
 A Novel Technique for Retrieving Source Code Duplication

Yoshihisa Udagawa
Computer Science Department, Faculty of Engineering

Tokyo Polytechnic University
Atsugi-city, Kanagawa, Japan
udagawa@cs.t-kougei.ac.jp

Abstract—In this paper we propose a new approach for the
detection of clones in source code for improving safety of
software systems. The main contributions of this paper are
development of a mining algorithm to explore program
structure and the definition of a similarity measure that is
tailored to sequentially structured texts for retrieving similar
source code fragments. Retrieval experiments were conducted
using Apache-Tomcat 7, which is a large-size open source Java
program. The results show that the proposed mining algorithm
finds a set of frequent sequences within one minute, and the
proposed similarity measure is a better indicator than the
Sorensen-Dice index.

Keywords- Java source code, Control statement, Method

identifier, Similarity measure, Derived sequence retrieval model,
Sorensen-Dice index

I. INTRODUCTION

Reusing source code via copy and pasting rather than
rewriting a similar code from scratch is a common activity in
software development because it is very easy and can
significantly reduce programming effort and time. Hence,
software often contains duplicated code, known as a software
clone. Previous research shows that between 7% - 23% of
source code in a typical software system can be cloned code
[1][11].

A software clone may have an adverse impact on the
quality, productivity, reusability, and maintainability of a
software system [10][12][13]. Tool support is necessary to
facilitate code change tasks, because the number of source
code may reach several hundred thousand lines for a
maintenance engineer based on the author's experience in the
industry.

Code clone detection has been actively researched for
approximately two decades. Many approaches for identifying
similar code fragments have been proposed in the literature.
Generally, these techniques can be classified into four main
groups, i.e., text-based, token-based, structure-based, and
metrics-based.
(1) Text-based approaches

In text-based approaches, the target source program is
considered as a sequence of strings. Baker [1] described an
approach that identifies all pairs of matching
“parameterized” code fragments. Johnson [6] proposed an
approach to extract repetitions of text and a matching
mechanism using fingerprints on a substring of the source
code. Although these methods achieve high performance,

they are sensitive to lexical aspects such as formatting and
renaming of identifiers, including variables.
(2) Token-based approaches

In the token-based detection approach, the entire source
code is transformed into a sequence of tokens and control
statements, which is then analyzed to identify duplicate
subsequences. A sub-string matching algorithm is generally
used to find common subsequences. CCFinder [19] adopts
the token-based technique to detect “copy and paste” code
clones efficiently. In CCFinder, a similarity metric between
two sets of source code files is defined based on the concept
of “correspondence.” CP-Miner [10] uses a frequent
subsequence mining technique to identify a similar sequence
of tokenized statements. Token-based approaches are
typically more robust against code changes compared to text-
based approaches.
(3) Structure-based approaches

In this approach, a program is parsed into an abstract
syntax tree (AST) or program dependency graph (PDG).
ASTs and PDGs contain structural information about the
source code; thus, sophisticated methods can be applied to
ASTs and PDGs for clone detection. CloneDR [2] is a
pioneer among AST-based clone techniques. Wahler et al.
[18] applied frequent itemset data mining techniques to
ASTs represented in XML to detect clones with minor
changes. DECKARD [5] also employs a tree-based approach
in which certain characteristic vectors are computed to
approximate the structural information within ASTs in
Euclidean space.

Typically, a PDG is defined to contain the control flow
and data flow information of a program. An isomorphic
subgraph matching algorithm is applied to identify similar
subgraphs. Komondoor et al. [7] have also proposed a tool
for C programs that identifies clones. They use PDGs and a
program slicing technique to find clones. Krinke [9] uses an
iterative approach (k-length patch matching) to determine
maximal similar subgraphs. Structure-based approaches are
generally robust to code changes such as reordered, inserted,
and deleted codes. However, they are not scalable to large
programs.
(4) Metrics-based approaches

Metrics-based approaches calculate metrics from code
fragments and compare these metric vectors rather than
directly comparing with the source code. Mayrand et al.[11]
proposed several function metrics that are calculated using
ASTs for each functional unit of a program. Kontogiannis et
al. [8] developed an abstract pattern matching tool to
measure similarity between two programs using Markov

172Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

models. Some common metrics in this approach include a set
of software metrics called “fingerprinting” [6], a set of
method-level metrics including cyclomatic complexity, and a
characteristic vector to approximate the structural
information in ASTs.

The proposed approach is classified as a structure-based
comparison [15]. It features a sequence of statements as a
retrieval condition. We have developed a lexical parser to
extract source code structure, including control statements
and method identifiers. The extracted structural information
is input to an extended Sorensen-Dice model [3][14] and the
proposed source code retrieval model, named the “derived
sequence retrieval model” (DSRM). The DSRM takes a
sequence of statements as a retrieval condition and derives
meaningful search conditions from the given sequence.
Because a program is composed of a sequence of statements,
our retrieval model improves the performance of source code
retrieval.

 In comparison with our previous paper [15], the main
contribution of this paper is the development of a mining
algorithm to explore a program’s structure. Without
knowledge of the frequency of a sequence of statements, we
could not issue a query to the point. The other contribution is
a set of experiments using Apache-Tomcat 7 source code,
which is considered as large-scale software.

The remainder of this paper is organized as follows. In
Section 2, we present a source code pre-process to extract
interesting fragments. In Section 3, we present an algorithm
for mining program structures and define source code
similarity metrics. Experimental results are discussed in
Section 4. Section 5 presents conclusions.

II. EXTRACTING SOURCE CODE SEGMENTS

At the beginning of our approach, a set of Java source
codes [4] is partitioned into methods. Then, the code
matching statements are extracted for each method. The
extracted fragments comprise class method signatures,
control statements, and method calls.
(1) Class method signatures

Each method in Java is declared in a class. Our parser
extracts class method signatures in the following syntax.

<class identifier>::<method signature>

Our parser extracts a method declared in an anonymous
class in the following syntax.

<class identifier>:<anonymous class identifier>:
<method signature>

Generic data types are widely used in Java to facilitate the
manipulation of data collections. Our parser also extracts
generic data types according to Java syntax. For example,
List<String> and List<Integer> are extracted and treated as
different data types.
(2) Control statements

Our parser also extracts control statements with various
levels of nesting. A block is represented by the "{" and "}"
symbols. Hence, the number of "{" symbols indicates the

number of nesting levels. The following Java keywords for
control statements [4] are processed by our parser:

if, else if, else, switch, while, do, for, break, continue,
return, throw, synchronized, try, catch, and finally.
(3) Method calls

From the assumption that a method call characterizes a
program, our parser extracts a method identifier called in a
Java program. Generally, the instance method is preceded by
a variable whose type refers to a class object to which the
method belongs. Our parser traces the type declaration of a
variable and translates a variable identifier to its data type or
class identifier, i.e.,

<variable>.<method identifier>
is translated into

 <data type>.<method identifier>
or

<class identifier>.<method identifier>.

We selected Apache-Tomcat 7.0.42 as our target because
Apach-Tomacat [17] is one of the most popular Java web
application servers. We estimated the volume of the source
code using file metrics. Typical file metrics are as follows:

Number of Java Files ---- 1,100
Number of Classes ---- 1,681
Number of Methods ---- 10,640
Number of Code Lines ---- 177,724
Number of Comment Lines ---- 108,167
Number of Blank Lines ---- 50,344
Number of Total Lines ---- 334,457

Apache-Tomcat 7.0.42 consists of 334,457 lines of source
code. Relative to the number of lines, Apache-Tomcat 7.0.42
is classified as large-scale software in the IT industry.

III. RETRIEVING SIMILAR SOURCE CODE

A. Code Retrieval Approach

Our experiments consist of two stages: (1) mining
structures in the whole extracted program structures; (2)
performing retrievals for the mined structures using the
DSRM similarity model, which are defined in Subsection
III-C.

B. Mining Structures in Source Code

Initially, we mine the structures of source code using the
algorithm shown in Figure 1. This algorithm shares many
concepts with the well-known Apriori algorithm for mining
frequent itemsets [16][18]. It takes the minimum support
number minSup as an argument, and has its control
structures similar to those of the Apriori algorithm.
However, our algorithm essentially deals with a sequence of
statements, while the Apriori algorithm deals with a set of
items.

The major difference between the two algorithms can be
found in the candidate generation process. In the Apriori
algorithm, new candidate k-itemsets are generated based on
the (k−1)-itemsets found in the previous iteration. The order
of the items is ignored because the Apriori algorithm

173Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

focuses on finding a set of itemsets that occur in a dataset or
transactions having a frequency greater than a given
threshold, i.e., minSup.

Our algorithm is designed to find a set of sequences that
occur frequently. It should be noted that several matchings
can be detected in a sequence for a sub-sequence given as a
matching condition. For example, the two matchings of a
sub-sequence A→B are detected in a sequence A→B→A→
C→A→B→D. The Retrieve_Cand (MS, Tk) function shown
in Figure 1 finds a set of sequences of (k+1)-statements that
includes k-statements found in the previous iteration in
method structures extracted from Java source code “MS.”

Because most of important methods are invoked in a
control structure, the first element of the sequence T1 is
assumed to be a set of the “control statements,” i.e., if, else
if, else, switch, while, do, for, break, continue, return, throw,
synchronized, try, catch, and finally statements. The
assumption is considered as customization for retrieving
source code duplication.

Figure 2 shows the number of retrieved sequences and
elapsed time in milliseconds for each minSup. The total
number of methods is 10,640; thus, for example, minSup
0.0070 corresponds to approximately 75 methods. We
measured the elapsed time using the following experimental
environment:

CPU: Intel Core i3 540 3.07 GHz
Main memory: 4.00 GB
OS: Windows 7 64 Bit
Programming Language: Visual Basic for Applications

Table I shows the 18 sequences mined with minSup
0.0070, which were used as retrieval conditions of the code
similarity retrieval experiments.

Figure 1. Algorithm for mining frequent sequences

Figure 2. Number of retrieved sequences and elapsed time for each minSup

TABLE I. MINED SEQUENCES USED AS RETRIEVAL CONDITIONS

C. Extending Sorensen-Dice Index

The Sorensen-Dice index is originally defined by two sets
and formulated as follows.

Here, |X1∩X2| indicates the number of elements in the
intersection of sets X1 and X2.

In software, the Sorensen-Dice index is known to
experimentally produce better results than other indexes
such as a simple matching index that counts the number of
features absent in both sets [3][14]. The absence of a feature
in the two entities does not necessarily indicate similarity in
software source code. For example, if two classes do not
include the same method it does not mean that the two
classes are similar. Our study takes the Sorensen-Dice index
as a basis for defining the similarity measure between
source codes. The extension of the Sorensen-Dice index on
N sets is straightforward and is expressed as follows.

(1)

174Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

The function SetComb(X1∩X2∩…∩Xn, r) defines inter-
sections of sets {X1, X2, …, Xn} whose r elements are
replaced by elements with the negation symbol. The
summation of r = 0 to n−1 of SetComb(X1∩X2∩…∩Xn, r)
generates the power set of sets X1, X2, …, Xn, excluding the
empty set. (n−r) indicates the number of sets without the
negation symbol. |X1∩X2, …,∩Xn| indicates the number of
tuples <x1,x2, …,xn> where x1∈X1, x2∈X2, …, xn∈Xn.

D. Similarity Metric for Source Codes

In our study, the similarity measure has been tailored to
measure the similarity of sequentially structured text. We
first define the notion of a sequence. Let S1 and S2 be
statements extracted by the structure extraction tool.
[S1→S2] denotes a sequence of S1 followed by S2. In general,
for a positive integer n, let Si (i ranges between 1 and n) be a
statement. Thus, [S1→S2 →…→Sn] denotes a sequence of n
statements.

The similarity of the DSRM can be considered the same
as the extended Sorensen-Dice index except for symbols,
i.e., using the → symbol in place of the ∩symbol. The
DSRM similarity between two sequences is defined as
follows.

Here, without loss of generality, we can assume that m ≥ n.
In the case m < n, we replace the sequence [S1→S2
→...→Sm] with [T1→T2→…→Tn].

The numerator of the definition, i.e., | [S1→S2 →…→Sm],
[T1→T2→…→Tn] | indicates the number of statements in
the sequence where Sj+1 = T1, Sj+2 = T2, ... , Sj+n = Tn for
some j (0 ≤ j ≤ m−n). The denominator of the definition
indicates the iteration of the sequence match that counts the
sequence of statements from r = 0 to n−1. Note that the first
sequence [S1→S2 →…→Sm] is renewed when the sequence
match succeeds, i.e., replacing the matched statements with
a not applicable symbol “n/a.” SqcComb ([T1→T2→…→Tn],
r) generates a set of sequence combinations by replacing the
r (0 ≤ r < n) statements with the negation of the statements.

A simplified version of the algorithm used for computing
the DSRM similarity is shown in Figure 3. It takes a set of
method structures M and a sequence [T1→T2→…→Tn] as
arguments, and returns an array of similarity values for the
set of method structures.

We assumed that the getMethodStructure(j) function
returns a structure of the j-th method extracted by the
structure extraction tool. The function abstracts the

implementation of the internal structure of the method,
which is represented as a sequence of statements.

The Count(MS, TN, R) function returns the number of
“positive statements” that matches the (n−R)-combinations
of statement sequences TN in the method_structure MS. The
SqcComb(TN, R) function generates (n−R)-combinations of
statement sequences that replace the R statements with the
negation of the statements in the sequence TN.

Figure 3. Algorithm to compute the similarity for

the sequence [T1→T2 →…→Tn]

IV. EXPERIMENTAL RESULTS

Table II shows omits some of the results of the retrieval
experiments owing to space limitations. The retrieval
condition is if{ → IOException → } (No.14 in Table I). Let
a "boundary method" be a retrieved method whose DSRM
similarity is greater than 0 and whose extended Sorensen-
Dice index is the minimum among retrieved methods. The

(2)

(3)

175Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

read() method in the NioBlockingSelector class, which is
shown at No.15 in Table II, is the boundary method. The
number of retrieved methods for the extended Sorensen-
Dice index is defined by the boundary method. The number
of retrieved methods for DSRM similarity is defined by the
number of methods with similarity greater than 0. The
degree of improvement of DSRM over extended Sorensen-
Dice index is calculated by the following formula.

For the retrieval condition if{ → IOException → }, the
number of retrieved methods for the extended Sorensen-Dice
index is 89, whereas the number of retrieved methods for
DSRM similarity is 71. The degree of improvement is (89 −

TABLE II. SAMPLE OF RETRIEVAL EXPERIMENTS

(4)

TABLE III. SUMMARY OF 18 RETRIEVAL EXPERIMENTS

176Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

71) / 89 = 20.2%.
Note that there are some methods whose DSRM similarity

is 0, whereas the extended Sorensen-Dice index similarity is
greater than 0. This occurs when a program structure does
not include a given sequence of statements but includes some
elements of the statements. This means that the DSRM
imposes a more severe retrieval condition than the extended
Sorensen-Dice model. Consequently, the results of the
DSRM are a subset of the results of the extended Sorensen-
Dice model.

Table III shows a summary of 18 retrieval experiments
using the retrieval conditions shown in Table I. Column
three of Table III represents the number of methods retrieved
by the DSRM with similarity values greater than 0. Column
four shows the number of methods retrieved by the extended
Sorensen-Dice model.

The degree of improvement ranges from 0% to 72.6% and
is 23.9% on average over the extended Sorensen-Dice model.
The 0% improvement occurs for the case No.16 in Table III.
The retrieval condition for the case No.16 includes the term
“catch{ → MBeanException → },” which is so rare in the
collection of code that all MBeanExceptions are preceded by
the catch clause. Thus, both retrieval models produce the
same results. With the exception of No.16, the DSRM
similarity outperformed the extended Sorensen-Dice index.

V. CONCLUSIONS

Many different similarity measures have been proposed to
detect similar source code fragments. However, defining
similarity measures should be carefully performed because
the similarity measures may influence the detection of
similar fragments more than other processes such as parsing
structures, and normalizing identifiers.

Source code is essentially a sequence of statements;
therefore, we have defined a similarity measure that is
tailored to sequentially structured text to retrieve similar
source code fragments. We also developed a mining
algorithm to mine a set of sequences of statements with a
frequency greater than a given threshold. Prior to similar
source code retrieval, determining the frequency sequence of
statements was essentially performed to issue a query to the
point.

Our similarity measure was evaluated using Apache-
Tomcat 7, which is a large-size open source Java program.
The results show that the degree of improvement over the
extended Sorensen-Dice model is on average 23.9% for the
18 retrieval conditions detected by our mining algorithm.

The results are sufficiently promising to warrant further
research. In future, we intend to improve our algorithms by
combining Java-specific information such as inheritance of a
class and method overloading. We also plan to develop an
improved user interface and conduct experiments using
various types of open source programs available on the
Internet.

REFERENCES
[1] B. S. Baker, “Parameterized Pattern Matching: Algorithms and

Applications,” Journal of Computer and System Sciences, Vol. 52, no.
1, February 1996, pp. 28-42.

[2] I. D. Baxter, A. Yahin, L. Moura, M. Sant'Anna, and L. Bier, “Clone
Detection Using Abstract Syntax Trees,” Proc. 14th International
Conference on Software Maintenance, 1998, pp. 368-377.

[3] S. S. Choi, S. H. Cha, and C. C. Tappert, “A Survey of Binary
Similarity and Distance Measures,” Journal of Systemics, Cybernetics
and Informatics ISSN 1690-4532, Vol. 8, no. 1, 2010, pp. 43-48.

[4] J. Gosling, B. Joy, G. Steele, and G. Bracha, “The Java Language
Specification,” 3rd Edition, Addison-Wesley, 2005.

[5] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “DECKARD: Scalable
and Accurate Tree-based Detection of Code Clones,” Proc. 29th
International Conference on Software Engineering, May 2007, pp.
96-105.

[6] J. H. Johnson, “Identifying Redundancy in Source Code Using
Fingerprints,” Proc. 1993 Conference of the Centre for Advanced
Studies Collaborative Research, October 1993, pp. 171-183.

[7] R. Komondoor and S. Horwitz, “Using Slicing to Identify Duplication
in Source Code,” Proc. 8th International Symposium on Static
Analysis, LNCS Vol.2126, July 2001, pp. 40-56.

[8] K. A. Kontogiannis, R. Demori, E. Merlo, M. Galler, and M.
Bernstein, “Pattern Matching for Clone and Concept Detection,”
Journal of Automated Software Engineering Vol. 3, June 1996, pp.
77-108.

[9] J. Krinke, “Identifying Similar Code with Program Dependence
Graphs,” Proc. 8th Working Conference on Reverse Engineering,
October 2001, pp. 301-309.

[10] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: Finding Copy-
Paste and Related Bugs in Large-Scale Software Code,” IEEE
Transactions on Software Engineering, Vol. 32, no. 3, 2006, pp. 176-
192.

[11] J. Mayrand, C. Leblanc, and E. M. Merlo, “Experiment on the
Automatic Detection of Function Clones in a Software System Using
Metrics,” Proc. 12th International Conference on Software
Maintenance, November 1996, pp. 244-253.

[12] J. R. Pate, R. Tairas, and N. A. Kraft, “Clone Evolution: A Systematic
Review,” Technical Report no. SERG-2010-01.R2, Department of
Computer Science, the University of Alabama, August 2011, pp. 1-24.

[13] C. K. Roy, J. R. Cordya, and R. Koschkeb, “Comparison and
Evaluation of Code Clone Detection Techniques and Tools: A
Qualitative Approach, ” Science of Computer Programming, Vol. 74,
Issue 7, May 2009, pp. 470-495.

[14] O. Maqbool and H .A. Babri, “Hierarchical Clustering for Software
Architecture Recovery,” IEEE Transactions on Software Engineering,
Vol. 33, Issue 11, November 2007, pp. 759-780.

[15] Y. Udagawa, “Source Code Retrieval Using Sequence Based
Similarity,” International Journal of Data Mining & Knowledge
Management Process (IJDKP), Vol. 3, no. 4, July 2013, pp. 57-74.

[16] P. N. Tan, M. Steinbach, and V. Kumar, “Introduction to Data
Mining, ” 2006, Addison-Wesley.

[17] The Apache Software Foundation. Apache Tomcat.
http://tomcat.apache.org/, November 2013.

[18] V. Wahler, D. Seipel, J. Wolff v. Gudenberg, and G. Fischer, “Clone
Detection in Source Code by Frequent Itemset Techniques,” Proc. 4th
IEEE International Workshop Source Code Analysis and
Manipulation, September 2004, pp. 128-135.

[19] T. Yamamoto, M. Matsushita, T. Kamiya, and K. Inoue, “Measuring
Similarity of Large Software Systems Based on Source Code
Correspondence,” Proc. 6th International Conference on Product
Focused Software Process Improvement, June 2005, pp. 530-544.

177Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

