s magnetic moment M and the
associated kinetic moment Γ are collinear and are related
to each-other through the relation M = γΓ. The potential
energy of the particle is W = −MzBz = −γBzΓz . Variable
ω0 = −γBz is introduced, while parameter Γz is substituted
by the spin’s measurement operator Sz .
Thus the Hamiltonian H which describes the evolution of the
spin of the particle due to field Bz becomes H0 = ω0Sz , and
the following relations between eigenvectors and eigenvalues
are introduced:

H|+ >= + h̄ω0

2 |+ >, H|− >= + h̄ω0

2 |− > (5)

Therefore, one can distinguish 2 different energy levels
(states of the quantum system) E+ = + h̄ω0

2 , E− = − h̄ω0

2 .
By applying an external magnetic field the probability of

finding the particle’s magnetic moment at one of the two
eigenstates (spin up or down) can be changed. This can be
observed for instance in the Nuclear Magnetic Resonance
(NMR) model and is the objective of quantum control [14].

III. THE LINDBLAD AND BELAVKIN DESCRIPTION OF
QUANTUM SYSTEMS

A. The Lindblad description of quantum systems

It will be shown that the Lindblad and the Belavkin equation
can be used in place of Schrödinger’s equation to describe
the dynamics of a quantum system. These equation use as
state variable the probability density matrix ρ = |ψ ><
ψ|, associated to the probability of locating the particle
at a certain eigenstate. The Lindblad and Belavkin equa-
tions are actually the quantum analogous of the Kushner-
Stratonovich stochastic differential equation which denotes
that the change of the probability of the state vector x to
take a particular value depends on the difference (innovation)
between the measurement y(x) and the mean value of the
estimation of the measurement E[y(x)]. It is also known that
the Kushner-Stratonovich SDE can be written in the form
of a Langevin SDE [11]

dx = α(x)dt+ b(x)dv (6)

which finally means that the Lindblad and Belavkin descrip-
tion of a quantum system are a generalization of Langevin’s
SDE for quantum systems [1]. For a quantum system with
state vector x and eigenvalues λ(x)∈R, the Lindblad equa-
tion is written as [1], [15]

h̄ρ̇ = −i[Ĥ, ρ] +D[ĉ]ρ (7)

where ρ is the associated probability density matrix for state
x, i.e. it defines the probability to locate the particle at a
certain eigenstate of the quantum system and the probabil-
ities of transition to other eigenstates. The variable Ĥ is
the system’s Hamiltonian, operator [A,B] is a Lie bracket
defined as [A,B] = AB−BA, the vector ĉ = (ĉ1, · · · , ĉL)T
is also a vector of operators, variable D is defined as
D[ĉ] =

∑L
l=1D[ĉl], and finally h̄ is Planck’s constant.

B. The Belavkin description of quantum systems

The Lindblad equation (also known as stochastic master
equation), given in Eq. (7), is actually a differential equation
which can be also written in the form of a stochastic
differential equation that is known as Belavkin equation. The
most general form of the Belavkin equation is:

h̄dρc = dtD[ĉ]ρc + H[−iĤdt+ dz+(t)ĉ]ρc (8)

Variable H is an operator which is defined as follows

H[r̂]ρ = r̂ρ+ ρr̂+ − Tr[r̂ρ+ ρr̂+]ρ (9)
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Variable Ĥ stands for the Hamiltonian of the quantum
system. Variable ĉ is an arbitrary operator obeying ĉ+ĉ = R̂,
where R̂ is an hermitian operator. The infinite dimen-
sional complex variables vector dz is defined as dz =
(dz1, · · · , dzL)T , and in analogy to the innovation dv of
the Langevin equation (see Eq. (6)), variable dz expresses
innovation for the quantum case. Variable dz+ denotes the
conjugate-transpose (dz∗)T . The statistical characteristics of
dz are dzdz+ = h̄Hcdt, dzdzT = h̄Y dt. In the above
equations matrix Y is a symmetric complex-valued matrix.
Variable Hc is defined as m1 = {Hc = diag(n1, · · · , nL) :
∀l, nl∈[0, 1]}, where nl can be interpreted as the possibil-
ity of monitoring the l-th output channel. There is also
a requirement for matrix U to be positive semi-definite.
As far as the measured output of the Belavkin equation
is concerned one has an equation of complex currents
JT dt =< ĉHc + ĉ+Y >c +dzT , where <> stands for the
mean value of the variable contained in it [1]. Thus, in the
description of the quantum system according to Belavkin’s
formulation, the state equation and the output equation are
given by Eq. (10).

h̄dρc = dtD[ĉ]ρc + H[−iĤdt+ dz+(t)ĉ]ρc
JT dt =< ĉTHc + ĉ+Yc > dt+ dzT

(10)

where ρc is the probability density matrix (state variable) for
remaining at one of the quantum system eigenstates, and J
is the measured output (current).

C. Formulation of the control problem

The control loop consists of a cavity where the multi-
particle quantum system is confined and of a laser probe
which excites the quantum system. Measurements about
the condition of the quantum system are collected through
photodetectors and thus the projections of the probability
density matrix ρ of the quantum system are turned into
weak current. By processing this current measurement
and the estimate of the quantum system’s state which is
provided by Lindblad’s or Belavkin’s equation, a control
law is generated which modifies a magnetic field applied to
the cavity. In that manner, the state of the quantum system
is driven from the initial value ρ(0) to the final desirable
value ρd(t) (see Fig. 1).

When Schrödinger’s equation is used to describe the dy-
namics of the quantum system the objective is to move
the quantum system from a state ψ, that is associated to a
certain energy level, to a different eigenstate associated with
the desirable energy level. When Lindblad’s or Belavkin’s
equation is used to describe the dynamics of the quantum
system, the control objective is to stabilize the probabil-
ity density matrix ρ(t) on some desirable quantum state
ρd(t)∈Cn, by controlling the intensity of the magnetic field.
The value of the control signal is determined by processing

the measured output which in turn depends on the projection
of ρ(t) defined by Tr{Pρ(t)}.

Figure 1. Feedback control loop for quantum systems

IV. A FEEDBACK CONTROL APPROACH FOR QUANTUM
SYSTEM STABILIZATION

A. Control law calculation using Schrödinger’s equation

It is assumed that the dynamics of the controlled quantum
system is described by a Schrödinger equation of the form

ih̄ψ̇(t) = [H0 + f(t)H1]ψ(t) ψ(t) ∈ Cn (11)

where H0 is the system’s Hamiltonian, H1 is the control
Hamiltonian and f(t) is the external control input. The
following Lyapunov function is then introduced [9]

V (ψ) = (ψ+Zψ − Zd)
2 (12)

where + stands for the transposition and complex conjuga-
tion, Z is the quantum system’s observable and is associated
to the energy of the system. The term ψ+Zψ denotes the
observed mean energy of the system at time instant t and
Zd is the desirable energy value. The first derivative of the
Lyapunov function of Eq. (12) is

V̇ (ψ) = 2[ψ+Zψ − Zd][ψ̇
+Zψ + ψ+Zψ̇] (13)

while from Eq. (11) it also holds ψ̇(t) = − i
h̄ [H0 +

f(t)H1]ψ(t), which results into

V̇ (ψ) = 2i
h̄ (ψ

+Zψ − Zd)·
·ψ+{H0Z − ZH0 + f(H1Z − ZH1)}ψ

(14)

Choosing the control signal f(t) to be proportional to the
gradient with respect to f of the first derivative of the
Lyapunov function with respect to time (velocity gradient)
i.e. f(t) = k∇f{V̇ (ψ)}, and for Z such that ψ+H0Zψ =
ψ+ZH0ψ (e.g. Z = H0) one obtains
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f(t) =
2i

h̄
(ψ+Zψ − Zd)ψ

+(H1Z − ZH1)ψ (15)

Substituting Eq. (15) into Eq. (14) provides
V̇ (ψ) = k 2i

h̄ (ψ
+Zψ − Zd)ψ

+[2ih̄ (ψ
+Zψ − Zd)ψ

+(H1Z −
ZH1)ψ(H1Z−ZH1)]ψ, and finally results in the following
form of the first derivative of the Lyapunov function

V̇ (ψ) = −k 4

h̄2
(ψ∗Zψ − Zd)

2ψ+2
(H1Z − ZH1)

2ψ2≤0

(16)
which is non-positive along the system trajectories. This
implies stability for the quantum system and in such a
case La Salle’s principle shows convergence not to an
equilibrium but to an area round this equilibrium, which is
known as invariant set. La Salle’s theorem is expressed as
follows [16]:

Theorem 1: Assume the autonomous system ẋ = f(x)
where f : D → Rn. Assume C ⊂ D a compact set which
is positively invariant with respect to ẋ = f(x), i.e. if
x(0) ∈ C ⇒ x(t) ∈ C ∀ t. Assume that V (x) : D → R is
a continuous and differentiable Lyapunov function such that
V̇ (x) ≤ 0 for x ∈ C, i.e. V (x) is negative semi-definite
in C. Denote by E the set of all points in C such that
V̇ (x) = 0. Denote by M the largest invariant set in E and
its boundary by L+, i.e. for x(t) ∈ E : limt→∞x(t) = L+,
or in other words L+ is the positive limit set of E. Then
every solution x(t) ∈ C will converge to M as t→ ∞.

Figure 2. LaSalle’s theorem: C: invariant set, E ⊂ C: invariant set which
satisfies V̇ (x) = 0, M ⊂ E: invariant set, which satisfies V̇ (x) = 0, and
which contains the limit points of x(t) ∈ E, L+ the set of limit points of
x(t) ∈ E

Consequently, from Eq. (16) and LaSalle’s theorem, any
solution of the system ψ(t) remains in the invariant set
M = {ψ : V̇ (ψ) = 0}.

B. Control law calculation using Lindblad’s equation

Next, it will be shown how a gradient-based control law can
be formulated using the description of the quantum system

according to Lindblad’s equation. The following bilinear
Hamiltonian system is considered (Lidbland equation)

ρ̇(t) = −i[H0 + f(t)H1, ρ(t)] (17)

where H0 is the interaction Hamiltonian of the quantum sys-
tem, H1 is the control Hamiltonian of the quantum system
and f(t) is the real-valued control field for the quantum
system. The control problem consists of calculating the
control function f(t) such that the system’s state (probability
transition matrix ρ(t)) with initial conditions ρ(0) = ρ0
converges to the desirable final state ρd for t→∞. It is
considered that the initial state ρ0 and the final state ρd
have the same spectrum and this is a condition needed for
reachability of the final state through unitary evolutions.
Because of the existence of the interaction Hamiltonian H0 it
is also considered that the desirable target state also evolves
in time according to the Lindblad equation, i.e.

ρ̇d(t) = −i[H0, ρd(t)] (18)

The target state is considered to be stationary if it holds
[H0, ρd(t)] = 0, therefore in such a case it also holds
ρ̇d(t) = 0. When [H0, ρd(t)]̸=0 then one has ρ̇d ̸=0 and
the control problem of the quantum system is a track-
ing problem. The requirement ρ(t)→ρd(t) for t→∞ im-
plies a trajectory tracking problem, while the requirement
ρ(t)→O(ρd)(t) for t→∞ is an orbit tracking problem.
It will be shown that the calculation of the control function
f(t) which assures that ρ(t) converges to ρd(t) can be
performed with the use of the Lyapunov method. To this
end, a suitable Lyapunov function V (ρ, ρd) will be chosen
and it will be shown that there exists a gradient-based control
law f(t) such that V̇ (ρ, ρd)≤0.
The dynamics of the state of the quantum system, as well
as the dynamics of the target state are jointly described
by ρ̇(t) = −i[H0 + f(t)H1, ρ(t)], ρ̇d(t) = −i[H0, ρd(t)].
A potential Lyapunov function for the considered quantum
system is taken to be

V = 1− Tr(ρdρ) (19)

It holds that V > 0 if ρ̸=ρd. The Lyapunov function given
in Eq. (19) can be also considered as equivalent to the
Lyapunov function V (ψ,ψd) = 1 − | < ψd(t)|ψ(t) > |2,
which results from the description of the quantum system
with the use of Schrödinger’s equation given in Eq. (1).
The term < ψd(t)|ψ(t) > expresses an internal product
which takes value 1 if ψd(t) and ψ(t) are aligned. The first
derivative of the Lyapunov function defined in Eq. (19) is

V̇ = −Tr(ρ̇dρ)− Tr(ρdρ̇) (20)

One can continue on the calculation of the
first derivative of the Lyapunov function V̇ =
−Tr(ρ̇dρ) − Tr(ρdρ̇)⇒V̇ = −Tr([−iH0, ρd]ρ) −
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Tr(ρd[−iH0, ρ]) − f(t)Tr(ρd[−iH1, ρ])⇒V̇ =
−Tr([−iH0ρd + ρdiH0]ρ) − Tr(ρd[−iH0ρ + ρiH0]) −
f(t)Tr(ρd[−iH1, ρ])⇒V̇ = −Tr(−iH0ρdρ + ρdiH0ρ −
ρdiH0ρ+ ρdρiH0)− f(t)Tr(ρd[−iH1, ρ])

Using that Tr(iH0ρdρ) = Tr(ρdρiH0) one obtains

V̇ = −f(t)Tr(ρd[−iH1, ρ]) (21)

The control signal f(t) is taken to be the gradient with
respect to f of the first derivative of the Lyapunov function
i.e. f(t) = −k∇f V̇ (t), which gives

f(t) = kTr(ρd[−iH1, ρ]) k > 0 (22)

and which results in a negative semi-definite Lyapunov
function V̇≤0. Choosing the control signal f(t) according
to Eq. (22) assures that for the Lyapunov function of the
quantum system given by Eq. (19) it holds

V > 0 ∀ (ρ, ρd)̸=0

V̇≤0
(23)

and since a negative semi-definite Lyapunov function is
examined, LaSalle’s theorem is again applicable [16].

According to LaSalle’s theorem, explained in subsection
IV-A, the state (ρ(t), ρd(t)) of the quantum system con-
verges to the invariant set M = {(ρ, ρd)|V̇ (ρ(t), ρd(t)) =
0}. Attempts to define more precisely the convergence area
for the trajectories of ρ(t) when applying La Salle’s theorem
can be found in [8], [17].

V. SIMULATION TESTS

Simulation tests about the performance of the gradient-based
quantum control loop are given for the case of a two-
qubit (four-level) quantum system. Indicative results from
two different simulation experiments are presented, each
one associated to different initial conditions of the target
trajectory and different desirable final state.
The Hamiltonian of the quantum system was considered
to be ideal, i.e. H0∈C4 was taken to be strongly regular
and H1∈C4 contained non-zero non-diagonal elements. The
two-qubit quantum system has four eigenstates which are
denoted as ψ1 = (1000),ψ2 = (0100), ψ3 = (0010) and
ψ4 = (0001). For the first case, the desirable values of
elements ρdii, i = 1, · · · , 4 corresponding to quantum states
ψ1 to ψ4 are depicted in Fig. 3(a), while the convergence of
the actual values ρii, i = 1, · · · , 4 towards the associated
desirable values is shown in Fig. 3(b). Similarly, for the sec-
ond case, the desirable values of elements ρdii, i = 1, · · · , 4
are shown in Fig. Fig. 4(a), while the associated actual
values are depicted in Fig. 4(b). It can be observed that
the gradient-based control calculated according to Eq. (22)
enabled convergence of ρii to ρdii, within acceptable accuracy
levels. Fig. 5 presents the evolution in time of the Lyapunov

function of the two simulated quantum control systems.
It can be noticed that the Lyapunov function decreases,
in accordance to the negative semi-definiteness proven in
Eq. (23). Finally, in Fig. 6, the control signals for the two
aforementioned simulation experiments are presented. The
simulation tests verify the theoretically proven effectiveness
of the proposed gradient-based quantum control scheme.
The results can be extended to the case of control loops
with multiple control inputs fi and associated Hamiltonians
Hi, i = 1, · · · , n.
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Figure 3. (a) Desirable quantum states in the first test case, (b) Actual
quantum states in the first test case
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Figure 4. (a) Desirable quantum states in the second test case, (b) Actual
quantum states in the second test case

VI. CONCLUSIONS

The paper has presented a gradient-based approach to
feedback control of quantum systems. Different descrip-
tions of the quantum system dynamics were formulated
using Schrödinger’s and Lindblad’s differential equations,
as well as Belavkin’s stochastic differential equation. When
Scrödinger’s equation is used to describe the dynamics of
the quantum system the objective is to move the quantum
system form an eigenstate associated to a certain energy
level to a different eigenstate associated to the desirable
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Figure 5. (a) Lyapunov function of the first test case, (b) Lyapunov function
of the second test case
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Figure 6. (a) Control input of the first test case, (b) Control input of the
second test case

energy level. When Lindblad’s or Belavkin’s equations are
used to describe the dynamics of the quantum system the
control objective is to stabilize the probability density matrix
ρ on some desirable quantum state ρd∈Cn by controlling
the intensity of the magnetic field. The control input is
calculated by processing the measured output, which in turn
depends on the projection of the probability density matrix
ρ, as well as on processing of the estimate of ρ provided
by Lindblad’s or Belavkin’s equation. It was shown that
using either the Schrödinger or the Lindblad description of
the quantum system a gradient-based control law can be
formulated which assures tracking of the desirable quantum
state within acceptable accuracy levels. The convergence
properties of the gradient-based control scheme were proven
using Lyapunov stability theory and LaSalle’s invariance
principle. Finally, simulation experiments for the case of a
two-qubit (four-level) quantum system verified the theoret-
ically established efficiency of the proposed gradient-based
control approach.
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