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Abstract—The paper considers realization of logic functiondy
branching programs running on special purpose Decien
Diagram Machines (DDMs). It is not the fastest wayto
implement logic, but it enables different versionsand frequent
modifications, e.g., in embedded systems. First,ithpaper derives
upper bounds on the cost of multi-terminal binary decision
diagrams (MTBDDs); the cost is directly related to he size of
branching programs derived from MTBDDs. Second,
optimization of heterogeneous branching programs isndertaken
that makes a space-time trade-off between the amotunof
memory required for a branching program and its exeution
time. As a case study, optimal configurations of kamching
programs are found for a set of benchmark tasks. Bede DDMs,
the technique can also be used for micro-controller with a
support for multi-way branching running logic-intensive
embedded firmware.

Keywords- Boolean functions, multi-terminal binary decision
diagrams MTBDDs; branching programs;, MTBDD complexity;
decision diagram machines DDMs

. INTRODUCTION

The popularity of programmable architectures is ttuthe
savings in hardware development time and cost. odari
methods exist to realize multiple-output logic ftions by
programmable architectures. The FPGAs are widelgdus
however, they require layout and routing in additio logic
design. Look-up table (LUT) cascades, i.e., a sargnection
of memories, are more flexible, since the architects simple;
various classes of functions can be realized by ldd¥cades
efficiently [1], [11]. Finally, Decision Diagram Mhines
(DDMs) are special purpose processors that evalletesion
diagrams. Branching programs that evaluate single-
multiple-output Boolean functions on DDMs can beedily
constructed from decision diagrams (DDs).

A binary DD (BDD) represents a single Boolean fiorct
in a form of the directed acyclic graph with intermlecision
nodes controlled by input variables and with teahinodes
valued 0 or 1. Generalization to integer-valuednteal nodes
leads to multi-terminal BDDs (MTBDDs) [1]. As theimber

of decision nodes in the ordered (MT)BDDs depend$PDs and QDDs (QRBDDs and QRQDDs) and

dramatically on the order of variables, we strigefind such
variable ordering that reduces the node count ashras
possible, and proportionally also the size of thanbhing
program. As the optimal ordering belongs among Nflete
problems [1], heuristic methods have been suggestddused
toward this goal. For example, the sub-optimal orde of
variables and (MT)BDD synthesis can be done simatasly
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by the iterative decomposition of the original ftion, i.e., by
repeatedly removing variables that minimize theenodunt at
the current level of the diagram [2].

Mapping of optimal (MT)BDDs to branching progranss i
straightforward; non-terminal nodes are mapped ftandh
instructions, whereas terminal nodes to outputruisibns.
Branching programs run faster on a special purposeessor
(DDM) than on a general-purpose CPU [3]. Optimzati
criteria for branching programs are the executiim® t memory
size (area) or the area — time product. Some paeasnsubject
to optimization are: testing more than 1 variabledime, a
number of instruction addresses, and a number ddllpa
DDMs. With the help of above optimizations, the @x@®n
speed of branching programs can be even adjustadhieve
very high performance [4]. Among applications of 2§ let
us mention micro-program sequencers, logic simrdato
industrial programmable logic controllers and relyepacket
filters [5].

In this paper, we first analyze the MTBDD cost g@neral
R-valued functions of Boolean variables. Then thassl of
sparse functions often used in real life is definfde new
results on upper bounds of MTBDD cost and proffismarse
functions are derived. This is generalization o$ults for
single-output functions in [6]. In the second pavg show
optimization of branching programs with respecthe area —
time product. Heterogeneous MTBDDs for arbiters and
controlled shift circuits serve to illustrate tlistimization.

The paper is structured as follows. Section I|lddtrces
related works, whereas Section Ill gives the priglaries.
MTBDD profiles and costs for sparse logic functioase
derived in Section IV. Mapping MTBDDs to branching
programs is dealt with in Section V and branchimggpam
optimization in Section VI. The experimental reswhd future
research directions are commented on in Conclusion.

. RELATED WORKS

Various DDMs have been proposed in literature for
evaluation various types of decision diagrams emrd BDDs
and Quaternary Decision Diagrams (QDDs), quasigedu
ordered
Heterogeneous Multi-valued Decision Diagrams (HMPDBs
well as Quasi-Reduced HMDDs (QRHMDDs). Six DDM
architectures have been compared with respect da-tame
complexity, throughput and compatibility to the stiig
memory [3].

Area-time complexity is important for embedded syss,
because DDM with low area-time complexity dissigakew
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power. Since the instruction memory occupies thetnaoea 2) F, is an incomplete function irnzg)", F.: X - Z and
for the DDM, we assume that the area is proportibmahe (Z,)"\ X=DC is the don't care set.
memory size. The QDD Machine was found the bestfea- In this second case we can artificially define niagp

time complexity [3]. Quasi-Reduced diagrams contagst DC-{0} and come back to the first case. Further on we
only true decision nodes, but also degeneratedsnaith one  therefore consider only the first case.

output edge only. This leads to higher memory comzion Defin_ition 3.2 Theweight of functionF,, denoted by, is
but enables pipelining and thus leads to the estighput for  the cardinality of seXin Def. 3.1,u = [X].
QRQDD Machines [3]. Definition 3.3 LetF,.; (Z,)" — Zg be the function of binary

The main problem with the above DDM architectures i variablesx;, X,,..., X,. Sub-function f(X,.c+1,..., Xn-1, Xn) Of K
that multiple-output functions are implemented laytitioning  variables is the functioh= Fp, (V1, Va,..., Vak Xnked--+5 Xn-1 Xn)
into single output functions. That is why we stutlg direct for any given combination of binary constamsvs, ..., Vo.k.
use of MTBDDs for branching programs. In Section Wé Lemma 3.1 There are up to min {2, Rzk) sub-functions
formulate hypothesis 4.1 suggesting that for aigleboutput o k variables k = 1. 2. ... n. but not all of them are
sparse logic function the cosd the memory area to store the necessarily distinct.

MTBDD are much lower than those f0BDDs of itsr single-  (proof) According to Def. 3.3, eadovariable sub-function
output component logic func_tlon_s. Thus the arclllum:_of the (20 —Zris related to a particular binary vectos,(Vy,...,
MTBDD Machine proposed in this paper should be sope . ) There are ?such vectors and related sub-functions. On

Six DDM architectures mentioned above all use fixedihe other hand, the number &fvariable sub-functions is
number (1 or 2) of control inputs at decision nod&se |imjted by the number of function valugs Maximum number
MTBDD machine is more flexible - the number of &5t of single variable K=1) sub-functions is the same as the
variables can be varied from one node to anothej, € pumber of distinct pairs of function values, i.& Two-

between 1 and 4. This lowers memory requirementd angriable sub-functionské2) are 4-tuples of function values
power consumption even further.

22 Lo
Code optimization for QDD Machines [10] has beenand there are up f8° of them. Continuing in the same way,

achieved by means of 3 instead of 4 addresses én thye have up toR? sub-functions ok variables (®tuples of

instruction and by means of four types of branchingynction values). A lower value of the two limitsvgs the
instructions. In the other hand, in the MTBDD Mawhiwe  [ound, QED.

use only two instructions and only one base addtextsgets Definition 3.4 Let the order of variables in the MTBDD be
modified by the values of tested variables. _ X1, ¥o,..., %, and the set of nodes controlled e thelevelj
Applications for DDMs include industrial process of the diagram. Théocal width w; of the MTBDD at levej,
controllers and logic simulators. Also a parallddid with j = 1,2,...,n, is the number of all nodes at leyeli.e., the
128 QDD Machines implemented on FPGA and running ahymber of all distinct sub-functions ofj+1 variables X,
100 MHz has been proposed [4], that is about lIfedifaster ..., Xaj» % Thewidth w of the MTBDD is the maximum

at the peak performance than Intel's Core2 Duidth of the MTBDD among the levels(s referred to as the
microprocessor (@ 1.2 GHz) and requires a quartehe  c-measure in [1]).
memory. Note thatk sub-function variables are counted from
backwards, whereas local widthg, w;, ..., w; are indexed
from x; onwards, i.e., the same way as are MTBDD levels.
To Dbegin our discussion, we define the following The relation between indicgsindk is thusj = n-k+1.
terminology. A system ofn Boolean functions oh Boolean Definition 3.5 Let F(Z,)" — Zg be the function of binary
variables, variablesx;, X,,..., X,. The profile of the functionF, is the
vector (v, Wa,..., W,). Note that alwaysv; = 1, w, = 2. The
total sum of all non-terminal nodesWs= w;+ w, +...+ Wi,
Definition 3.6 Thelocal costc; of the MTBDD at levej is
the number of true decision nodes (distinct nonstammt sub-
binary values enumerated by values fizn functions) in that level. Theost C of the MTBDD is the sum

Function F,, is incomplete if it is defined only on set C=Cit C2+...% Cn.

X0O(Z)" (Z»)"\ X isthe don't care set. (We assume that aIIIO The Io_call cgst:,— IS Ial\(/jvay_s less O(; equglhthe local ng
component functions (1) have the same don't carp se ecause; includes only decision nodes with two output edges

Definition 3.1 Under thesparse functionsF,: (Z)" - Zx whereasw; is the number of all nodes at leyehcluding those
we will understand functions with the domai)( divided into ~ With @ single output edge (depicted by black dothe sample

two subsetX andD, (Z)"=X0OD,|X|<< 2, if one of the MTBDD at Fig 3.1). N ,
following conditions hold: Example 3.1A sample MTBDD is in Fig.1. The profile of

Ill.  BASIC DEFINITIONS AND NOTIONS

f0: ()" - 2, i=1,2,..m 1)
will be described as a logic functidf, with output values
fromzz={0, 1, 2, ...,R-1},

Fo (2" - Zr, 2
whereR is the number of distinct combinations mf output

1) F, is a fully specified function inz,)", the related function is {2, 3, 3, 4}. The number wée
Fo: [X = ZM0} , D - {0}] decision nodes is at the minimui@ €4); if the function is to
(without loss of generality, value 0 is taken s tominant depend on all its variables, at least one true mmtevariable
value); is required. Note that decision nodes with a simgltput edge
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do not decide anything. We can shift terminal nogigso the
root over a sequence of such nodes and branchrrontd
nodes not only in the last level. For example, tdeminal
node 2 is reached after testing variaglandx; only.

wa=3

Ws =3

ca=1 =1 =1 =1
c=4 T
Legend:@ _____ > =0

Figure 1 An example MTBDD for the 4-valued functioid Boolean
variables.

Each of two characteristics, the profile and cast,
important in one of two different implementation§ B,.
Whereas the profile, and especially the global hvigl,
determine the LUT cascade configuration f§ (hardware
implementation, [11]), the size of the branchinggyam is
proportional to costC; remainingW-C nodes just shrink to
edges.

Most often two parameters of MTBDDs are optimized:
cost C and width w. For branching programs based on
MTBDDs, the cost optimization is of interest. Mingzation of
two parameters, cos€ and width w, cannot be strictly
separated. In the bottom-up synthesis of MTBDDsngisi
heuristics [7], we select the variable so as toimize the
number of nodes in the next higher level of the NDIB If
two variables produce the same number of nodesakesthe
one with a lower number of true decision nodessTues on
iteratively level by level, from leaves to the ro@Ye expect
that the total cost will be close to the minimurtat@ost. This
has been confirmed for functions of up to 10 vddaatby an
exhaustive search [11].

IV. COMPLEXITY ISSUES

Before analyzing complexity of sparse functions, fivst
review the complexity of general multiple-output dd&an
functions. The knowledge of a function profile ssential for
complexity analysis. By summing up local costs dngd
inspecting local widths of a MTBDD, we can arriviegéobal
cost and width given in the following

Theorem 4.1 Cost C and widthw of the MTBDD for
functionF,: (Z))" - Zr are upper-bounded by

w< maxmin (2", R”)
K 3
C<min (2" +R*)-R-1,

wherek=0, 1, ...,n-1.

(Proof). The first relation follows directly fromeimma 3.1
and Def. 3.4, if we include sub-functions kf0 variables
(terminal values). In the case of cdStwe must subtract
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constant sub-functions (nodes with a single ougulge), see
Lemma 3.1:
C=1+2+4+.  +2"D 4

+(R* -R)+..+(R -R) +(R*-R),
By computing the sum and taking the minimum wevariat
the total cosC:

. K i i-1 . n- k
Cs mkin(zizkﬂzn’I +iZ=l:(R2 -R?)= min|(2 K- +(R* -R)|,

(4)

QED.

Example 4.1The profile of a general 4-valued function of
12 variables is according to Lemma 3.1 limited by
2,4,8,16, 32, 64, 128, 256, 512, 256, 16, 4.
The MTBDD cost is

C < (1+2+4+... +512) + (256-16)+(16-4) = 1275

and widthw < 512. These bounds are too weak for real-life
functions which have typically low values wf
Random functionsZ,) " - Zgz, R = 2 = 2" are the most
difficult functions to implement. Their MTBDDs haweform
of the full binary tree and the number of all sulpdtions is
W=C= 1+2+4+..2"= 21,

TABLE 1 UPPERBOUNDS ONMTBDD CoSsT

127
127

255
255

511

1023
1023

511

Binary n-bit multipliers with 2 binary inputs and r2 outputs

have R close to 2". (End of Exple)
The upper bounds for co§ for selected classes of

multiple-output logic functions are summarized &bTl. They

were calculated from (3), except for two items nearkby

asterisk which should have been 9 and 17, see &medr2

and Corollary 4.1 below. Separate regions in Tahté

interpreted as follows:

- the top region: minimum in (3) occursiat 2,

- the middle region: minimum in (3) occursiat 1,

- the bottom region: minimum in (3) occurd at 0.

Theorem 4.2The cost of the BDD of the arbitrary logic
function of 4 variables i€ < 7.

(Proof by construction) There are 65536 functiofis4o
variables. Under the group of negations and pettiounts, we
can reduce this count to only 222 equivalence eladdow it
is sufficient to prove the theorem for one représstre out of
each equivalence class. This was done by exhaustiaech
considering all 24 variable orderings. The uppeurttb7 was
reached in only 8 cases (the average node count4vigs
QED.
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Corollary 4.1 The cost of the BDD of the arbitrary logic
function of 5 variables i€ < 15. (The first decision node can
fork to two BDDs of two 4-variable sub-functions.)

The upper bounds on cost are too weak for most oR. With some computations according to Lemma 4.1, one can

functions in digital engineering practice. Very eoft the
functions are defined only in a small fraction df 2 binary
input vectors. Therefore, from now on, we will coles sparse
logic functions and will attempt to obtain strongepper
bounds for them. Such bounds on local values,of k = 2,
3,...,6 are known [6] for single output Boolean fuons
(R=2). Here we will analyze multiple-output Boolean
functions and generalize the previous results.

Lemma 4.1 Let sparse functiorF,; (Z,) " - Zx attains
non-zero values 1, 2, ..R1 in X = u << 2' points,
X O (Zy)". Consider distinck-variable sub-functions oF,.
Such sub-functions are specified by column vectdrs= 2*
elements (rows). The maximum number of distinctuooi
vectors is (5)

W =AU R) :i(:j(R_l)i +q for 0<U<Z1:i(it](R—1)‘ =u,

whereg is the integer satisfying the relation
g (t , t .
ul:Zi(_j(R—l)' <us< (_J(R—l)' =u,
i\ l

andq = [ (u-uy)/(o+1)].

Note thatA(u) is piece-wise linear, monotone increasing
for 0 <u < up. In the first interval X u < t(R-1) the value of
A(u) =u+1. On the other hand, wher> u,, A(u) takes up the

)3

constant value
t )
[_](R_ly.
i=o \

Theorem 4.3 Let A(2, u, R) be the number of distinct
k-variable sub-functions for am-variable sparse function
(Z,)" - Zg and with weighti. Then

CrweiSA (25U R —g, k=1,.,n1,

g+l

D (6)

t

(7)

andc= 1.

This theorem is immediately derived from Lemma 4.1:

local costchii1 € Whie1, Decause of constant sub-functions.
The upper limit orc,.«.1 is the upper limit o1, i.€.,A (2k,
u, R), decreased by, that is by the number of constant sub-
functions ofk variables for the given andR. In general, ifu

> up, A attains the saturated valde= R? and we must

subtracte =R?" constant sub-functions from to get the
value of ¢c,, as seen from (4). However, if < u, and

A< Rzk, correction € depends o, = g(u); we must always

subtract 1 (all zeros pattern) and incidentally soother
constant patterns if they appear in the range QfED.

Example 4.2Let us have = 2,R = 4,u = 10. All distinct
sub-functions of a single variable are columnshim Table 2.
Now, we can compare upper bounds on local costand
values of A (2, u, 4) for some values of

Foru = 10, we hava= 9, butc, = 8 only (all zero pattern
does not count). For upper bound we have to conglue
worst case when constant sub-functions are takbnifotmere
is no other choice (see the last 3 columns in Tahl&o if u
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= 18 we gefA= 13 andc, =12. This count does not grow any
further, foru > 18 we get always, =12.  (End of Example)
Local costs are functions of three parameterg", u and

figure out the upper bound on the cost of any gisparse
function.

Example 4.3 Cost profiles of sparse function of 13
variables, 7,)*% - Zg, R=2, 4, 8, 16 and = 100 are depicted
in Fig. 2. For illustration, let us calculakét, u, R) for u = 100,
R=8andt=2,4,8, 16, ...

t=2:u, =14<u<14+98=112=u,,

A(2,100,8) =1+14+|(100-14)/2|=57, ¢, =56
t=4:u, =28su<28+294=322=u,,

A(4,100,8) =1+ 28+|(100-28)/2|=65, c,, =63
t=8:u, =56<u<56+2744=2800=u,,

A(8100,8) =1+56+|(100-56)/2|=79, c,, =78

t =16 32,64: ¢, =¢c, =C, =u =100

The remaining local costs from to c, are 64, 32, 16, 8, 4,
2, 1. (End of Example)

TABLE 2 COMPUTATION OFA(t, u, R)=A(2,10,4)=9

P W

R |o |o

—— R=2
—— R=4
— —R=8
—=—R=16
——R=u+1

100

345678910111213j
Figure 2 Profiles of sparse functions of 13 vaealu = 100)

From the inspection of Fig. 2, the following hypesis can
be formulated:

Hypothesis 4.1 The cost of the MTBDD for multiple-
output sparse functioR.: (Z)" — Zg, R= 2 and the memory
area to store the MTBDD is much lower than the coud
memory area to storg BDDs for its r single-output
component logic functions.

V.

Branching programs have typically two instructiofisiulti-
way) branch and output instruction. Their formapeieds on
the architecture of a DDM as well as on the typehef DD.
For a multi-output function, a partition into siegloutput

MAPPINGMTBDD S TOBRANCHING PROGRAMS
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functions (BDDs) or into groups of functions (mplé
MTBDDs) has been used [3]. Due to our hypothesswill
use partition into groups of functions. Our stagtipoint will

This way the dispatch tables can be stored in coemory in
a compact form; the bits of the base address sy the
BCU must be reset to 0 if wired-OR is used for rfiodtion.

be the MTBDD with sub-optimal ordering of variables Tri-state outputs of the BCU are wire-ORed to tliglrass

obtained by heuristic [7], that can be easily cotectto a 5-

valued DD with generally non-unifornk (heterogeneous

DDs). The architecture of a suitable DDM is in F3g.

The code memory stores instructions that evaluates
of the DD. Each node is represented by“avay dispatch
table that starts at a node base address andeitss iare

inputs of the code memory.
The advantages of above architecture are:
- the word lengths for the multi-way branchestheesame
- relatively short word lengths for instructiondn@ie base
address only)
- easy extension for other instructions and addrgss

indexed byk-bit offset. Each item contains a code for input(incrementing PC for longer output sequences, sudpo a

multiplexers (group id) and the mask which togetbeecify
the offset for the next node. Fig. 4 shows two rirtfon
formats. The multi-way branch instruction evaluatesion

return address stack, etc.)
Example 5.1Let us implement the Round Robin Arbiter
(RRA) with 4 input requests, ry, I', 3. The priority register

terminal Z-ary node, while the output instruction evaluates gpo, p:, P2, Ps] points to the requestdr currently with the

terminal node:

1) the jump to an address in the PC modified by BCU
L, branch L, @x1.. X;

2) output and the unconditional jump to the spedifaddress
L output, go td_p, .

1] Controller
=1
Wired Fl
P M—| OR [\ Code I
C = ) Memory || R
C .
4
X1l ! -4 1 FI , Format Indicator
Xo—| M m—: 16-way || IR, Instruction Register
X Branch OR, Output Register
X, < Ctrl Unit PC, Program Counter

Fig. 3 Architecture of Decision Diagram Machine (RP

branch instruction
[FI] groupid |

mask [ node base address |

output instruction
[FI output data [

next address |

Fig. 4 Instruction formats for a DDM with the suppfor multi-way
branching

The multi-way indirect branch is executed in 1 &lagcle,
the current base address in the PC gets modifieextgrnal
variables (operator @), by up to 4 variables atimaet
including 0 variable (no modification, the uncoiafial
jump), by means of 16-way Branch Control Unit (BCWijput
variables are selected by multiplexers, so thatruotons
contain MXs control field and a BCU mask. The taskhe
16-way BCUA4 is to shift up to 4 active inputs, s&del by a 4-
bit BCU mask, to the lowest positions of the 4-biitput
vector and reset the rest of outputs. The outpatovethen
serves as an offset from the base address of atdispable.
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highest priority (one-hot encoding). Priority deases for
subsequent inputs:

Os = Pars + Polrors + Pilrilrors + polrolrylrors

O2 = P22 + Palrara + Polrolrara+ prlralrolrars;

01 = Paf 1t Po!raors+ Palralrory + Polrolrs!rorg

Qo = Pol'o + Pr!rarot P2!ra!rare + pairalra!rar.

The quaternary MTBDD for this RRA obtained by meais
HIDET tool [2] is at Fig. 5. The sample of a braimgh
program with inspection of two binary inputs atime is
shown at Fig. 6. The symbolic program is composké 8-
way and of 2 2-way dispatch tables. The base asesesf
dispatch tables shown in Fig. 6 as L1 to L11 cqoes to the
same labels in the MTBDD in Fig. 5. The total numbé
instructions is

x4 + %2 =40. (Boidexample)

VI. BRANCHING PROGRAM OPTIMIZATION

The most important parameters that are usualljestibf
optimization are memory size, execution time, arover
consumption. Since code memory occupies the mest far
the whole DDM, we assume that the area is propmtito the
memory size. Area-time complexity, or the produdt o
memory size and performance, is important for erdbdd
systems. In this section, we will focus on optimgihe area-
time product only. As a by-product, a processinghwow
area (time) means low dissipation of static (dyr@rpower,
too.

There are two possibilities for optimization, orider of
input variables (not discussed in this paper) ahdirt
grouping. Whereas variable ordering influences dize of a
MTBDD and required code memory, grouping of input
variables impacts the speed of processing. Tesigwgral
input variables simultaneously can also be visedlizas
converting the MTBDD into a multi-valued DD (MVDDJ|3]

— [9]. Very often the nodes of such MVDD are degated in
a certain degree, i.e., not all the output edgedastinct. The
DDM architecture at Fig. 3 can utilize this factrfo
minimization of memory requirements; it can varg ttumber
of variables tested in each step according todbal Istructure
of the MTBDD on the followed path. For example ié west
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three variables at a time, the complete tree adden could be sub-graphs leading to dispatch tables of reducezk. si

converted to a single 8-valued node. However, theze

Simplifying nodes with 2outputs wherever possible leads to a
heterogeneous MVDD with nodes controlled kyor less

7

> cEiy=2 variables.

i=o Example 6.1 Continuing in Example 4.1, we can apply
possible configurations éf= 0, 1, .... 7 degenerate nodes andvarious grouping of input variables and then reiductof

if they occur in the same level of the diagram, cem skip
their testing and reduce the size of a dispatcketdkig. 7
shows all possible sub-graphs rooted at a locat rsatbject to
such reduction. An extreme case is that there arerue
decision nodes on the path and a dispatch taldénsnated
completely. If we tesk variables at a time, then there are

_kfc:(k,i)zzk -1

r3,r2
r1, r0
pl, p3
1
p2, po g4
00
s 10
g2 % Tg1] (g3 ~-J04

Fig. 5 MTBDD of the 4-input RR arbiter.

RRA: exit L1@r3r2
L1@00: exit L2@r1r0
L1@01: exit L4@p1p3
L1@10: exit Ls@p1p3
L1@11: exit Ls@p1p3
L2@00: no_g exit Next
L2@01: exit Lé@p3
L2@10: exit L3@p1p3
L2@11: exit L3@p1p3
L10@00: g4 exit Next
L10@01: gl exit Next
L10@10: g3 exit Next
L10@11: g3 exit Next
L11@O0: g4 exit Next
L11@1: g1l exit Next
Next:

Fig. 6 A symbolic microprogram for the RRA.
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multi-valued nodes to the smaller ones. If we @eabups of
2 input variables, we will do with 7 4-way nodesdigpatch
tables of size 4) and 4 binary nodes (4 dispatblesaof size
2), altogether 36 instructions. Had we used onigglsi
variable tests (a binary program with 2-way branghi we
would need 17 dispatch tables of size 2, i.e.n3#ruictions in
total. However, the performance would be 2- tinmsdr due
to execution of a chain of 8 instructions, one atlelevel of
the MTBDD. Processing in three steps could te&, 3 or 2,
2, 4 decision variables, but the area-time produmtild get
worse. The fastest execution tests 4 decision bl@saat a
time (16-way branching). The features of varioutians are
summarized in Table 3. The aredime product is a figure of
merit of quality of the implementation. It gets lisst (lowest)
value for testing two and four variables at a time.
(End of Example)

Fig. 7 MTBDD sub-graphs with 0, 1, 2 and 3 decision each path

TABLE 3 VARIOUS MICROPROGRAM OPTIONS

tested total micro- | execution | space x
variables: | instructions time time
8x1 34 8 272
4x2 36 4 144
2,33 52 3 156
2,2,4 64 3 192
2x 4 72 2 144
8 256 1 256

Similar optimization has been carried out by a henaele
software tool for a number of logic modules suchbeanch
control units (bcu), round robin arbiters (rd@pst-recently-
served arbiters (Irs) and priority encoders (pehwai various
number of inputs.

MTBDDs of these logic modules have been obtainatl a
optimized by HIDET tool from cube specification [2]
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MTBDD parameters (cost, sizes, and widthw) for these with k=3 and 4, what is in contradiction to finding Q0=
modules are listed in Table 4, together with optigreuping  2) as optimal in [3].
of input variables ordered by HIDET and resultingaa< time Future research should compare the MTBDD Machine to
(axt) product. This product is calculated as tlggragate other published DDMs on the common set of benchsarid
number of all instructions in dispatch tables (spdich table thus verify hypothesis 4.1 and implied superioatyMTBDD
for ak-ary node has*2nstructions) multiplied by the number Machines. The library of optimal MTBDDs for a sueh
of dispatch tables from the root to leaves. benchmark suite should be created first, it is anailable as
The results show that the best area-time contpldégi yet. Another optimization problem is to pack digpatables
obtained fork = 3 or 4 variables tested simultaneously. Thisof all MTBDD nodes into as small memory as possililee
does not corresponds to the result in [6], wher@mary k=  final step would be a hardware implementation oé th
2) DDs were found best with respect to this figofeneritina  MTBDD machine and also of its parallel version PGA.
different set of benchmarks. The reason for thiy tpa not
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