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Abstract—The paper considers realization of logic functions by 
branching programs running on special purpose Decision 
Diagram Machines (DDMs). It is not the fastest way to 
implement logic, but it enables different versions and frequent 
modifications, e.g., in embedded systems. First, this paper derives 
upper bounds on the cost of multi-terminal binary decision 
diagrams (MTBDDs); the cost is directly related to the size of 
branching programs derived from MTBDDs. Second, 
optimization of heterogeneous branching programs is undertaken 
that makes a space-time trade-off between the amount of 
memory required for a branching program and its execution 
time. As a case study, optimal configurations of branching 
programs are found for a set of benchmark tasks. Beside DDMs, 
the technique can also be used for micro-controllers with a 
support for multi-way branching running logic-intensive 
embedded firmware.   

Keywords- Boolean functions; multi-terminal binary decision 
diagrams MTBDDs; branching programs; MTBDD complexity; 
decision diagram machines DDMs 

I. INTRODUCTION 

The popularity of programmable architectures is due to the 
savings in hardware development time and cost. Various 
methods exist to realize multiple-output logic functions by 
programmable architectures. The FPGAs are widely used; 
however, they require layout and routing in addition to logic 
design. Look-up table (LUT) cascades, i.e., a series connection 
of memories, are more flexible, since the architecture is simple; 
various classes of functions can be realized by LUT cascades 
efficiently [1], [11]. Finally, Decision Diagram Machines 
(DDMs) are special purpose processors that evaluate decision 
diagrams. Branching programs that evaluate single- or 
multiple-output Boolean functions on DDMs can be directly 
constructed from decision diagrams (DDs).  

A binary DD (BDD) represents a single Boolean function 
in a form of the directed acyclic graph with internal decision 
nodes controlled by input variables and with terminal nodes 
valued 0 or 1. Generalization to integer-valued terminal nodes 
leads to multi-terminal BDDs (MTBDDs) [1]. As the number 
of decision nodes in the ordered (MT)BDDs depends 
dramatically on the order of variables, we strive to find such 
variable ordering that reduces the node count as much as 
possible, and proportionally also the size of the branching 
program. As the optimal ordering belongs among NP-complete 
problems [1], heuristic methods have been suggested and used 
toward this goal. For example, the sub-optimal ordering of 
variables and (MT)BDD synthesis can be done simultaneously 

by the iterative decomposition of the original function, i.e., by 
repeatedly removing variables that minimize the node count at 
the current level of the diagram [2].  

Mapping of optimal (MT)BDDs to branching programs is 
straightforward; non-terminal nodes are mapped to branch 
instructions, whereas terminal nodes to output instructions. 
Branching programs run faster on a special purpose processor 
(DDM) than on a general-purpose CPU [3]. Optimization 
criteria for branching programs are the execution time, memory 
size (area) or the area – time product. Some parameters subject 
to optimization are: testing more than 1 variable at a time, a 
number of instruction addresses, and a number of parallel 
DDMs. With the help of above optimizations, the execution 
speed of branching programs can be even adjusted to achieve 
very high performance [4]. Among applications of DDMs, let 
us mention micro-program sequencers, logic simulators, 
industrial programmable logic controllers and recently packet 
filters [5].  

In this paper, we first analyze the MTBDD cost for general 
R-valued functions of Boolean variables. Then the class of    
sparse functions often used in real life is defined. The new 
results on upper bounds of MTBDD cost and profile of sparse 
functions are derived. This is generalization of results for 
single-output functions in [6]. In the second part, we show 
optimization of branching programs with respect to the area – 
time product. Heterogeneous MTBDDs for arbiters and 
controlled shift circuits serve to illustrate this optimization. 

The paper is structured as follows. Section II introduces   
related works, whereas Section III gives the preliminaries. 
MTBDD profiles and costs for sparse logic functions are 
derived in Section IV. Mapping MTBDDs to branching 
programs is dealt with in Section V and branching program 
optimization in Section VI. The experimental results and future 
research directions are commented on in Conclusion.  

II. RELATED WORKS 

Various DDMs have been proposed in literature for 
evaluation various types of decision diagrams - ordered BDDs 
and Quaternary Decision Diagrams (QDDs), quasi-reduced, 
BDDs and QDDs (QRBDDs and QRQDDs) and   ordered 
Heterogeneous Multi-valued Decision Diagrams (HMDDs) as 
well as Quasi-Reduced HMDDs (QRHMDDs). Six DDM 
architectures have been compared with respect to area-time 
complexity, throughput and compatibility to the existing 
memory [3].   

Area-time complexity is important for embedded systems, 
because DDM with low area-time complexity dissipates low 
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power. Since the instruction memory occupies the most area 
for the DDM, we assume that the area is proportional to the 
memory size. The QDD Machine was found the best for area-
time complexity [3]. Quasi-Reduced diagrams contain not 
only true decision nodes, but also degenerated nodes with one 
output edge only. This leads to higher memory consumption 
but enables pipelining and thus leads to the best throughput for 
QRQDD Machines [3].  

The main problem with the above DDM architectures is 
that multiple-output functions are implemented by partitioning 
into single output functions. That is why we study the direct 
use of MTBDDs for branching programs. In Section IV we 
formulate hypothesis 4.1 suggesting that for a multiple-output 
sparse logic function the cost and the memory area to store the 
MTBDD are much lower than those for r BDDs of its r single-
output component logic functions. Thus the architecture of the 
MTBDD Machine proposed in this paper should be superior. 

Six DDM architectures mentioned above all use fixed 
number (1 or 2) of control inputs at decision nodes. The 
MTBDD machine is more flexible - the number of tested 
variables can be varied from one node to another, e.g., 
between 1 and 4. This lowers memory requirements and 
power consumption even further.  

Code optimization for QDD Machines [10] has been 
achieved by means of 3 instead of 4 addresses in the 
instruction and by means of four types of branching 
instructions. In the other hand, in the MTBDD Machine we 
use only two instructions and only one base address that gets 
modified by the values of tested variables.  

Applications for DDMs include industrial process 
controllers and logic simulators. Also a parallel DDM with 
128 QDD Machines implemented on FPGA and running at 
100 MHz has been proposed [4], that is about 100 times faster 
at the peak performance than Intel´s Core2 Duo 
microprocessor (@ 1.2 GHz) and requires  a quarter of the 
memory. 

III.  BASIC DEFINITIONS AND NOTIONS  

To begin our discussion, we define the following 
terminology. A system of m Boolean functions of n Boolean 
variables, 

  fn
(i)

 : (Z2) 
n
  → Z2 ,  i = 1, 2, ..., m                                   (1)                                                      

will be described as a logic  function Fn with output values 
from ZR = {0, 1, 2, …, R-1}, 

Fn: (Z2) 
n
  → ZR ,                                    (2)  

where R is the number of distinct combinations of m output 
binary values enumerated by values from ZR. 

Function Fn is incomplete if it is defined only on set  
X ⊂ (Z2) 

n;   (Z2) 
n
 \ X  is the don’t care set. (We assume that all 

component functions (1) have the same don’t care set.) 
Definition 3.1 Under the sparse functions Fn: (Z2)

n
 → ZR 

we will understand functions with the domain (Z2)
n divided into 

two subsets X and D,  (Z2)
n
 = X ∪ D, | X | << 2n , if one of the 

following conditions hold: 
1) Fn is a fully specified function in (Z2)

n, 
     Fn: [X → ZR\{0}  , D → {0}] 

(without loss of generality, value 0 is  taken as the dominant 
value); 

2) Fn is an incomplete function in (Z2)
n, Fn: X → ZR and  

(Z2)
n
 \ X = DC is the don’t care set. 

In this second case we can artificially define mapping  
DC→{0}  and come back to the first case. Further on we 
therefore consider only the first case. 

Definition 3.2 The weight of function Fn, denoted by u, is 
the cardinality of  set X in Def. 3.1, u = |X|. 

Definition 3.3 Let Fn: (Z2)
n
 → ZR be the function of binary 

variables x1, x2,…, xn. Sub-function f(xn-k+1,…, xn-1, xn) of k 
variables is the function f = Fn (v1, v2,…, vn-k, xn-k+1,…, xn-1, xn) 
for any given combination of binary constants v1, v2,…, vn-k.  

Lemma 3.1 There are up to min (2n-k,
k

R2 ) sub-functions 
of k variables, k = 1, 2, …, n, but not all of them are 
necessarily distinct. 
(Proof) According to Def. 3.3, each k-variable sub-function 
(Z2)k →ZR is related to a particular binary vector (v1, v2,…,  
vn-k). There are 2n-k

 such vectors and related sub-functions. On 
the other hand, the number of k-variable sub-functions is 
limited by the number of function values R. Maximum number 
of single variable (k=1) sub-functions is the same as the 
number of distinct pairs of function values, i.e., R2. Two-
variable sub-functions (k=2) are 4-tuples of function values 

and there are up to
22R  of them. Continuing in the same way, 

we have up to 
k

R2 sub-functions of k variables (2k-tuples of 
function values). A lower value of the two limits gives the 
bound, QED. 

Definition 3.4 Let the order of variables in the MTBDD be 
x1, x2,…, xn and the set of nodes controlled by xj be the level j 
of the diagram. The local width wj of the MTBDD at level j,  
j = 1,2,…, n, is the number of all nodes at level j, i.e., the 
number of all distinct sub-functions of n-j+1 variables xn-(n-j), 
…, xn-j, xn. The width w of the MTBDD is the maximum 
width of the MTBDD among the levels (w is referred to as the 
C-measure in [1]).  

Note that k sub-function variables are counted from xn 
backwards, whereas local widths w1, w2, …, wj are indexed 
from  x1 onwards, i.e., the same way as are MTBDD levels. 
The relation between indices j and k is thus j = n-k+1. 

Definition 3.5 Let Fn:(Z2)
n
 → ZR be the function of binary 

variables x1, x2,…, xn. The profile  of the function Fn is the 
vector (w1, w2,…, wn). Note that always w1 = 1, w2 = 2. The 
total sum of all non-terminal nodes is W = w1+ w2 +…+ wn.                                     

Definition 3.6 The local cost cj of the MTBDD at level j is 
the number of true decision nodes (distinct non-constant sub-
functions) in that level. The cost C of the MTBDD is the sum 
C = c1+ c2 +…+ cn. 

The local cost cj is always less or equal the local width wj 

because cj includes only decision nodes with two output edges 
whereas wj is the number of all nodes at level j including those 
with a single output edge (depicted by black dots in the sample 
MTBDD at Fig 3.1).   

Example 3.1 A sample MTBDD is in Fig.1. The profile of 
the related function is {2, 3, 3, 4}. The number of true 
decision nodes is at the minimum (C =4); if the function is to 
depend on all its variables, at least one true node per variable 
is required.  Note that decision nodes with a single output edge 
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do not decide anything. We can shift terminal nodes up to the 
root over a sequence of such nodes and branch to terminal 
nodes not only in the last level. For example, the terminal 
node 2 is reached after testing variable x1 and x2 only. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 An example MTBDD for the 4-valued function of 4 Boolean 
variables. 

Each of two characteristics, the profile and cost, is 
important in one of two different implementations of Fn. 
Whereas the profile, and especially the global width w, 
determine the LUT cascade configuration for Fn (hardware 
implementation, [11]), the size of the branching program is 
proportional to cost C; remaining W−C nodes just shrink to 
edges. 

Most often two parameters of MTBDDs are optimized: 
cost C and width w. For branching programs based on 
MTBDDs, the cost optimization is of interest. Minimization of 
two parameters, cost C and width w, cannot be strictly 
separated. In the bottom-up synthesis of MTBDDs using 
heuristics [7], we select the variable so as to minimize the 
number of nodes in the next higher level of the MTBDD. If 
two variables produce the same number of nodes, we take the 
one with a lower number of true decision nodes. This goes on 
iteratively level by level, from leaves to the root. We expect 
that the total cost will be close to the minimum total cost. This 
has been confirmed for functions of up to 10 variables by an 
exhaustive search [11].  

IV.  COMPLEXITY ISSUES 

Before analyzing complexity of sparse functions, we first 
review the complexity of general multiple-output Boolean 
functions. The knowledge of a function profile is essential for 
complexity analysis. By summing up local costs and by 
inspecting local widths of a MTBDD, we can arrive at global 
cost and width given in the following  

Theorem 4.1 Cost C and width w of the MTBDD for 
function Fn: (Z2) 

n
  → ZR are upper-bounded by                  

,1)2(min

),2(minmax

2

2

−−+≤
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−

−
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Rw

k

k

kn

k

kn

k                   (3) 

where k = 0, 1, …, n-1.  
(Proof). The first relation follows directly from Lemma 3.1 

and Def. 3.4, if we include sub-functions of k=0 variables 
(terminal values). In the case of cost C we must subtract 

constant sub-functions (nodes with a single output edge), see 
Lemma 3.1:   
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By computing the sum and taking the minimum we arrive at 
the total cost C:   
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QED. 
Example 4.1 The profile of a general 4-valued function of 

12 variables is according to Lemma 3.1 limited by 
2, 4, 8, 16, 32, 64, 128, 256, 512, 256, 16, 4. 
The MTBDD cost is  
        C ≤ (1+2+4+… +512) + (256-16)+(16-4) = 1275    
and width w ≤ 512. These bounds are too weak for real-life 
functions which have typically low values of w.  
Random functions (Z2) 

n
  → ZR, R = 2r = 2n are the most 

difficult functions to implement. Their MTBDDs have a form 
of the full binary tree and the number of all sub-functions is 
 W = C = 1+2+4+…2n-1 = 2n-1. 

TABLE 1  UPPER BOUNDS ON MTBDD COST 
 
 
 
 
 
 
 

                   

 

 

Binary n-bit multipliers with 2n binary inputs and 2n outputs 
have  R close to 22n.                                       (End of Example)  

   The upper bounds for cost C for selected classes of 
multiple-output logic functions are summarized in Tab.1. They 
were calculated from (3), except for two items marked by 
asterisk which should have been 9 and 17, see Theorem 4.2 
and Corollary 4.1 below. Separate regions in Tab.1 are 
interpreted as follows:  
- the top region: minimum in (3) occurs at i = 2,   
- the middle region: minimum in (3) occurs at i = 1,    
- the bottom region: minimum in (3) occurs at i = 0. 

Theorem 4.2 The cost of the BDD of the arbitrary logic 
function of 4 variables is C ≤ 7. 

(Proof by construction) There are 65536 functions of 4 
variables. Under the group of negations and permutations, we 
can reduce this count to only 222 equivalence classes. Now it 
is sufficient to prove the theorem for one representative out of 
each equivalence class. This was done by exhaustive search 
considering all 24 variable orderings. The upper bound 7 was 
reached in only 8 cases (the average node count was 4.6), 
QED. 

R         n           

↓ 1 2 3 4 5 6 7 8 9 10 

2 1 3 5 7* 15* 29 45 77 141 269 

4   3 7 15 27 43 75 139 267 507 

8     7 15 31 63 119 183 311 567 

16       15 31 63 127 255 495 751 

32         31 63 127 255 511 1023 

64           63 127 255 511 1023 

 

x1 

 c1 = 1 

x2 

x3 

x4 
3 

2 

1 

0 

x=1 
Legend: 

x=0 

w2 = 2 
w3 = 3 w4 = 3 

 c2 = 1  c3 = 1  c4 = 1 
R= 4 

C= 4 

w1 = 1 

x 
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Corollary 4.1 The cost of the BDD of the arbitrary logic 
function of 5 variables is C ≤ 15. (The first decision node can 
fork to two BDDs of two 4-variable sub-functions.) 

The upper bounds on cost are too weak for most of 
functions in digital engineering practice. Very often the 
functions are defined only in a small fraction of all 2n binary 
input vectors. Therefore, from now on, we will consider sparse 
logic functions and will attempt to obtain stronger upper 
bounds for them. Such bounds on local values of wn-k, k = 2, 
3,…,6 are known [6] for single output Boolean functions 
(R=2). Here we will analyze multiple-output Boolean 
functions and generalize the previous results. 

Lemma 4.1 Let sparse function Fn: (Z2) 
n
  → ZR attains 

non-zero values 1, 2, …, R-1 in |X| = u << 2n  points,  
X ⊂ (Z2)

n. Consider distinct k-variable sub-functions of Fn. 
Such sub-functions are specified by column vectors of t = 2k 

elements (rows). The maximum number of distinct column 
vectors is                                                                                (5) 

where σ is the integer satisfying the relation 

2

1

11
1 )1()1( uR

i

t
iuR

i

t
iu i

i

i

i

=−







≤≤−








= ∑∑

+

==

σσ
                (6) 

and q = (u-u1)/(σ+1).  
Note that λ(u) is piece-wise linear, monotone increasing 

for 0 < u < um. In the first interval 1 ≤ u  ≤ t(R-1) the value of 
λ(u) = u+1.  On the other hand, when u ≥ um, λ(u) takes up the 
constant value 

                              .)1(
0

i
t

i

R
i

t
−








∑

=

                                      (7) 

Theorem 4.3 Let λ(2k, u, R) be the number of distinct  
k-variable sub-functions for an n-variable sparse function  
(Z2)

n
 → ZR and with weight u. Then   

c n-k+1 ≤ λ (2k, u, R) − ε,     k = 1,..., n-1,     and  c 1= 1. 
This theorem is immediately derived from Lemma 4.1: 

local cost cn-k+1 ≤  wn-k+1, because of constant sub-functions. 
The upper limit on cn-k+1 is the upper limit on wn-k+1, i.e., λ (2k, 
u, R), decreased by ε, that is by the number of constant sub-
functions of k variables for the given u and R. In general, if u 

≥ um, λ attains the saturated value
k

R2=λ and we must 

subtract ε =
12 −k

R  constant sub-functions from λ to get the 
value of cn-k, as seen from (4). However, if u < um and 

,2k

R<λ  correction  ε depends on u, = ε(u); we must always 

subtract 1 (all zeros pattern) and incidentally some other 
constant patterns if they appear in the range of u, QED. 

Example 4.2 Let us have t = 2, R = 4, u = 10. All distinct 
sub-functions of a single variable are columns in the Table 2. 
Now, we can compare upper bounds on local costs cn and 
values of  λ (21, u, 4) for some values of u. 

 For u = 10, we have λ= 9, but cn = 8 only (all zero pattern 
does not count). For upper bound we have to consider the 
worst case when constant sub-functions are taken only if there 
is no other choice (see the last 3 columns in Table 2). So if  u 

= 18 we get λ= 13 and cn =12. This count does not grow any 
further, for u > 18 we get always cn =12.      (End of Example)   

Local costs are functions of three parameters t =2k, u and 
R. With some computations according to Lemma 4.1, one can 
figure out the upper bound on the cost of any given sparse 
function.   

Example 4.3 Cost profiles of sparse function of 13 
variables, (Z2)

13
 → ZR, R = 2, 4, 8, 16 and u = 100 are depicted 

in Fig. 2. For illustration, let us calculate λ(t, u, R) for u = 100, 
R = 8 and t = 2, 4, 8, 16, …: 
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The remaining local costs from c7 to c1 are 64, 32, 16, 8, 4, 
2, 1. (End of Example) 

 
TABLE 2 COMPUTATION OF λ(t, u, R) = λ(2, 10, 4) = 9 
 

0 1 2 3 0 0 0 1 1 2 2 3 3 1 2 3 

0 0 0 0 1 2 3 2 3 1 3 1 2 1 2 3 

1   6          9      
←     u=10       →        

 

 
Figure 2 Profiles of sparse functions of 13 variables (u = 100) 

From the inspection of Fig. 2, the following hypothesis can 
be formulated: 

Hypothesis 4.1 The cost of the MTBDD for multiple-
output sparse function Fn: (Z2) 

n
  → ZR, R = 2r and the memory 

area to store the MTBDD is much lower than the cost and 
memory area to store r BDDs for its r single-output 
component logic functions.   

V. MAPPING MTBDDS TO BRANCHING PROGRAMS 

Branching programs have typically two instructions: (multi-
way) branch and output instruction. Their format depends on 
the architecture of a DDM as well as on the type of the DD. 
For a multi-output function, a partition into single output 
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functions (BDDs) or into groups of functions (multiple 
MTBDDs) has been used [3].  Due to our hypothesis we will 
use partition into groups of functions. Our starting point will 
be the MTBDD with sub-optimal ordering of variables 
obtained by heuristic [7], that can be easily converted to a 2k-
valued DD with generally non-uniform k (heterogeneous 
DDs). The architecture of a suitable DDM is in Fig. 3. 

The code memory stores instructions that evaluate nodes 
of the DD. Each node is represented by a 2k-way dispatch 
table that starts at a node base address and its items are 
indexed by k-bit offset. Each item contains a code for input 
multiplexers (group id) and the mask which together specify 
the offset for the next node. Fig. 4 shows two instruction 
formats. The multi-way branch instruction evaluates a non 
terminal 2k-ary node, while the output instruction evaluates a 
terminal node: 
1) the jump to an address in the PC modified by BCU;  

Ln: branch  Lm@x1...xk; 
2) output and the unconditional jump to the specified address     

Ln: output, go to Lm . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Architecture of Decision Diagram Machine (DDM) 

 
branch instruction
FI group id mask node base address

output instruction
FI output data next address  

 
Fig. 4 Instruction formats for a DDM with the support for multi-way 

branching 

The multi-way indirect branch is executed in 1 clock cycle,  
the current base address in the PC gets modified by external 
variables (operator @), by up to 4 variables at a time, 
including 0 variable (no modification, the unconditional 
jump), by means of 16-way Branch Control Unit (BCU). Input 
variables are selected by multiplexers, so that instructions 
contain MXs control field and a BCU mask. The task of the 
16-way BCU4 is to shift up to 4 active inputs, selected by a 4-
bit BCU mask, to the lowest positions of the 4-bit output 
vector and reset the rest of outputs. The output vector then 
serves as an offset from the base address of a dispatch table. 

This way the dispatch tables can be stored in code memory in 
a compact form; the bits of the base address supplied by the 
BCU must be reset to 0 if wired-OR is used for modification. 
Tri-state outputs of the BCU are wire-ORed to the address 
inputs of the code memory.  

The advantages of above architecture are:  
-  the word lengths for the multi-way branches are the same 
- relatively short word lengths for instructions (single base 
address only)    
- easy extension for other instructions and addressing 
(incrementing PC for longer output sequences, support for a 
return address stack, etc.)  

Example 5.1 Let us implement the Round Robin Arbiter 
(RRA) with 4 input requests r0, r1, r2, r3. The priority register 
[p0, p1, p2, p3] points to the requester i, currently with the 
highest priority (one-hot encoding). Priority decreases for 
subsequent inputs:    

g3 = p3r3 + p0!r0r3 + p1!r1!r0r3 + p2!r2!r1!r0r3  
g2 = p2r2 + p3!r3r2 + p0!r0!r3r2 + p1!r1!r0!r3r2  
g1 = p1r1+ p2!r2r1+ p3!r3!r2r1 + p0!r0!r3!r2r1  
g0 = p0r0 + p1!r1r0+ p2!r2!r1r0  + p3!r3!r2!r1r0. 

The quaternary MTBDD for this RRA obtained by means of 
HIDET tool [2] is at Fig. 5. The sample of a branching 
program with inspection of two binary inputs at a time is 
shown at Fig. 6. The symbolic program is composed of 9 4-
way and of 2 2-way dispatch tables. The base addresses of 
dispatch tables shown in Fig. 6 as L1 to L11 correspond to the 
same labels in the MTBDD in Fig. 5. The total number of 
instructions is 

9×4 + 2×2   = 40.                                     (End of example) 

VI.  BRANCHING PROGRAM OPTIMIZATION  

 The most important parameters that are usually subject of 
optimization are memory size, execution time, and power 
consumption. Since code memory occupies the most area for 
the whole DDM, we assume that the area is proportional to the 
memory size. Area-time complexity, or the product of 
memory size and performance, is important for embedded 
systems. In this section, we will focus on optimizing the area-
time product only. As a by-product, a processing with low 
area (time) means low dissipation of static (dynamic) power, 
too.  

There are two possibilities for optimization, ordering of 
input variables (not discussed in this paper) and their 
grouping. Whereas variable ordering influences the size of a 
MTBDD and required code memory, grouping of input 
variables impacts the speed of processing. Testing several 
input variables simultaneously can also be visualized as 
converting the MTBDD into a multi-valued DD (MVDD), [8] 
– [9]. Very often the nodes of such MVDD are degenerated in 
a certain degree, i.e., not all the output edges are distinct. The 
DDM architecture at Fig. 3 can utilize this fact for 
minimization of memory requirements; it can vary the number 
of variables tested in each step according to the local structure 
of the MTBDD on the followed path. For example if we test 
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three variables at a time, the complete tree of 7 nodes could be 
converted to a single 8-valued node. However, there are 
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possible configurations of i = 0, 1, …. 7 degenerate nodes and 
if they occur in the same level of the diagram, we can skip 
their testing and reduce the size of a dispatch table. Fig. 7 
shows all possible sub-graphs rooted at a local node subject to 
such reduction. An extreme case is that there are no true 
decision nodes on the path and a dispatch table is eliminated 
completely. If we test k variables at a time, then there are 
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Fig. 5 MTBDD of the 4-input RR arbiter. 
 
 

 

RRA:   exit L1@r3r2 
L1@00:  exit L2@r1r0 
L1@01:  exit L4@p1p3 
L1@10:  exit L5@p1p3 
L1@11:  exit L5@p1p3 
L2@00:  no_g exit Next 
L2@01:  exit L6@p3 
L2@10:  exit L3@p1p3 
L2@11:  exit L3@p1p3 

….. 
L10@00:  g4 exit Next 
L10@01:  g1 exit Next 
L10@10:  g3 exit Next 
L10@11:  g3 exit Next 
L11@0:  g4 exit Next 
L11@1:  g1 exit Next 
Next: 
 

 
Fig. 6 A symbolic microprogram for the RRA. 

 

sub-graphs leading to dispatch tables of reduced size. 
Simplifying nodes with 2k outputs wherever possible leads to a 
heterogeneous MVDD with nodes controlled by k or less 
variables.  

Example 6.1 Continuing in Example 4.1, we can apply 
various grouping of input variables and then reduction of 
multi-valued nodes to the smaller ones. If we create groups of 
2 input variables, we will do with 7 4-way nodes (7 dispatch 
tables of size 4) and 4 binary nodes (4 dispatch tables of size 
2), altogether 36 instructions. Had we used only single 
variable tests (a binary program with 2-way branching), we 
would need 17 dispatch tables of size 2, i.e., 34 instructions in 
total. However, the performance would be 2- times lower due 
to execution of a chain of 8 instructions, one in each level of 
the MTBDD.  Processing in three steps could test 2, 3, 3 or 2, 
2, 4 decision variables, but the area-time product would get 
worse. The fastest execution tests 4 decision variables at a 
time (16-way branching). The features of various options are 
summarized in Table 3. The area × time product is a figure of 
merit of quality of the implementation. It gets its best (lowest) 
value for testing two and four variables at a time. 
(End of Example) 

 
 

 

Fig. 7 MTBDD sub-graphs with 0, 1, 2 and 3 decisions on each path 

TABLE 3 VARIOUS MICROPROGRAM OPTIONS 
 

 tested  total micro- execution space x 

 variables: instructions time time 

 8 x 1  34 8 272 

 4 x 2 36 4 144 

 2, 3, 3 52 3 156 

 2, 2, 4 64 3 192 

 2 x  4 72 2 144 

 8 256 1 256 

     
Similar optimization has been carried out by a home-made 

software tool for a number of logic modules such as branch 
control  units (bcu),  round  robin  arbiters (rra), least-recently- 
served arbiters (lrs) and priority encoders (pe) with a various 
number of inputs. 

 MTBDDs of these logic modules have been obtained and 
optimized by HIDET tool from cube specification [2]. 
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MTBDD parameters (cost c, size s, and width w) for these 
modules are listed in Table 4, together with optimal grouping 
of input variables ordered by HIDET and resulting area × time 
(a×t)  product. This product is calculated as the aggregate 
number of all instructions in dispatch tables (a dispatch table 
for a k-ary node has 2k instructions) multiplied by the number 
of dispatch tables from the root to leaves. 

  The results show that the best area-time complexity is 
obtained for k = 3 or 4 variables tested simultaneously. This 
does not corresponds to the result in [6], where quaternary (k = 
2) DDs were found best with respect to this figure of merit in a 
different set of benchmarks. The reason for this may be not 
only in benchmarks, but also in our different DDM 
architecture supporting variable multi-way branching. 

VII.  CONCLUSIONS AND FUTURE WORKS 

In this paper, we have proposed a new MTBDD machine 
that could outperform known DDM architectures. The size of 
the branching programs and the maximum required code 
memory for this machine can be estimated using derived upper 
bounds on the cost of MTBDD for logic functions specified in 
u input vectors and attaining only a single value (0) for other 
input vectors. The bounds are not limited to sparse functions 
with u << 2n, but are valid generally.  The case of incomplete 
functions can be treated similarly, replacing don´t - cares by a 
dominant function value (0).   

TABLE 4  OPTIMUM BRANCHING PROGRAM CONFIGURATIONS 

 n m s c w groups a×t 
bcu4 8 4 45 30 16 2x4 160 
bcu6 12 6 189 126 64 3x4 1008 
bcu7 14 7 381 254 128 4,4,4,2 2368 
bcu8 16 8 765 510 256 4x4 5440 
rra4 8 4 37 17 8 2x4 144 
rra6 12 6 91 40 11 3x4 438 
rra8 16 8 179 75 22 4x4 1248 

rra12 24 12 489 189 44 8x3 4688 
lrs4 10 4 39 17 6 3,3,3,1 168 
lrs6 21 6 119 36 9 7x3 742 
pe8 8 4 8 8 2 4x2, 2x4 64 

pe12 12 5 12 12 2 4x3 128 
pe16 16 5 16 16 2 8x2, 4x4 256 

 

Firmware implementation of a MTBDD is usually a matter 
of trade-off between performance and the size of memory 
storing the code. The memory size can be derived as an 
aggregate size of all dispatch tables, and the performance is 
given by the number of dispatch tables on the path from the 
root to leaves of the MTBDD. The area-time complexity has 
been optimized for the MTBDD machine that supports multi-
way branching in one clock cycle with variable number of 
ways (0 to 16). On the given set of benchmarks the optimum 
area-time product has been reached for DDM for k-ary nodes 

with k = 3 and 4, what is in contradiction to finding QDD (k = 
2) as optimal in [3]. 

Future research should compare the MTBDD Machine to 
other published DDMs on the common set of benchmarks and 
thus verify hypothesis 4.1 and implied superiority of MTBDD 
Machines. The library of optimal MTBDDs for a such a 
benchmark suite should be created first, it is not available as 
yet. Another optimization problem is to pack dispatch tables 
of all MTBDD nodes into as small memory as possible. The 
final step would be a hardware implementation of the 
MTBDD machine and also of its parallel version in FPGA. 
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