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Abstract—In this paper we propose a new approach for the 
detection of clones in source code for improving safety of 
software systems. The main contributions of this paper are 
development of a mining algorithm to explore program 
structure and the definition of a similarity measure that is 
tailored to sequentially structured texts for retrieving similar 
source code fragments. Retrieval experiments were conducted 
using Apache-Tomcat 7, which is a large-size open source Java 
program. The results show that the proposed mining algorithm 
finds a set of frequent sequences within one minute, and the 
proposed similarity measure is a better indicator than the 
Sorensen-Dice index.  
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I.  INTRODUCTION 

Reusing source code via copy and pasting rather than 
rewriting a similar code from scratch is a common activity in 
software development because it is very easy and can 
significantly reduce programming effort and time. Hence, 
software often contains duplicated code, known as a software 
clone. Previous research shows that between 7% - 23% of 
source code in a typical software system can be cloned code 
[1][11]. 

A software clone may have an adverse impact on the 
quality, productivity, reusability, and maintainability of a 
software system [10][12][13]. Tool support is necessary to 
facilitate code change tasks, because the number of source 
code may reach several hundred thousand lines for a 
maintenance engineer based on the author's experience in the 
industry. 

Code clone detection has been actively researched for 
approximately two decades. Many approaches for identifying 
similar code fragments have been proposed in the literature. 
Generally, these techniques can be classified into four main 
groups, i.e., text-based, token-based, structure-based, and 
metrics-based. 
(1) Text-based approaches 

In text-based approaches, the target source program is 
considered as a sequence of strings. Baker [1] described an 
approach that identifies all pairs of matching 
“parameterized” code fragments. Johnson [6] proposed an 
approach to extract repetitions of text and a matching 
mechanism using fingerprints on a substring of the source 
code. Although these methods achieve high performance, 

they are sensitive to lexical aspects such as formatting and 
renaming of identifiers, including variables. 
(2) Token-based approaches 

In the token-based detection approach, the entire source 
code is transformed into a sequence of tokens and control 
statements, which is then analyzed to identify duplicate 
subsequences. A sub-string matching algorithm is generally 
used to find common subsequences.  CCFinder [19] adopts 
the token-based technique to detect “copy and paste” code 
clones efficiently. In CCFinder, a similarity metric between 
two sets of source code files is defined based on the concept 
of “correspondence.” CP-Miner [10] uses a frequent 
subsequence mining technique to identify a similar sequence 
of tokenized statements. Token-based approaches are 
typically more robust against code changes compared to text-
based approaches. 
(3) Structure-based approaches 

In this approach, a program is parsed into an abstract 
syntax tree (AST) or program dependency graph (PDG). 
ASTs and PDGs contain structural information about the 
source code; thus, sophisticated methods can be applied to 
ASTs and PDGs for clone detection. CloneDR [2] is a 
pioneer among AST-based clone techniques. Wahler et al. 
[18] applied frequent itemset data mining techniques to 
ASTs represented in XML to detect clones with minor 
changes. DECKARD [5] also employs a tree-based approach 
in which certain characteristic vectors are computed to 
approximate the structural information within ASTs in 
Euclidean space.  

Typically, a PDG is defined to contain the control flow 
and data flow information of a program. An isomorphic 
subgraph matching algorithm is applied to identify similar 
subgraphs. Komondoor et al. [7] have also proposed a tool 
for C programs that identifies clones. They use PDGs and a 
program slicing technique to find clones. Krinke [9] uses an 
iterative approach (k-length patch matching) to determine 
maximal similar subgraphs. Structure-based approaches are 
generally robust to code changes such as reordered, inserted, 
and deleted codes. However, they are not scalable to large 
programs. 
(4) Metrics-based approaches 

Metrics-based approaches calculate metrics from code 
fragments and compare these metric vectors rather than 
directly comparing with the source code. Mayrand et al.[11] 
proposed several function metrics that are calculated using 
ASTs for each functional unit of a program. Kontogiannis et 
al. [8] developed an abstract pattern matching tool to 
measure similarity between two programs using Markov 
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models. Some common metrics in this approach include a set 
of software metrics called “fingerprinting” [6], a set of 
method-level metrics including cyclomatic complexity, and a 
characteristic vector to approximate the structural 
information in ASTs. 

The proposed approach is classified as a structure-based 
comparison [15]. It features a sequence of statements as a 
retrieval condition.  We have developed a lexical parser to 
extract source code structure, including control statements 
and method identifiers. The extracted structural information 
is input to an extended Sorensen-Dice model [3][14] and the 
proposed source code retrieval model, named the “derived 
sequence retrieval model” (DSRM). The DSRM takes a 
sequence of statements as a retrieval condition and derives 
meaningful search conditions from the given sequence.  
Because a program is composed of a sequence of statements, 
our retrieval model improves the performance of source code 
retrieval. 

 In comparison with our previous paper [15], the main 
contribution of this paper is the development of a mining 
algorithm to explore a program’s structure. Without 
knowledge of the frequency of a sequence of statements, we 
could not issue a query to the point. The other contribution is 
a set of experiments using Apache-Tomcat 7 source code, 
which is considered as large-scale software. 

The remainder of this paper is organized as follows. In 
Section 2, we present a source code pre-process to extract 
interesting fragments. In Section 3, we present an algorithm 
for mining program structures and define source code 
similarity metrics. Experimental results are discussed in 
Section 4. Section 5 presents conclusions. 

II. EXTRACTING SOURCE CODE SEGMENTS 

At the beginning of our approach, a set of Java source 
codes [4] is partitioned into methods. Then, the code 
matching statements are extracted for each method. The 
extracted fragments comprise class method signatures, 
control statements, and method calls. 
(1) Class method signatures 

Each method in Java is declared in a class. Our parser 
extracts class method signatures in the following syntax. 

<class identifier>::<method signature> 

Our parser extracts a method declared in an anonymous 
class in the following syntax. 

<class identifier>:<anonymous class identifier>: 
<method signature> 

Generic data types are widely used in Java to facilitate the 
manipulation of data collections. Our parser also extracts 
generic data types according to Java syntax. For example, 
List<String> and List<Integer> are extracted and treated as 
different data types.  
(2) Control statements 

Our parser also extracts control statements with various 
levels of nesting. A block is represented by the "{" and "}" 
symbols. Hence, the number of "{" symbols indicates the 

number of nesting levels. The following Java keywords for 
control statements [4] are processed by our parser: 

if, else if, else, switch, while, do, for, break, continue, 
return, throw, synchronized, try, catch, and finally. 
(3) Method calls 

From the assumption that a method call characterizes a 
program, our parser extracts a method identifier called in a 
Java program. Generally, the instance method is preceded by 
a variable whose type refers to a class object to which the 
method belongs. Our parser traces the type declaration of a 
variable and translates a variable identifier to its data type or 
class identifier, i.e.,  

<variable>.<method identifier>  
is translated into  

  <data type>.<method identifier>  
or  

<class identifier>.<method identifier>. 

We selected Apache-Tomcat 7.0.42 as our target because 
Apach-Tomacat [17] is one of the most popular Java web 
application servers. We estimated the volume of the source 
code using file metrics. Typical file metrics are as follows: 

Number of Java Files            ----       1,100 
Number of Classes                ----       1,681 
Number of Methods              ----     10,640 
Number of Code Lines          ----   177,724 
Number of Comment Lines   ----   108,167 
Number of Blank Lines         ----    50,344 
Number of Total Lines          ----   334,457 

Apache-Tomcat 7.0.42 consists of 334,457 lines of source 
code. Relative to the number of lines, Apache-Tomcat 7.0.42 
is classified as large-scale software in the IT industry. 

III. RETRIEVING SIMILAR SOURCE CODE  

A. Code Retrieval Approach 

Our experiments consist of two stages: (1) mining 
structures in the whole extracted program structures; (2) 
performing retrievals for the mined structures using the 
DSRM similarity model, which are defined in Subsection 
III-C. 

B. Mining Structures in Source Code 

Initially, we mine the structures of source code using the 
algorithm shown in Figure 1.  This algorithm shares many 
concepts with the well-known Apriori algorithm for mining 
frequent itemsets [16][18]. It takes the minimum support 
number minSup as an argument, and has its control 
structures similar to those of the Apriori algorithm. 
However, our algorithm essentially deals with a sequence of 
statements, while the Apriori algorithm deals with a set of 
items. 

The major difference between the two algorithms can be 
found in the candidate generation process. In the Apriori 
algorithm, new candidate k-itemsets are generated based on 
the (k−1)-itemsets found in the previous iteration. The order 
of the items is ignored because the Apriori algorithm 
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focuses on finding a set of itemsets that occur in a dataset or 
transactions having a frequency greater than a given 
threshold, i.e., minSup.  

Our algorithm is designed to find a set of sequences that 
occur frequently. It should be noted that several matchings 
can be detected in a sequence for a sub-sequence given as a 
matching condition. For example, the two matchings of a 
sub-sequence A→B are detected in a sequence A→B→A→
C→A→B→D. The Retrieve_Cand (MS, Tk) function shown 
in Figure 1 finds a set of sequences of (k+1)-statements that 
includes k-statements found in the previous iteration in 
method structures extracted from Java source code “MS.” 

Because most of important methods are invoked in a 
control structure, the first element of the sequence T1 is 
assumed to be a set of the “control statements,” i.e., if, else 
if, else, switch, while, do, for, break, continue, return, throw, 
synchronized, try, catch, and finally statements. The 
assumption is considered as customization for retrieving 
source code duplication. 

Figure 2 shows the number of retrieved sequences and 
elapsed time in milliseconds for each minSup. The total 
number of methods is 10,640; thus, for example, minSup 
0.0070 corresponds to approximately 75 methods. We 
measured the elapsed time using the following experimental 
environment: 

CPU: Intel Core i3 540 3.07 GHz 
Main memory: 4.00 GB 
OS: Windows 7 64 Bit 
Programming Language: Visual Basic for Applications 

Table I shows the 18 sequences mined with minSup 
0.0070, which were used as retrieval conditions of the code 
similarity retrieval experiments. 
 

 
 

Figure 1. Algorithm for mining frequent sequences 

 

 
Figure 2. Number of retrieved sequences and elapsed time for each minSup 
 

 
TABLE I. MINED SEQUENCES USED AS RETRIEVAL CONDITIONS 

 
 

C. Extending Sorensen-Dice Index 

The Sorensen-Dice index is originally defined by two sets 
and formulated as follows. 

 

Here, |X1∩X2| indicates the number of elements in the 
intersection of sets X1 and X2. 

In software, the Sorensen-Dice index is known to 
experimentally produce better results than other indexes 
such as a simple matching index that counts the number of 
features absent in both sets [3][14]. The absence of a feature 
in the two entities does not necessarily indicate similarity in 
software source code. For example, if two classes do not 
include the same method it does not mean that the two 
classes are similar. Our study takes the Sorensen-Dice index 
as a basis for defining the similarity measure between 
source codes. The extension of the Sorensen-Dice index on 
N sets is straightforward and is expressed as follows. 

(1)
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The function SetComb(X1∩X2∩…∩Xn, r) defines inter-
sections of sets {X1, X2, …, Xn} whose r elements are 
replaced by elements with the negation symbol. The 
summation of r = 0 to n−1 of SetComb(X1∩X2∩…∩Xn, r)  
generates the power set of sets X1, X2, …, Xn, excluding the 
empty set. (n−r) indicates the number of sets without the 
negation symbol. |X1∩X2, …,∩Xn| indicates the number of 
tuples <x1,x2, …,xn> where x1∈X1, x2∈X2, …, xn∈Xn. 

D. Similarity Metric for Source Codes 

In our study, the similarity measure has been tailored to 
measure the similarity of sequentially structured text. We 
first define the notion of a sequence. Let S1 and S2 be 
statements extracted by the structure extraction tool. 
[S1→S2] denotes a sequence of S1 followed by S2. In general, 
for a positive integer n, let Si (i ranges between 1 and n) be a 
statement. Thus, [S1→S2 →…→Sn] denotes a sequence of n 
statements. 

The similarity of the DSRM can be considered the same 
as the extended Sorensen-Dice index except for symbols, 
i.e., using the → symbol in place of the ∩symbol. The 
DSRM similarity between two sequences is defined as 
follows. 

 

Here, without loss of generality, we can assume that m ≥ n. 
In the case m < n, we replace the sequence [S1→S2 
→...→Sm] with [T1→T2→…→Tn].  

The numerator of the definition, i.e., | [S1→S2 →…→Sm],  
[T1→T2→…→Tn] | indicates the number of statements  in 
the sequence where Sj+1 = T1, Sj+2 = T2, ... , Sj+n = Tn for 
some j (0 ≤ j ≤ m−n). The denominator of the definition 
indicates the iteration of the sequence match that counts the 
sequence of statements from r = 0 to n−1. Note that the first 
sequence [S1→S2 →…→Sm] is renewed when the sequence 
match succeeds, i.e., replacing the matched statements with 
a not applicable symbol “n/a.” SqcComb ([T1→T2→…→Tn], 
r) generates a set of sequence combinations by replacing the 
r (0 ≤ r < n) statements with the negation of the statements. 

A simplified version of the algorithm used for computing 
the DSRM similarity is shown in Figure 3. It takes a set of 
method structures M and a sequence [T1→T2→…→Tn] as 
arguments, and returns an array of similarity values for the 
set of method structures. 

We assumed that the getMethodStructure(j) function 
returns a structure of the j-th method extracted by the 
structure extraction tool. The function abstracts the 

implementation of the internal structure of the method, 
which is represented as a sequence of statements. 

The Count(MS, TN, R) function returns the number of 
“positive statements” that matches the (n−R)-combinations 
of statement sequences TN in the method_structure MS. The 
SqcComb(TN, R) function generates (n−R)-combinations of 
statement sequences that replace the R statements with the 
negation of the statements in the sequence TN.  
 

 
Figure 3.  Algorithm to compute the similarity for  

the sequence  [T1→T2 →…→Tn] 
 

IV. EXPERIMENTAL RESULTS  

Table II shows omits some of the results of the retrieval 
experiments owing to space limitations. The retrieval 
condition is if{ → IOException → } (No.14 in Table I). Let 
a "boundary method" be a retrieved method whose DSRM 
similarity  is greater than 0  and  whose extended Sorensen-
Dice index is the minimum  among retrieved methods.   The 

(2)

(3)
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read() method in the NioBlockingSelector class, which is 
shown at No.15 in Table II, is the boundary method. The 
number of retrieved methods for the extended Sorensen-
Dice index is defined by the boundary method. The number 
of retrieved methods for DSRM similarity is defined by the 
number of methods with similarity greater than 0. The 
degree of improvement of DSRM over extended Sorensen-
Dice index is calculated by the following formula. 

 

 
 

For the retrieval condition if{ → IOException → }, the 
number of retrieved methods for the extended Sorensen-Dice 
index is 89, whereas the number of retrieved methods for 
DSRM similarity is 71. The degree of improvement is (89 − 

TABLE II.  SAMPLE OF RETRIEVAL EXPERIMENTS 

(4)

TABLE III.  SUMMARY OF 18 RETRIEVAL EXPERIMENTS 
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71) / 89 = 20.2%. 
Note that there are some methods whose DSRM similarity 

is 0, whereas the extended Sorensen-Dice index similarity is 
greater than 0. This occurs when a program structure does 
not include a given sequence of statements but includes some 
elements of the statements. This means that the DSRM 
imposes a more severe retrieval condition than the extended 
Sorensen-Dice model. Consequently, the results of the 
DSRM are a subset of the results of the extended Sorensen-
Dice model.  

Table III shows a summary of 18 retrieval experiments 
using the retrieval conditions shown in Table I. Column 
three of Table III represents the number of methods retrieved 
by the DSRM with similarity values greater than 0. Column 
four shows the number of methods retrieved by the extended 
Sorensen-Dice model. 

The degree of improvement ranges from 0% to 72.6% and 
is 23.9% on average over the extended Sorensen-Dice model. 
The 0% improvement occurs for the case No.16 in Table III.  
The retrieval condition for the case No.16 includes the term 
“catch{ → MBeanException → },” which is so rare in the 
collection of code that all MBeanExceptions are preceded by 
the catch clause. Thus, both retrieval models produce the 
same results. With the exception of No.16, the DSRM 
similarity outperformed the extended Sorensen-Dice index. 

V. CONCLUSIONS 

Many different similarity measures have been proposed to 
detect similar source code fragments. However, defining 
similarity measures should be carefully performed because 
the similarity measures may influence the detection of 
similar fragments more than other processes such as parsing 
structures, and normalizing identifiers.  

Source code is essentially a sequence of statements; 
therefore, we have defined a similarity measure that is 
tailored to sequentially structured text to retrieve similar 
source code fragments. We also developed a mining 
algorithm to mine a set of sequences of statements with a 
frequency greater than a given threshold. Prior to similar 
source code retrieval, determining the frequency sequence of 
statements was essentially performed to issue a query to the 
point.  

Our similarity measure was evaluated using Apache- 
Tomcat 7, which is a large-size open source Java program. 
The results show that the degree of improvement over the 
extended Sorensen-Dice model is on average 23.9% for the 
18 retrieval conditions detected by our mining algorithm.  

The results are sufficiently promising to warrant further 
research. In future, we intend to improve our algorithms by 
combining Java-specific information such as inheritance of a 
class and method overloading. We also plan to develop an 
improved user interface and conduct experiments using 
various types of open source programs available on the 
Internet. 
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