
A Semantic Platform Infrastructure for Requirements Traceability and System
Assessment

Parastoo Delgoshaei
Department of Civil and

Environmental Engineering
University of Maryland

College Park, MD 20742, USA
Email: parastoo@umd.edu

Mark A. Austin
Department of Civil and

Environmental Engineering
University of Maryland

College Park, MD 20742, USA
Email: austin@isr.umd.edu

Daniel A. Veronica
Energy and Environment Division
National Institute of Standards and

Technology (NIST)
Gaithersburg, MD 20899, USA
Email: daniel.veronica@nist.gov

Abstract—This work-in-progress paper describes a new approach
to requirements traceability and system assessment through the
use of semantic platforms. The platform infrastructure corre-
sponds to an integration of traceability mechanisms with reusable
domain-specific ontologies, and associated sets of mathemati-
cal/logical rules for design rule checking. Engineering system
components are modeled as instances of the domain ontologies
with values for their properties filled in. We expect that when
the proposed infrastructure is fully developed it will enhance
systems engineering practice in several ways. First, by filling the
gap between system requirements and system models, semantic
platforms will lower validation costs by allowing for rule checking
early in design. Second, semantic platforms will support perfor-
mance assessment during the system operation. Our medium-
term research and development objective is semantic platform
infrastructures capable of supporting the design, simulation,
verification, and management of engineering systems having
mixtures of discrete and continuous behavior.
Keywords-Systems Engineering; Semantic Modeling; Design

Platform; Requirements; Rule Checking.

I. INTRODUCTION

Under financial sponsorship of the National Institute for
Standards and Technology in Gaithersburg, Maryland, the
authors are working on the design and implementation of
procedures and software for the model-based systems engineer-
ing, integration, and performance-assessment of cyberphysical
systems (CPS). The distinguishing feature of CPS is a coupling
of physical and cyber systems, with the cyber affecting the
physical and vice versa. Present-day design procedures are
inadequate for the design of modern CPS systems. Among
the many challenges that CPS presents, design space ex-
ploration and trade studies are difficult to conduct because
decision variables span parametric, logical, and dependency
relationship types. Components are often required to serve
multiple functions – as such, cause-and-effect mechanisms
are no longer localized and obvious. System relationships can
reach laterally across systems hierarchies and/or intertwined
network structures.

II. PROJECT OBJECTIVES

With the objective of addressing the the long-term systems
engineering challenges that CPSs present, this paper describes

a new approach to requirements traceability and system assess-
ment through the use of semantic platforms. As we will soon
see in Sections IV and V, the proposed platform infrastruc-
ture corresponds to an integration of traceability mechanisms
with reusable domain-specific ontologies, and associated sets
of mathematical and logical rules for design rule checking.
Engineering system components are modeled as instances of
the domain ontologies with values for their properties filled in.

A key element of our long-term research objective is devel-
opment of knowledge – methodologies, algorithms, software –
required to design and build scalable platform infrastructures,
with the latter supporting the simulation and design, verifi-
cation, and management of multidisciplinary (e.g., mechani-
cal, electrical, software) sensor-enabled engineering systems
having mixtures of discrete and continuous component-level
behavior. A series of progressively capable software prototypes
will be built. Each iteration of development [3], [4] will employ
a combination of software design patterns (e.g., networks of
model, view, controllers), software libraries and languages for
semantic applications development (e.g., OWL, Jena) [7], [13]
and executable statecharts, finite element procedures for the
computation of behaviors over continuous physical domains
(e.g., fluid flow in a pipe network), and customized visualiza-
tion for the requirements, ontology and engineering models.

III. RESEARCH METHODOLOGY

Model-based systems engineering development is an ap-
proach to systems-level development in which the focus and
primary artifacts of development are models, as opposed to
documents. Our research methodology is driven by a need
to achieve high levels of productivity in system development.
We believe this can be achieved through the use of high-level
visual abstractions coupled with lower-level (mathematical) ab-
stractions suitable for formal systems analysis. The high-level
abstractions provide a “big picture” summary of the system
under development and highlight the major components, their
connectivity, and performance. The lower-level abstractions are
suitable for formal systems analysis – for example, verification
of component interface compatibilities and/or assessment of
system performance through the use of simulation methods.

As engineering systems become increasingly complex the

215Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

Proposed Model for Traceability

Engineering

Design
Rule
Checking

Concept
Design

data

Requirements

Visual indicator of requirements status.

query implement

notification Model

Sensors

Sensors

Physical System

Requirements Engineering
Model

State−of−the−Art Traceability

Figure 1. Schematics for: (top) state-of-the-art traceability, and (bottom) proposed model for ontology-enabled traceability for systems design and management.

need for automation arises. A key element of required ca-
pability is an ability to identify and manage requirements
during the early phases of the system design process, where
errors are cheapest and easiest to correct. We believe that
methodologies for strategic approaches to design will em-
ploy semantic descriptions of application domains, and use
ontologies and rule-based reasoning to enable validation of
requirements, automated synthesis of potentially good design
solutions, and communication (or mappings) among multiple
disciplines [1], [2], [11]. Semantic Web-based technologies can
play a central role in the design of tools to support these design
methodologies. Present-day systems engineering methodolo-
gies and tools, including those associated with SysML [6] are
not designed to handle projects in this way.

IV. SEMANTIC PLATFORM INFRASTRUCTURE

The systems architecture for state-of-the-art requirements
traceability and the proposed platform model is shown in
the upper and lower sections of Figure 1. In state-of-the-art
traceability mechanisms design requirements are connected
directly to design solutions (i.e., objects in the engineering
model). Our contention is that an alternative and potentially
better approach is to satisfy a requirement by asking the basic
question: What design concept (or group of design concepts)
should I apply to satisfy a requirement? Design solutions are
the instantiation/implementation of these concepts.

The proposed architecture is a platform because it contains
collections of domain-specific ontologies and design rules that
will be reusable across applications. In the lower half of
Figure 1, the textual requirements, ontology, and engineering
models provide distinct views of a design: (1) Requirements
are a statement of “what is required.” (2) Engineering mod-
els are a statement of “how the required functionality and
performance might be achieved,” and (3) Ontologies are a
statement of “concepts justifying a tentative design solution.”
During design, mathematical and logical rules are derived
from textual requirements which, in turn, are connected to
elements in an engineering model. Evaluation of requirements

can be include checks for satisfaction of system functionality
and performance, as well as identification of conflicts in
requirements themselves.

A key benefit of our approach is that design rule checking
can be applied at the earliest stage possible – as long as
sufficient data is available for the evaluation of rules, rule
checking can commence; the textual requirements and en-
gineering models need not be complete. During the system
operation, key questions to be answered are: What other
concepts are involved when a change occurs in sensing model?
What requirement(s) might be violated when those concepts
are involved in the change? To understand the inevitable
conflicts and opportunities to conduct trade space studies, it
is important to be able to trace back and understand cause-
and-effect relationships between changes at system-component
level and their affect on stakeholder requirements.

V. WORK IN PROGRESS

Our testbed application area and driver for this work is
performance-based modeling and design of energy-efficient
building environments.

To this end, we are currently working toward the platform
infrastructure implied by Figures 2 and 3. Figure 2 pulls
together the different pieces of the proposed architecture shown
in Figure 1. On the left-hand side the textual requirements are
defined in terms of mathematical and logical rule expressions.
From a CPS viewpoint, modern buildings contain networks
for the arrangement of spaces throughout the building, for
the fixed circulatory systems (e.g., power and hvac), for
the dynamic circulatory systems (e.g., air and water flows),
and for wired and wireless communications. Predictions of
dynamic behavior will correspond to the solution of nonlinear
differential algebraic equations (e.g., for water, air, and thermal
flow) coupled to discrete equations (e.g., resulting from cyber
decisions). While there is a desire for each network to operate
as independently as possible, in practice the need for new
forms of functionality will drive components from different
network types to connect in a variety of ways. Within the

216Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

Reasoner
Properties

Instances

Data
Requirement
Individual

verify

Textual Requirements define

Classes

Relationships

Ontologies and ModelsDesign Rules and Reasoner

Design Rules

Engineering Model

System Structure

System Behavior

Remarks

System structures are
modeled as networks
and composite hierarchies
of components.

differential equations.
represented by partial

state machines.
modeled with finite
Discrete behavior will be

associated with components.
Behaviors will be

a c d

b

Continuous behavior will be

Figure 2. Framework for implementation of ontology-enabled traceability and design assessment.

building simulation community state-of-the-art dynamic simu-
lation is defined by Modelica, and steady-state simulation by
DOE-2 and eQuest. Building systems are modeled as networks
of connected components, mathematical equations describe
component-level behaviors, and models of system-level be-
havior are defined by graphs of equations synthesized from
descriptions of component behavior and their connectivity.

Topic 1. Modeling and Reasoning with Ontologies. The
upper section of Figure 1 shows state-of-the-art traceability
mechanisms with requirements being connected directly to
solutions. The proposed platform provides a base to implement
requirements as rules and related parts of the engineering
model as classes of the ontology. The lower section of Figure
1 shows the essential details of our three-part framework –
textual requirements, ontology model and engineering model
– for the implementation of ontology-enabled traceability
mechanisms and rule-based design assessment.

Textual requirements are connected to the ontology model,
and logical and mathematical design rules, and from there
to the engineering model. Ontology models encompass the
design concepts (ontology classes) in a domain, as well the
relationships among them. Classes are qualified with properties
(c.f., attributes in classes) to represent the consequence of
constraint and design rule evaluations. Examples of valid
relationships are: containment, composition, uses, and ”is Kind
of”. These classes are placeholders for the data extracted from
the engineering model. Individuals are the object counterpart
of classes, with data and object property relationships leading
the to RDF graph infrastructure. Each instance of an individual
holds a specific set of values obtained the engineering model.

Rules serve the purpose of constraining the system opera-
tion and/or system design. They provide the mechanisms for
early design validation, and ensuring the intended behavior
is achieved at all the times during system operation. We are
currently working with reasoners provided in the Jena API.
A reasoner works with the RDF graph infrastructure and sets
of user-defined rules to evaluate and further refine the RDF
graph. Rule engines are triggered in response to any changes

to the ontological model. This process assures that the model is
consistent with respect to the existing rules. Traceability from
ontologies to requirements is captured via implementation of
the listeners that are notified as a result of change in the
semantic model.

In a departure from past work, we are exploring the
feasibility of creating built-in functions to capture and evaluate
performance criteria, i.e., energy efficiency ratio of the HVAC
system. A second potential use of built-in functions is as
an interface to packages that provide system improvements
through optimization and performance related queries. We note
that a rule-based approach to problem solving is particularly
beneficial when the application logic is dynamic (i.e., where a
change in a policy needs to be immediately reflected through-
out the application) and rules are imposed on the system by
external entities [10], [12]. Both of these conditions apply to
the design and management of engineering systems.

Topic 2. Modeling Engineering Systems with Components
and Finite Elements. Modern buildings contain a variety
of intertwined networks for the arrangement of architectural
spaces and circulatory systems. They can also be thought of as
a hierarchical arrangement of spaces – for example, buildings
have floors, floor contain rooms, rooms contain furniture, and
so forth. Unfortunately, the time-history analysis and control
of building system performance is complicated by the need
to model combinations of discrete and continuous behaviors.
To address these concerns, we are exploring the feasibility of
modeling system structures as networks and composite hier-
archies of components, and implementing software prototypes
through use of the composite design pattern. Behaviors will
be associated with components. Components will be organized
into component hierarchies – for example, in order to sense
the water level in a tank, sensor components will be positioned
inside water tank components. Discrete behaviors (e.g., the
operation of hvac machinery) will be modeled with executable
statecharts. Continuous behaviors will be represented by partial
differential equations.

Our current strategy is to compute solutions to continuous

217Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

Component Modeling Framework

Pipe

Tank Fan

Pump implements
Visualization Interface

Finite Element Interface

Matrix Library Interface
implements

Executable Machine

Input file ... problem description

Tree
Syntax
Abstract

Matrix Library

extends

uses

uses

uses

Simulation Framework and 3D Visualization

drives senses

Finite Element Library implements

Physical Quantity Library uses

uses

Figure 3. Architecture for modeling hvac systems as networks of connected components, and using finite element solution procedures for computing and
visualizing time-history behavior.

behavior with the finite element method, although this certainly
isn’t the only way it could be done. In a departure from
established approaches to engineering systems modeling, our
goal is to design a single software architecture that can
support this range of organization and behavioral abstractions.
The key to making this work is software interfaces designed
to support a multitude of system viewpoints – a visualize
interface for 2D- and 3D- visualization, and a finite element
interface for the description of element-level behaviors cast
in a matrix format, a communications interface for sensor to
controller communication. Since a Java object can implement
and arbitrary number of interfaces, there is reason to believe
this might actually work!

Topic 3. Scripting Language Support for Systems Integra-
tion. To support the organization and integration of physical
components and computation of discrete and continuous be-
haviors, we are in the process of designing and implementing
a scripting language where physical units are embedded within
the basic data types, physical quantities and matrices of physi-
cal quantities, and scripting language constructs for controlling
branching and looping control. For example, the fragment of
code:

Force = [2 N, 3 N, 4 N];
Distance = [1 m; 2 m; 3 m];
Work = Force*Distance;

is a simple calculation for the work done by a force moving
through a prescribed distance. The output is as follows:

Matrix: Force
row/col 1 2 3

units N N N
1 2.00000e+00 3.00000e+00 4.00000e+00

Matrix: Distance
row/col 1

units m
1 1.00000e+00
2 2.00000e+00
3 3.00000e+00

Matrix: Work
row/col 1

units Jou
1 2.00000e+01

The language supports the representation of differential equa-
tions in their discrete form, and solution via numerical inte-
gration techniques. For example, if the transient flow of fluid
between the two tanks shown in Figure 3 is defined by:

[

dU(t)

dt

]

+

[

f1

2D

]

U(t)|U(t)| =
[g

L

]

[H1(t) − H2(t)] , (1)

then the script:

velFluid = pRoughness/(4.0*pRadius)*velOld*Abs(velOld)*dt;
velUpdate = g/pLength*(h01Old - h02Old)*dt;
velNew = velOld + velUpdate - velFluid;

shows the essential details of computing the fluid velocity

218Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

update with Euler integration. During the executable phases of
simulation (right-hand side of Figure 3), the runtime interpreter
checks for dimensional consistency of terms in statements
before proceeding with their evaluation.

VI. RELATED WORK

Our program of research balances the need to build upon
the work of others when it makes sense, while also moving
boundaries to create new functionality and knowledge. Energy-
efficient buildings are highly complex multidisciplinary enti-
ties. Part of the challenge we face stems from the difficulty
in using a multitude of ontologies to adequately describe sys-
tem structure, system behavior, and dependency relationships
among domains. For example, an HVAC ontology contains
concepts like fan, controller, damper, pipe and the relationships
between them. Spatial ontologies contain concepts of room,
zone and spatial information about the building. While each
ontology will have its own distinct rule sets, the domains
are loosely connected via common concepts and classes. This
leads to the need for rules that are part cross-cutting and part
domain-specific (e.g., If sensor measurement drops below 60
in room 1, then open the valve up to 80%).

An important facet of our work is use of Semantic Web
technologies as both system models and mechanisms to derive
system behavior. While the vast majority of Semantic Web
literature has used ontologies to define system structure alone,
this is slowly changing. Derler and co-workers explain, for
example, how ontologies along with hybrid system modeling
and simulation, concurrent models of computation can help
us better address the challenges of modeling cyber-physical
systems (CPSs). These challenges emerge from the inherited
heterogeneity, concurrency, and sensitivity to timing of such
systems. Domainspecific ontologies are used to strengthen
modularity, and to combine model of system functionality with
system architecture [5]. The Building Service Performance
project proposes use of ontologies and rules sets to enhance
modularity, and perform cross-domain information exchange
and representation [9]. Koelle and Strijland are investigating
the design and implementation of a software tool to support
semantic-driven architecture with application of rules for se-
curity assurance of large systems in air navigation [8].

VII. CONCLUSION

The proposed semantic platform infrastructure will enhance
systems engineering practice by lowering validations costs
(through rule checking early in design), and providing support
for performance assessment during the system operation. We
envision cyber-physical systems having behaviors that are
both distributed and concurrent, and defined by mixtures of
local- and global- rule-based control. Further research is need
to understand how the RDF graph structure and supporting
software infrastructure can be extended in ways that make
it more closely mimic object-oriented practices, specifically
through increased use of generalization and access modifiers.

For the time-history behavior modeling and control of
energy-efficient buildings, the finite element method is at-
tractive because problem solutions can be formulated from
first principles of engineering such as momentum balance.
Solution procedures will be robust, scalable, and extensible to

energy-balance calculations. Our plans are to design a family
of component model interfaces (left-hand side of Figure 3),
extend them for the implementation of a build components
library (e.g., tanks, pipes, etc) and where needed, participate
in finite element analysis, actuation, and control. The scripting
language will act as the glue for systems integration and
specification of simulation and visualization procedures.

ACKNOWLEDGMENT

The work reported here is part of a US National Institute
of Science and Technology (NIST) funded program dedicated
to the development of standards for CPS design, modeling,
construction, verification and validation.

REFERENCES

[1] M.A. Austin, V. Mayank V., N. and Shmunis Ontology-Based Validation
of Connectivity Relationships in a Home Theater System. International
Journal of Intelligent Systems, 21(10):1111–1125, October 2006.

[2] M.A. Austin, V. Mayank, and N. Shmunis PaladinRM: Graph-Based
Visualization of Requirements Organized for Team-Based Design. Sys-
tems Engineering: The Journal of the International Council on Systems
Engineering, 9(2):129–145, May 2006.

[3] P. Delgoshaei, and M.A. Austin Software Design Patterns for Ontology-
Enabled Traceability. In Conference on Systems Engineering Research
(CSER 2011), Redondo Beach, Los Angeles, April 15-16 2011.

[4] P. Delgoshaei, and M.A. Austin Software Patterns for Traceability of
Requirements to Finite-State Machine Behavior: Application to Rail
Transit Systems Design and Management. In 22nd Annual Interna-
tional Symposium of The International Council on Systems Engineering
(INCOSE 2012), Rome, Italy, 2012.

[5] P. Derler, E.A. Lee, and A.S. Sangiovanni-Vincentelli Modeling
CyberPhysical Systems. Proceedings of the IEEE, 100, January 2012.

[6] S. Fridenthal, A. Moore, and R. Steiner A Practical Guide to SysML.
MK-OMG, 2008.

[7] Jena - A Java API for RDF. See http://www.hpl.hp.com/semweb/. 2003.
[8] R. Koelle, and W. Strijland Semantic Driven Security Assurance for

System Engineering in SESAR/NextGen. In Integrated Communica-
tions, Navigation and Surveillance Conference (ICNS), 2013.

[9] D. Macpherson, and M. Raymond Ontology Across Building, Emer-
gency, and Energy Standards. In The Building Service Performance
Project, Ontology Summit, 2009.

[10] Q.H. Mahmoud Getting Started With the Java Rule
Engine API (JSR 94): Toward Rule-Based Applications,
2005. Sun Microsystems. For more information, see
http://java.sun.com/developer/technicalArticles/J2SE/JavaRule.html
(Accessed, March 10, 2008).

[11] N. Nassar, and M.A. Austin Model-Based Systems Engineering Design
and Trade-Off Analysis with RDF Graphs. In 11th Annual Conference
on Systems Engineering Research (CSER 2013), Georgia Institute of
Technology, Atlanta, GA, March 19-22 2013.

[12] G. Rudolf. Some Guidelines For Deciding Whether To Use A
Rules Engine, 2003. Sandia National Labs. For more information
see http://herzberg.ca.sandia.gov/guidelines.shtml (Accessed, March 10,
2008).

[13] w3 See http://www.w3.org/TR/owl-features/, February 2004.

219Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

