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Abstract—MATLAB/Simulink is a state-of-the-art tool for model-
driven engineering of embedded systems. Simulink enables engi-
neers to model continuous and discrete parts of a system together
in hybrid models. In such models, complexity reduction via
refactoring plays an important role. However, formal verification
of the equivalence between a hybrid Simulink model and its
refactored counterpart is still an open problem. One challenge
is that for many refactorings, equivalent behaviour can only
be shown to be ‘close’ to each other rather than being the
‘same’. To solve this problem, we propose a methodology to
show behavioural equivalence based on approximate bisimulation.
Our main contributions are a sound abstract representation for
Simulink models that serves as a basis for proving equivalence,
that we adapt the concept of approximate bisimulations to the
operational Simulink semantics, and a methodology that enables
the designer to prove transformation correctness. Our approach
is applicable to both discrete and continuous Simulink models.
With that, we provide an ideal starting point for the verification
of hybrid models that integrate discrete and continuous model
parts.

Keywords–formal verification; transformation correctness;
refactoring; MATLAB/Simulink; approximate bisimulation

I. INTRODUCTION

MATLAB/Simulink is a tool and de facto standard in
model-driven engineering (MDE) in many industries, e.g., in
the automotive and aerospace sectors. To control the com-
plexity of Simulink models and to ensure their adherence to
certain guidelines, refactorings are often used. Refactorings are
model transformations that improve the inner structure of the
model by keeping the behaviour of source and target model
equivalent. Apart from reducing complexity and establishing
compliance to defined guidelines for the models, refactorings
can offer various perspectives of the model to the engineer -
behaviourally equivalent, but different in other aspects. This
helps the engineer to better understand the system and to find
the proper refinement in forthcoming design phases to fulfil the
requirements of the desired system. Other potential benefits
of refactorings can be improved simulation performance or
increased simulation precision after the transformation.

However, as Simulink is often used in safety-critical ap-
plications, it is crucial to ensure that refactorings preserve
the intended behaviour of a Simulink model. While it is
generally possible to validate the correctness of refactorings
by simulation and testing, this does not provide any guarantees
that the behaviour is preserved for all possible input scenarios.
In this context, formal verification plays an important role.
The ISO 26262 [1] states that it is highly recommended to
formally prove system behaviour against the specification to
cope with high Automotive Safety Integrity Levels (ASILs).

However, formal verification of hybrid Simulink models, and
in particular the formal verification of refactorings of hybrid
models is a major challenge. The main difficulty is that for
many refactorings, equivalent behaviour can only be shown to
be ‘close’ to each other rather than being the ’same’.

In this paper, we present a methodology to enable the
verification of behavioural equivalence of discrete or con-
tinuous Simulink models, in the sense that two models are
close to each other. We are confident that our approach can
be extended to actual hybrid models later in future work.
The main challenge we address is that the standard concept
for showing behavioural equivalence, namely bisimulation, is
not applicable in cases where hybrid models are numerically
approximated by Simulink. However, in such cases, we can
prove that the values of the next simulation steps are ap-
proximately the same, i.e., they are located in an ‘epsilon
tube’ around the actual solution, which does not need to be
known to the designer. To achieve this, we provide a new
notion of equivalence for hybrid MATLAB/Simulink models
by adapting the existing concepts for approximate bisimulation
as described in, e.g., [2] to the operational Simulink semantics
given in [3].

Our main contributions are the following.

1) We adapt the concept of approximate bisimulation for
Simulink.

2) We provide an abstract and formally well-defined
semantics for Simulink.

3) We propose a methodology for transformation cor-
rectness of hybrid Simulink models.

The main idea of our methodology to prove transformation
correctness is that we provide an abstract representation for
Simulink models and perform the verification on this abstract
level using approximate bisimulation. We put the interpretation
of the abstract representations on a firm footing by proving
soundness with respect to an existing operational Simulink
semantics [3]. To prove behavioural equivalence between a
source model and its refactored counterpart, a designer can
use our abstract representation to compute boundaries for the
ranges in which the values are contained after each simula-
tion step. From these boundaries, approximate bisimulation
between the original Simulink models can be derived.

Note that in this paper, we focus on systems that are either
discrete or continuous. It is part of future work to combine the
findings to be able to handle fully hybrid models as well.

The rest of this paper is structured as follows: In Section II,
we introduce the operational semantics of MATLAB/Simulink
and the concept of approximate bisimulation. In Section III, we
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discuss related work. Section IV provides a general overview
over our approach. In Section V, we provide our adaptation
of approximate bisimulation to Simulink. In Section VI, we
present our abstract representation and discuss its soundness
with respect to the operational semantics. In Section VII,
we examine how behavioural equivalence between Simulink
models can be established using our abstract representation
together with our adapted concept of approximate bisimulation.
We conclude in Section VIII.

II. BACKGROUND

In this section, we briefly summarise the necessary back-
ground to understand the remainder of this paper.

A. Simulink

Simulink is a widely used modeling language for dynamic
systems. It is based on Matlab, and both products are devel-
oped by The MathWorks [4]. In Simulink, dynamic systems
are modelled as block diagrams. They can then be simulated,
and, with further software packages, it is also possible to
automatically generate code. Simulink provides a large library
of predefined blocks. Additionally, user-defined libraries and
block types can be added.

In this paper, we consider five kinds of Simulink blocks:
unsampled or direct feed-through blocks (e.g., arithmetic
blocks), discrete time blocks (e.g., Unit Delay, Discrete In-
tegrator), continuous time blocks (e.g., Integrator), sink blocks
(e.g., Scope) and source blocks (e.g., Constant, Sine Wave,
Ramp). Each block can have inports and outports. These are
the interfaces via which the blocks are connected. We speak
of discrete models if the model consists only of discrete and
unsampled blocks and continuous models if the model consists
only of continuous and unsampled blocks. Finally, a hybrid
model is a model with all block types.

Simulink Operational Semantics

To capture the behaviour of Simulink models, we use the
operational semantics described by Bouissou and Chapoutot
[3]. There, a state is a mapping σ : V → R where V =
{li|1 ≤ i ≤ nb}∪{di|1 ≤ i ≤ nd}∪{xi|1 ≤ i ≤ nx}∪{t, h}.
The numbers nb, nd and nx express the amounts of variables
for the output of blocks, discrete and continuous respectively.
Every block has a unique ouput variable li, discrete blocks
have an internal variable di, and continuous blocks an internal
variable xi in addition. The variable t is used for the simulation
time and h stands for the simulation step size. Parameters that
are provided by the user are denoted by a function π. For
instance, π(t0) expresses the simulation start time, π(tend)
the simulation end time, π(h0) the initial simulation step size.
Bouissou and Chapoutot then assign each block with a set
of equations, examples are l1 = l2 + l3, li =S d; d̄ =S l1,
ẋ = l1, x(0) = init. These equations are evaluated by the
operational semantics, which is defined as a set of inference
rules. In the following, we provide a brief summary of the
most important inference rules.

The global simulation rule states that if the simulation time
is not expired (in which case nothing happens), the simulation
consists of three steps that are consecutively evaluated:

1) The M−transition (major step transition) evaluates
equations of the form l = e and l =S e, i.e., un-
sampled equations and outputs of discrete (sampled)
blocks.

2) The u−transition (update transition) evaluates the
internal variables of discrete blocks, i.e., equations
of the form d̄ =S l.

3) The s−transition (solver transition) evaluates the
internal variables of the continuous blocks, i.e., equa-
tions of the form ẋ = l.

During the evaluation of these transitions, the following rules
apply:

• The evaluation of expressions and predicates is per-
formed by o−transitions: variables l evaluate to the
value in the current state σ(l), constants to the constant
value, functions are evaluated by applying them on the
values of their arguments, predicates analogously.

• Equations with an index S, e.g., lo =S f(l1, ..., ln)
only lead to a state change if σ(t) ∈ S, i.e., the sample
time of the block is reached by the simulation time.
If σ(t) ∈ S, the expression on the right hand side is
evaluated by o−transitions to calculate the new value
for σ(lo).

The solver transitions to calculate equations of the form ẋ = l
(ẋ denotes the derivative of x) are more complex. Simulink
approximates the value xn+1 at point tn + hn starting from
the value xn at time index tn by applying an approximation
technique defined by the user, e.g., Euler method or one of the
Runge-Kutta methods [5]. The solver transition finishes with
the calculation of the subsequent simulation step size. Please
note that all blocks are simultaneously evaluated to calculate
the succeeding state according to the operational semantics,
i.e., it is a synchronous semantics.

B. Approximate Bisimulation
Our goal is to prove equivalent behaviour of source model

and refactored target model. As indicated in Section II, in
case a model contains continuous blocks, Simulink does not
compute the actual solution, but an approximation. Hence,
although intuitively source and target model may express
the same solution function, it is not possible to show exact
equality. We therefore require a notion of equivalence that
relaxes equality. To this end, we use approximate bisimulation,
as defined in [2], [6].

Definition 1 (Approximate Bisimulation). Let T1 =
(Q1,Σ,→1, Q

0
1,Π, 〈〈.〉〉1) and

T2 = (Q2,Σ,→2, Q
0
2,Π, 〈〈.〉〉2) be two labelled transition

systems (LTS), where Qi are the sets of states, Q0
i ⊆ Qi the

sets of initial states, Σ the sets of input alphabet (labels),
→i⊆ Qi × Σ × Qi the transition relations, Π the set of
observations and 〈〈.〉〉i : Qi → Π mappings of states to
observations (i ∈ {1, 2}; note that Σ and Π is in both LTS
the same). Let furthermore Π be a metric space with metric
d : Π×Π→ R. The metric allows us to measure distances in
the set of observables.

A bisimulation relation Bε ⊆ Q1 ×Q2 of precision ε is a
relation fulfilling the following properties ∀(q1, q2) ∈ Bε.

1) d(〈〈q1〉〉1, 〈〈q2〉〉2) ≤ ε
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2) ∃q′1 ∈ Q1 : q1
α−→ q′1 ⇒ ∃q′2 ∈ Q2 : q2

α−→ q′2 ∧
(q′1, q

′
2) ∈ Bε

3) ∃q′2 ∈ Q2 : q2
α−→ q′2 ⇒ ∃q′1 ∈ Q1 : q1

α−→ q′1 ∧
(q′1, q

′
2) ∈ Bε

The LTS are bisimilar with precision ε, denoted as T1 ∼ε T2,
if Bε ⊆ Q1 ×Q2 exists such that

4) Bε is a bisimulation relation of precision ε,
5) ∀q1 ∈ Q0

1∃q2 ∈ Q0
2 : (q1, q2) ∈ Bε

6) ∀q2 ∈ Q0
2∃q1 ∈ Q0

1 : (q1, q2) ∈ Bε

Before we come to the approach, we discuss related work
in the next section.

III. RELATED WORK

For the design and application of refactorings in Simulink,
several approaches exist. In [7], a taxonomy of model muta-
tions is defined. In [8], a normalisation of Simulink models is
presented, which is used for clone detection in [9]. In [10], the
authors present Simulink refactorings that allow subsystem and
signal shifting in arbitrary layers. None of these approaches
considers behavioural equivalence or transformation correct-
ness.

There exists a broad variety of verification approaches for
hybrid models, for a detailed introduction see for example
[2], [6], [11]–[15]. In these papers, the notion of approximate
bisimulation is introduced and utilised. However, none of
them targets hybrid systems described in Simulink and it is
a non-trivial challenge to transfer them to the specifics of the
Simulink semantics and make use of its special characteristics
such as deterministic behaviour. To reason about transforma-
tion correctness for Simulink models, a clear understanding
of the Simulink semantics is required. However, the Math-
works documentation [4] defines the Simulink semantics only
informally. Existing approaches for the formal verification of
Simulink models typically overcome this problem by using
transformations into some well-established formal language.
For example, in [16], Simulink models are mapped to the ver-
ification system UCLID and the satisfiability modulo theories
(SMT) solver UCLID is used for verification. In [17], this is
done with the synchronous data flow language LUSTRE. In
[18], an approach for contract based verification is presented.
In this approach, the semantics is described via synchronous
data flow graphs. In [19], the authors use Boogie, a verification
framework developed at Microsoft Research, for verification.
For this, the semantics of discrete Simulink models is again
translated to the input language of a verification tool, in this
case Boogie. In [20], Simulink models are translated to hybrid
automata. This enables further investigation of hybrid automata
semantics, e.g., in [21] or [22]. However, none of these
approaches provide a formal semantics for Simulink, as they
all use some transformation into existing formal languages.
This also constrains the supported subset of Simulink models
in all cases.

To the best of our knowledge, only Bouissou and Chapoutot
[3] provide a direct formalization of the Simulink semantics.
The authors consider a Simulink model as a set of equations
evaluated following an operational semantics, which is defined
using a set of inference rules. In our approach, we use this
operational semantics as a formal foundation to capture the
behaviour of Simulink models. In contrast to Bouissou and

Figure 1. Overview over our approach

Chapoutot, we utilise the formal semantics to derive a set
of syntactical equations as an abstract representation, which
describes the changes of signals over time on an abstract level.
Together with the concept of approximate bisimulation, this en-
ables the verification of approximate behavioural equivalence
between a source and a target model.

IV. TRANSFORMATION CORRECTNESS APPROACH FOR
DISCRETE AND CONTINUOUS SIMULINK MODELS

In this paper, we present a methodology for proving trans-
formation correctness of Simulink refactorings. Our approach
is applicable to both discrete and continuous models. To keep
the notation simple, we assume without loss of generality that
there is only one output block (where the observation takes
place) in the model. If there was more than one output block,
our approach just needed to be repeated for each. One of
the key ideas of our transformation correctness approach is
that we define an abstract representation for Simulink models.
The Abstract Representation (AR) links the outgoing with the
incoming signals of a given Simulink model by describing
the effect of the blocks via equations in a mathematical view.
The resulting set of equations can be interpreted by an output
function f |= JMK that fulfils the conjunction of all equations
of the respective equation set. This function describes basically
how the output (meaning the observation) is linked with the
input. Using our abstract representation, we can show that two
simulated models behave approximately equivalent up to a
certain precision by proving that the output functions yield
the same values for all possible simulation steps.

The overall concept is depicted in Figure 1. There, we
assume that a source model M and its transformed refactoring
Mtrans are given. To prove approximate bisimulation (∼ε)
between the source model and the refactoring, we compute
abstract representations for both of them and then prove that
∀t : f(t) = g(t) holds.

In the following sections, we first present our adaptation
of approximate bisimulation for Simulink and our abstract
representation together with its interpretation using the con-
cept of an output function that captures the semantics of a
given Simulink model. Then, we present our methodology
for showing behavioural equivalence of two Simulink models
using our abstract representation together with our adapted
notion of approximate bisimulation. Note that in contrast to the
operational semantics defined in [3], our abstract interpretation
provides a mathematical interpretation, i.e., it describes the
behaviour of a given Simulink model using an exact calculation
rather than an approximation or simulation. Nevertheless, we
can show that our abstract representation is sound with respect
to the operational semantics defined in [3].

47Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-451-0

ICONS 2016 : The Eleventh International Conference on Systems (includes EMBEDDED 2016)



Limitations and Assumptions
As representatives for discrete and continuous blocks, we

currently only support Unit Delay and Integrator respectively.
All Unit Delays must have the same sample times because
currently we do not support the rate transition block, which
would be necessary otherwise. Feedback loops, i.e., cycles in
the Simulink graph, are only permitted with at least one Unit
Delay or Integrator in the cycle. This means that we do not
support algebraic loops. Furthermore, the following Simulink
items are currently not supported:
• buses (multiple signals on one signal line) and multi-

dimensional signals
• atomic and virtual subsystems
• blocks that alter the control flow, e.g., Switches
• full hybrid systems, i.e., models containing both dis-

crete and continuous parts.
With our current methodology, many industrially relevant mod-
els are already covered. Our approach can easily be extended
to other blocks.

V. APPROXIMATE BISIMULATION FOR SIMULINK

In this section, we adapt the notion of approximate bisim-
ulation as introduced in Section II-B to Simulink. To this end,
we define the semantics of Simulink as a labelled transition
system (LTS) and provide a metric to measure observation
distances.

First, we define the syntax of a Simulink model as follows.

Definition 2 (Simulink Syntax). A Simulink model is a tuple
(B,E, I,O). B is a finite set of blocks, E ⊆ B ×N×B the
signal lines together with the arity of the incoming signal (the
arity is important because some functions defined by blocks
are not commutative), I ⊆ B the set of sources (for which
∀b′ ∈ I∀b ∈ B∀n ∈ N : (b, n, b′) /∈ E applies), O ⊆ B the
set of sinks (for which ∀b ∈ O∀b′ ∈ B∀n ∈ N : (b, n, b′) /∈ E
applies).

Please note that we often abbreviate signal lines
(bi, n, b

′) ∈ E by variables li with i ∈ N. Using our Simulink
syntax, we can now define the semantics as an LTS.

Definition 3 (Labelled Transition System of Simulink). The
LTS for a Simulink model M = (B,E, I,O) is
• Q ⊆ RV - the set of states (each variable is assigned

with a value)
• We do not need a set of inputs Σ.
• →⊆ Q×Q is defined by the operational semantics
• Q0 ⊆ Q assigns the initial values to each variable

(given as parameter in the Simulink model)
• Π ⊆ (R ∪ {⊥})V - the set of observations
• 〈〈.〉〉 : Q → Π, 〈〈σ〉〉(v) := σ(v) if v is a variable

associated with a sink block b ∈ O, ⊥ otherwise. (The
observation map provides the value at the sink of the
model - and an undefined symbol ⊥ otherwise)

To keep notation simple, we denote the unique output
variable of a block bi ∈ B with vi from now on. The
metric we use for approximate bisimulation is defined as
d∞ : Π × Π → R, d∞(σ1, σ2) := ‖σ1 − σ2‖∞ with
‖.‖∞ : Π → R, ‖σ‖∞ := maxv∈

⋃
b∈O:v variable of b(σ(v)). It

takes the biggest distance of all observations.

TABLE I. EXAMPLE eqExtract DEFINITIONS

Block type eqExtract(l)
Input {l(t) = in(t)}
Sine Wave {l(t) = sin(t)}
Math Operations {l(t) = f(l1(t), ..., ln(t))}
Unit Delay {l(t+ h) = l1(t), l(π(t0)) = π(initl)}
Integrator { d

dt l(t) = l1(t), l(π(t0)) = π(initl)}

VI. ABSTRACT REPRESENTATIONS AND THEIR
INTERPRETATION

In this section, we introduce the abstract representations
(AR). Equations in the AR (we denote the set of AR equations
as Eqa) are of the form li(t) = f(l1(t), ..., ln(t)), li(t+λh) =
l1(t) or d

dt li(t) = l1(t), where f is an expression depending
on other variables, h is the (synchronous) sample time, λi are
integral coefficients.

Definition 4 (Abstract Representation). For a Simulink model
M = (B,E, I,O), the abstract representation is a function
J.K that maps M to a set of equations J.K : SM → P(Eqa),
JMK =

⋃
l∈E eqExtract(l), where SM is the set of Simulink

models. The function eqExtract : E → P(Eqa) describes
how the outgoing signal of a block is mathematically described
depending on its incoming signals and must be defined accord-
ing to the semantics of each block.

Some examples for definitions of the function eqExtract
are shown in Table I. Note that Unit Delay and Integrator
blocks both need an initial value, given as parameter. This is
reflected by the second equations in these cases.

On the basis of our definition of an abstract representation
of Simulink models, we can now define an output function that
abstractly captures the semantics of a given Simulink model
by interpreting our abstract representation.

Definition 5 (Interpretation of an Abstract Representations).
Let M = (B,E, I,O) a Simulink model with #O = 1 (for
simplicity) and simulation period I := [π(t0), π(tend)]. Let
furthermore JMK := {eq1, ..., eqn} the abstract representation.
An interpretation of the abstract representation is a function
f : I → R that fulfils all equations of JMK for all t ∈ I. We
denote with f |= JMK that f fulfils ∀t : eq1 ∧ eq2 ∧ ... ∧ eqn.

Please note that this function always exists if the input sig-
nals are continuous. For the uniqueness of the interpretation of
a continuous model, Lipschitz-continuity must be guaranteed
as well [23].

We now establish the soundness of the AR with the oper-
ational semantics. Due to space constraints, we only provide
a proof sketch here.

Lemma 1 (Soundness of the Abstract Representation). Let M
be a Simulink model that defines an LTS (Q,→, Q0,Π, 〈〈.〉〉).
Then for all σ ∈ Q, the equations in JMK for unsampled
and discrete blocks hold if we replace terms li(t) by σ(vi),
li(t + h) by σ′(vi) (with σ → σ′, σ′(t) ≤ σ(t) + σ(h)) etc.
For continuous blocks, we construct functions lh→0. To define
lh→0 for a signal l, we define a function l(tn)n : E → RI

where I is the simulation interval and (tn)n is a sequence of
simulation steps. l(tn)n(τ) is defined as follows:

l(tn)n(τ) =
σ′(v)− σ(v)

ti+1 − ti
(τ − ti) + σ(v)
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where σ(t) = ti, σ
′(t) = ti+1, ti ≤ τ < ti+1.

We obtain lh→0 out of the family of functions l(tn)n with
simulation step size tn+1− tn → 0. Then the equations of the
form d

dt l(t) = l1(t) hold if we replace all l(t) by lh→0(t) etc.

The function l(tn)n assigns a value to each t ∈ I: If t
is a sample time in the sequence (tn)n, i.e., if an i exists
with t = ti, then l(tn)n(t) is the result of the execution of the
Simulink semantics. If t is between two sample steps, the value
is on the line connecting the points (ti, σ(v)) and (ti+1, σ

′(v)).
Proof sketch: The unsampled and discrete cases follow

from the operational semantics because unsampled blocks are
directly evaluated, and discrete blocks only update if sample
time is reached. For the continuous case, the function lh→0

exists because the family of functions of the form l(tn)n is
equicontinuous, bounded and all functions of this family are
defined on the compact interval I. Consequently, according to
the theorem of Arzela-Ascoli [24], a limit function lh→0 exists
towards which the functions uniformly converge. According
to the semantics, the integrator block performs an approxi-
mation technique such as Euler. This yields immediately that
d
dt lh→0(t) = l1,h→0(t) holds.

We have now established that our AR is sound with respect
to the operational semantics defined in [3]. Especially, we have
put syntactical constructs that were already introduced in [3]
on a firm footage regarding the interpretation with respect to
an output function that mathematically captures the semantics
of a given model.

VII. BEHAVIOURAL EQUIVALENCES

We have established a sound abstract representation for
Simulink models. Its interpretation yields a concise form
of an output function, i.e., it expresses what the Simulink
model actually does in the form of equations. The idea of
our approach is that the designer verifies that the abstract
representations of source and target model, which are either
discrete or continuous, yield the same values on the simulation
interval. From this, according to the next theorem, follows the
approximately equivalent behaviour of both models.

Theorem 1 (Behavioural Equivalence of Simulink Models).
Let M and Mtrans be Simulink models (cf. Section IV for
the limitations, #O = 1 for simplicity), I = [π(t0), π(tend)]
the common simulation interval. Let furthermore the inter-
pretations of the abstract representations g |= JMK and
h |= JMtransK be equal during the simulation interval, i.e.,
∀t ∈ I : g(t) = h(t) holds.

Then M ∼0 Mtrans if the models are unsampled or dis-
crete. If M is continuous, JMK expressing an ordinary differ-
ential equation (ODE; after re-arrangement of the equations)
d
dty(t) = f(t, y(t)), y(π(t0)) = ξ with f being Lipschitz-
continuous in y, i.e., ||f(t, y1) − f(t, y2)|| ≤ L||y1 − y2|| for
all t, y1, y2. Then we have M ∼ε Mtrans with

ε = sup
n=0,...

(|ttn − tsn|) + sup
n=0,...

(||ϕ(ttn)− ϕ(tsn)||) + εs + εt,

where tsn is the sample time of M (source model) at the n−th
step, ttn analogously for Mtrans (target model). εs and εt are
the global errors between the approximations performed by
Simulink for M and Mtrans and the mathematical solution
of the ODE, i.e., the unique function that actually solves the
ODE rather than approximating it.

If source and target model are sampled with the same fixed
step size, then the error reduces to ε = εs + εt.

Proof sketch: For unsampled and discrete models, the
precision ε is 0, i.e., the systems are bisimilar because the
ARs are sound (cf. Lemma 1) and the operational semantics
evaluates the expressions by providing exact and determin-
istic values. In the continuous case, let us abbreviate the
approximated value at the n−th time step in the source model
by ψs(t

s
n) and for the target model by ψt(t

t
n) respectively

and the mathematical solution by ϕ. Then, with triangular
inequality follows ε ≤ |ttn − tsn| + ||ψs(tsn) − ψt(t

t
n)|| ≤

||ψs(tsn)− ϕ(tsn)||+ ||ψt(ttn)− ϕ(ttn)||+ ||ϕ(tsn)− ϕ(ttn)|| =
|ttn − tsn|+ εs + εt + ||ϕ(ttn)− ϕ(tsn)||.

Note that y and f in the continuous case
can be multidimensional, e.g., y = (y1, y2),
f = (f1(t, y1(t), y2(t)), f2(t, y1(t), y2(t))). This occurs
if the system consists of more than one Integrator block.

Also note that the mathematical solution ϕ always exists
and is unique under the assumptions of the theorem [23].
The ODEs do not need to be analytically solvable, i.e., our
approach is applicable even though the solution may not
be phraseable as a closed expression. The errors εs and εt
depend on the approximation technique defined by the user in
Simulink. For example, the Euler method yields

εs/t =
1

2
(len(I))e(len(I)L) sup

t∈I

(
| d

2

dt2
ϕ(t)|

)
sup
n=0,...

hs/tn

with the Lipschitz-constant L for f , hs/tn the simulation step
sizes at the n−th step, ϕ : I → R the mathematical solution
of the ODE and len(I) = π(tend) − π(t0) the length of the
simulation interval [23]. Euler has the worst approximation
to the mathematical solution and consequently the precision ε
can be improved by taking more advanced techniques available
in Simulink into account. Also note that in case of fixed and
equal sample step sizes on both models, the error reduces to
just ε = εs + εt.

One important class of refactorings that immediately results
from the theorem is if the ODE of M is analytically solvable
and Mtrans expresses the analytical solution directly. In this
case, εt = 0 and Mtrans is significantly less complex than
M because usually feedback loops are removed. However,
our approach is not restricted to this case. We also support
refactorings that for instance keep the Integrator and transform
something else mathematically equivalent.

It should also be mentioned that ε in the continuous
case increases with the simulation interval size in the general
case. However, we are confident to obtain certain classes
of functions that allow to show that the global error of the
approximation techniques is bounded for all t ∈ [π(t0),∞[.

Example
Let us go through a simple continuous example depicted

in Figure 2 to demonstrate the approach. The model in the left
is the source model M , on the right the target model Mtrans.
The labels and parameters are shown as well. Together with the
models it is given that the expression for l2 in Mtrans solves
the ODE in M . Suppose now that the designer wants to verify
the behavioural equivalence of both models. In the first step,
the abstract representations are extracted. JMK = { ddt l1(t) =
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Figure 2. Refactoring Example

l2(t), l1(0) = 1, l2(t) = −l1(t), l3(t) = l1(t)}, Mtrans =
{l1(t) = −t, l2(t) = et}. The observation at model M is
l3(t), at model Mtrans it is l2(t) because these signal lines
are connected with an output block. The designer now has to
establish that the interpretations f |= JMK and g |= JMtransK
fulfil ∀t ∈ I : f(t) = g(t). To see that, the interpretations, i.e.,
the observations in both models must be equal. For Mtrans we
obtain this immediately by extracting g(t) = e−t. For M , we
need the solution of the ODE, which is given by Mtrans as
previously stated, i.e., we obtain f(t) = e−t. This immediately
yields f(t) = g(t) for all t. However, to complete the proof,
we finally need to establish that e−t indeed solves the ODE
in M (and the initial value problem e0 = 1). This yields the
final proof obligations d

dte
−t = −e−t, e0 = 1, which hold. The

designer consequently can apply our theorem and obtains the
approximately equivalent behaviour. The precision ε depends
on the chosen approximation technique.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have presented a methodology for the
verification of refactorings of discrete and continuous Simulink
models. We have extended the operational semantics from [3]
to an abstract representation of Simulink models, where the
semantics is mathematically captured using a concise output
function, and have shown its soundness with the operational
semantics. The abstract representation is better suitable for
automation than the operational semantics. Furthermore, we
have adapted a suitable notion of behavioural equivalence,
the approximate bisimulation, to Simulink models. This is
especially useful for continuous models, since Simulink does
not provide exactly the same values for the refactored model
in comparison to the original model. Altogether, we have
provided a methodology that enables a designer to verify the
equivalence of discrete and continuous Simulink models and
their refactored counterpart up to a certain precision.

Our approach offers many possibilities for further research.
Currently we are working on the automation of our approach.
This includes an algorithm that extracts expressions from
Simulink models and sets up proof obligations that are then
being verified with the assistance of a computer algebra
system. In future work, we plan to extend our approach to
hybrid models that integrate discrete and continuous model
parts. To achieve this, we plan to investigate the behaviour 1) of
models that contain both continuous and discrete blocks within
the same subsystem and 2) of models that contain control
flow blocks, e.g., switches. For the former, we plan to make
use of delay differential equations theory. The challenge for
the latter is that small changes at the switch input can yield
diverging behaviour. Hence, additional proof obligations must
be considered to establish the approximate behaviour in these
cases.
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