
Branching Program-Based Programmable Logic for Embedded Systems

Vaclav Dvorak
Faculty of Information Technology

Brno University of Technology
Brno, Czech Republic
dvorak@fit.vutbr.cz

Abstract—The paper considers realization of logic functions by
branching programs running on special purpose Decision
Diagram Machines (DDMs). It is not the fastest way to
implement logic, but it enables different versions and frequent
modifications, e.g., in embedded systems. First, this paper derives
upper bounds on the cost of multi-terminal binary decision
diagrams (MTBDDs); the cost is directly related to the size of
branching programs derived from MTBDDs. Second,
optimization of heterogeneous branching programs is undertaken
that makes a space-time trade-off between the amount of
memory required for a branching program and its execution
time. As a case study, optimal configurations of branching
programs are found for a set of benchmark tasks. Beside DDMs,
the technique can also be used for micro-controllers with a
support for multi-way branching running logic-intensive
embedded firmware.

Keywords- Boolean functions; multi-terminal binary decision
diagrams MTBDDs; branching programs; MTBDD complexity;
decision diagram machines DDMs

I. INTRODUCTION

The popularity of programmable architectures is due to the
savings in hardware development time and cost. Various
methods exist to realize multiple-output logic functions by
programmable architectures. The FPGAs are widely used;
however, they require layout and routing in addition to logic
design. Look-up table (LUT) cascades, i.e., a series connection
of memories, are more flexible, since the architecture is simple;
various classes of functions can be realized by LUT cascades
efficiently [1], [11]. Finally, Decision Diagram Machines
(DDMs) are special purpose processors that evaluate decision
diagrams. Branching programs that evaluate single- or
multiple-output Boolean functions on DDMs can be directly
constructed from decision diagrams (DDs).

A binary DD (BDD) represents a single Boolean function
in a form of the directed acyclic graph with internal decision
nodes controlled by input variables and with terminal nodes
valued 0 or 1. Generalization to integer-valued terminal nodes
leads to multi-terminal BDDs (MTBDDs) [1]. As the number
of decision nodes in the ordered (MT)BDDs depends
dramatically on the order of variables, we strive to find such
variable ordering that reduces the node count as much as
possible, and proportionally also the size of the branching
program. As the optimal ordering belongs among NP-complete
problems [1], heuristic methods have been suggested and used
toward this goal. For example, the sub-optimal ordering of
variables and (MT)BDD synthesis can be done simultaneously

by the iterative decomposition of the original function, i.e., by
repeatedly removing variables that minimize the node count at
the current level of the diagram [2].

Mapping of optimal (MT)BDDs to branching programs is
straightforward; non-terminal nodes are mapped to branch
instructions, whereas terminal nodes to output instructions.
Branching programs run faster on a special purpose processor
(DDM) than on a general-purpose CPU [3]. Optimization
criteria for branching programs are the execution time, memory
size (area) or the area – time product. Some parameters subject
to optimization are: testing more than 1 variable at a time, a
number of instruction addresses, and a number of parallel
DDMs. With the help of above optimizations, the execution
speed of branching programs can be even adjusted to achieve
very high performance [4]. Among applications of DDMs, let
us mention micro-program sequencers, logic simulators,
industrial programmable logic controllers and recently packet
filters [5].

In this paper, we first analyze the MTBDD cost for general
R-valued functions of Boolean variables. Then the class of
sparse functions often used in real life is defined. The new
results on upper bounds of MTBDD cost and profile of sparse
functions are derived. This is generalization of results for
single-output functions in [6]. In the second part, we show
optimization of branching programs with respect to the area –
time product. Heterogeneous MTBDDs for arbiters and
controlled shift circuits serve to illustrate this optimization.

The paper is structured as follows. Section II introduces
related works, whereas Section III gives the preliminaries.
MTBDD profiles and costs for sparse logic functions are
derived in Section IV. Mapping MTBDDs to branching
programs is dealt with in Section V and branching program
optimization in Section VI. The experimental results and future
research directions are commented on in Conclusion.

II. RELATED WORKS

Various DDMs have been proposed in literature for
evaluation various types of decision diagrams - ordered BDDs
and Quaternary Decision Diagrams (QDDs), quasi-reduced,
BDDs and QDDs (QRBDDs and QRQDDs) and ordered
Heterogeneous Multi-valued Decision Diagrams (HMDDs) as
well as Quasi-Reduced HMDDs (QRHMDDs). Six DDM
architectures have been compared with respect to area-time
complexity, throughput and compatibility to the existing
memory [3].

Area-time complexity is important for embedded systems,
because DDM with low area-time complexity dissipates low

109Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

power. Since the instruction memory occupies the most area
for the DDM, we assume that the area is proportional to the
memory size. The QDD Machine was found the best for area-
time complexity [3]. Quasi-Reduced diagrams contain not
only true decision nodes, but also degenerated nodes with one
output edge only. This leads to higher memory consumption
but enables pipelining and thus leads to the best throughput for
QRQDD Machines [3].

The main problem with the above DDM architectures is
that multiple-output functions are implemented by partitioning
into single output functions. That is why we study the direct
use of MTBDDs for branching programs. In Section IV we
formulate hypothesis 4.1 suggesting that for a multiple-output
sparse logic function the cost and the memory area to store the
MTBDD are much lower than those for r BDDs of its r single-
output component logic functions. Thus the architecture of the
MTBDD Machine proposed in this paper should be superior.

Six DDM architectures mentioned above all use fixed
number (1 or 2) of control inputs at decision nodes. The
MTBDD machine is more flexible - the number of tested
variables can be varied from one node to another, e.g.,
between 1 and 4. This lowers memory requirements and
power consumption even further.

Code optimization for QDD Machines [10] has been
achieved by means of 3 instead of 4 addresses in the
instruction and by means of four types of branching
instructions. In the other hand, in the MTBDD Machine we
use only two instructions and only one base address that gets
modified by the values of tested variables.

Applications for DDMs include industrial process
controllers and logic simulators. Also a parallel DDM with
128 QDD Machines implemented on FPGA and running at
100 MHz has been proposed [4], that is about 100 times faster
at the peak performance than Intel´s Core2 Duo
microprocessor (@ 1.2 GHz) and requires a quarter of the
memory.

III. BASIC DEFINITIONS AND NOTIONS

To begin our discussion, we define the following
terminology. A system of m Boolean functions of n Boolean
variables,

 fn
(i)

 : (Z2)
n
 → Z2 , i = 1, 2, ..., m (1)

will be described as a logic function Fn with output values
from ZR = {0, 1, 2, …, R-1},

Fn: (Z2)
n
 → ZR , (2)

where R is the number of distinct combinations of m output
binary values enumerated by values from ZR.

Function Fn is incomplete if it is defined only on set
X ⊂ (Z2)

n; (Z2)
n
 \ X is the don’t care set. (We assume that all

component functions (1) have the same don’t care set.)
Definition 3.1 Under the sparse functions Fn: (Z2)

n
 → ZR

we will understand functions with the domain (Z2)
n divided into

two subsets X and D, (Z2)
n
 = X ∪ D, | X | << 2n , if one of the

following conditions hold:
1) Fn is a fully specified function in (Z2)

n,
 Fn: [X → ZR\{0} , D → {0}]

(without loss of generality, value 0 is taken as the dominant
value);

2) Fn is an incomplete function in (Z2)
n, Fn: X → ZR and

(Z2)
n
 \ X = DC is the don’t care set.

In this second case we can artificially define mapping
DC→{0} and come back to the first case. Further on we
therefore consider only the first case.

Definition 3.2 The weight of function Fn, denoted by u, is
the cardinality of set X in Def. 3.1, u = |X|.

Definition 3.3 Let Fn: (Z2)
n
 → ZR be the function of binary

variables x1, x2,…, xn. Sub-function f(xn-k+1,…, xn-1, xn) of k
variables is the function f = Fn (v1, v2,…, vn-k, xn-k+1,…, xn-1, xn)
for any given combination of binary constants v1, v2,…, vn-k.

Lemma 3.1 There are up to min (2n-k,
k

R2) sub-functions
of k variables, k = 1, 2, …, n, but not all of them are
necessarily distinct.
(Proof) According to Def. 3.3, each k-variable sub-function
(Z2)k →ZR is related to a particular binary vector (v1, v2,…,
vn-k). There are 2n-k

 such vectors and related sub-functions. On
the other hand, the number of k-variable sub-functions is
limited by the number of function values R. Maximum number
of single variable (k=1) sub-functions is the same as the
number of distinct pairs of function values, i.e., R2. Two-
variable sub-functions (k=2) are 4-tuples of function values

and there are up to
22R of them. Continuing in the same way,

we have up to
k

R2 sub-functions of k variables (2k-tuples of
function values). A lower value of the two limits gives the
bound, QED.

Definition 3.4 Let the order of variables in the MTBDD be
x1, x2,…, xn and the set of nodes controlled by xj be the level j
of the diagram. The local width wj of the MTBDD at level j,
j = 1,2,…, n, is the number of all nodes at level j, i.e., the
number of all distinct sub-functions of n-j+1 variables xn-(n-j),
…, xn-j, xn. The width w of the MTBDD is the maximum
width of the MTBDD among the levels (w is referred to as the
C-measure in [1]).

Note that k sub-function variables are counted from xn
backwards, whereas local widths w1, w2, …, wj are indexed
from x1 onwards, i.e., the same way as are MTBDD levels.
The relation between indices j and k is thus j = n-k+1.

Definition 3.5 Let Fn:(Z2)
n
 → ZR be the function of binary

variables x1, x2,…, xn. The profile of the function Fn is the
vector (w1, w2,…, wn). Note that always w1 = 1, w2 = 2. The
total sum of all non-terminal nodes is W = w1+ w2 +…+ wn.

Definition 3.6 The local cost cj of the MTBDD at level j is
the number of true decision nodes (distinct non-constant sub-
functions) in that level. The cost C of the MTBDD is the sum
C = c1+ c2 +…+ cn.

The local cost cj is always less or equal the local width wj

because cj includes only decision nodes with two output edges
whereas wj is the number of all nodes at level j including those
with a single output edge (depicted by black dots in the sample
MTBDD at Fig 3.1).

Example 3.1 A sample MTBDD is in Fig.1. The profile of
the related function is {2, 3, 3, 4}. The number of true
decision nodes is at the minimum (C =4); if the function is to
depend on all its variables, at least one true node per variable
is required. Note that decision nodes with a single output edge

110Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

do not decide anything. We can shift terminal nodes up to the
root over a sequence of such nodes and branch to terminal
nodes not only in the last level. For example, the terminal
node 2 is reached after testing variable x1 and x2 only.

Figure 1 An example MTBDD for the 4-valued function of 4 Boolean
variables.

Each of two characteristics, the profile and cost, is
important in one of two different implementations of Fn.
Whereas the profile, and especially the global width w,
determine the LUT cascade configuration for Fn (hardware
implementation, [11]), the size of the branching program is
proportional to cost C; remaining W−C nodes just shrink to
edges.

Most often two parameters of MTBDDs are optimized:
cost C and width w. For branching programs based on
MTBDDs, the cost optimization is of interest. Minimization of
two parameters, cost C and width w, cannot be strictly
separated. In the bottom-up synthesis of MTBDDs using
heuristics [7], we select the variable so as to minimize the
number of nodes in the next higher level of the MTBDD. If
two variables produce the same number of nodes, we take the
one with a lower number of true decision nodes. This goes on
iteratively level by level, from leaves to the root. We expect
that the total cost will be close to the minimum total cost. This
has been confirmed for functions of up to 10 variables by an
exhaustive search [11].

IV. COMPLEXITY ISSUES

Before analyzing complexity of sparse functions, we first
review the complexity of general multiple-output Boolean
functions. The knowledge of a function profile is essential for
complexity analysis. By summing up local costs and by
inspecting local widths of a MTBDD, we can arrive at global
cost and width given in the following

Theorem 4.1 Cost C and width w of the MTBDD for
function Fn: (Z2)

n
 → ZR are upper-bounded by

,1)2(min

),2(minmax

2

2

−−+≤

≤

−

−

RRC

Rw

k

k

kn

k

kn

k (3)

where k = 0, 1, …, n-1.
(Proof). The first relation follows directly from Lemma 3.1

and Def. 3.4, if we include sub-functions of k=0 variables
(terminal values). In the case of cost C we must subtract

constant sub-functions (nodes with a single output edge), see
Lemma 3.1:

,)()(...)(

2...421
22222

)1(

21

RRRRRR

C
kk

kn

−+−++−+

+++++=
−

+−

 (4)

By computing the sum and taking the minimum we arrive at
the total cost C:

[],)()12(min)(2(min 2

1

22

1

1

RRRRC
kii kn

k

i
k

n

ki

in

k
−+−=−+≤ −

=
+=

− ∑∑
−

QED.
Example 4.1 The profile of a general 4-valued function of

12 variables is according to Lemma 3.1 limited by
2, 4, 8, 16, 32, 64, 128, 256, 512, 256, 16, 4.
The MTBDD cost is
 C ≤ (1+2+4+… +512) + (256-16)+(16-4) = 1275
and width w ≤ 512. These bounds are too weak for real-life
functions which have typically low values of w.
Random functions (Z2)

n
 → ZR, R = 2r = 2n are the most

difficult functions to implement. Their MTBDDs have a form
of the full binary tree and the number of all sub-functions is
 W = C = 1+2+4+…2n-1 = 2n-1.

TABLE 1 UPPER BOUNDS ON MTBDD COST

Binary n-bit multipliers with 2n binary inputs and 2n outputs
have R close to 22n. (End of Example)

 The upper bounds for cost C for selected classes of
multiple-output logic functions are summarized in Tab.1. They
were calculated from (3), except for two items marked by
asterisk which should have been 9 and 17, see Theorem 4.2
and Corollary 4.1 below. Separate regions in Tab.1 are
interpreted as follows:
- the top region: minimum in (3) occurs at i = 2,
- the middle region: minimum in (3) occurs at i = 1,
- the bottom region: minimum in (3) occurs at i = 0.

Theorem 4.2 The cost of the BDD of the arbitrary logic
function of 4 variables is C ≤ 7.

(Proof by construction) There are 65536 functions of 4
variables. Under the group of negations and permutations, we
can reduce this count to only 222 equivalence classes. Now it
is sufficient to prove the theorem for one representative out of
each equivalence class. This was done by exhaustive search
considering all 24 variable orderings. The upper bound 7 was
reached in only 8 cases (the average node count was 4.6),
QED.

R n

↓ 1 2 3 4 5 6 7 8 9 10

2 1 3 5 7* 15* 29 45 77 141 269

4 3 7 15 27 43 75 139 267 507

8 7 15 31 63 119 183 311 567

16 15 31 63 127 255 495 751

32 31 63 127 255 511 1023

64 63 127 255 511 1023

x1

 c1 = 1

x2

x3

x4
3

2

1

0

x=1
Legend:

x=0

w2 = 2
w3 = 3 w4 = 3

 c2 = 1 c3 = 1 c4 = 1
R= 4

C= 4

w1 = 1

x

111Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

Corollary 4.1 The cost of the BDD of the arbitrary logic
function of 5 variables is C ≤ 15. (The first decision node can
fork to two BDDs of two 4-variable sub-functions.)

The upper bounds on cost are too weak for most of
functions in digital engineering practice. Very often the
functions are defined only in a small fraction of all 2n binary
input vectors. Therefore, from now on, we will consider sparse
logic functions and will attempt to obtain stronger upper
bounds for them. Such bounds on local values of wn-k, k = 2,
3,…,6 are known [6] for single output Boolean functions
(R=2). Here we will analyze multiple-output Boolean
functions and generalize the previous results.

Lemma 4.1 Let sparse function Fn: (Z2)
n
 → ZR attains

non-zero values 1, 2, …, R-1 in |X| = u << 2n points,
X ⊂ (Z2)

n. Consider distinct k-variable sub-functions of Fn.
Such sub-functions are specified by column vectors of t = 2k

elements (rows). The maximum number of distinct column
vectors is (5)

where σ is the integer satisfying the relation

2

1

11
1)1()1(uR

i

t
iuR

i

t
iu i

i

i

i

=−







≤≤−








= ∑∑

+

==

σσ
 (6)

and q = (u-u1)/(σ+1).
Note that λ(u) is piece-wise linear, monotone increasing

for 0 < u < um. In the first interval 1 ≤ u ≤ t(R-1) the value of
λ(u) = u+1. On the other hand, when u ≥ um, λ(u) takes up the
constant value

 .)1(
0

i
t

i

R
i

t
−








∑

=

 (7)

Theorem 4.3 Let λ(2k, u, R) be the number of distinct
k-variable sub-functions for an n-variable sparse function
(Z2)

n
 → ZR and with weight u. Then

c n-k+1 ≤ λ (2k, u, R) − ε, k = 1,..., n-1, and c 1= 1.
This theorem is immediately derived from Lemma 4.1:

local cost cn-k+1 ≤ wn-k+1, because of constant sub-functions.
The upper limit on cn-k+1 is the upper limit on wn-k+1, i.e., λ (2k,
u, R), decreased by ε, that is by the number of constant sub-
functions of k variables for the given u and R. In general, if u

≥ um, λ attains the saturated value
k

R2=λ and we must

subtract ε =
12 −k

R constant sub-functions from λ to get the
value of cn-k, as seen from (4). However, if u < um and

,2k

R<λ correction ε depends on u, = ε(u); we must always

subtract 1 (all zeros pattern) and incidentally some other
constant patterns if they appear in the range of u, QED.

Example 4.2 Let us have t = 2, R = 4, u = 10. All distinct
sub-functions of a single variable are columns in the Table 2.
Now, we can compare upper bounds on local costs cn and
values of λ (21, u, 4) for some values of u.

 For u = 10, we have λ= 9, but cn = 8 only (all zero pattern
does not count). For upper bound we have to consider the
worst case when constant sub-functions are taken only if there
is no other choice (see the last 3 columns in Table 2). So if u

= 18 we get λ= 13 and cn =12. This count does not grow any
further, for u > 18 we get always cn =12. (End of Example)

Local costs are functions of three parameters t =2k, u and
R. With some computations according to Lemma 4.1, one can
figure out the upper bound on the cost of any given sparse
function.

Example 4.3 Cost profiles of sparse function of 13
variables, (Z2)

13
 → ZR, R = 2, 4, 8, 16 and u = 100 are depicted

in Fig. 2. For illustration, let us calculate λ(t, u, R) for u = 100,
R = 8 and t = 2, 4, 8, 16, …:

 

 

 
.100:64,32,16

78,792/)56100(561)8,100,8(

,280027445656:8

63,652/)28100(281)8,100,4(

,3222942828:4

56,572/)14100(141)8,100,2(

,112981414:2

8910

11

21

12

21

13

21

=====
==−++=

==+≤≤==
==−++=

==+≤≤==
==−++=

==+≤≤==

uccct

c

uuut

c

uuut

c

uuut

λ

λ

λ

The remaining local costs from c7 to c1 are 64, 32, 16, 8, 4,
2, 1. (End of Example)

TABLE 2 COMPUTATION OF λ(t, u, R) = λ(2, 10, 4) = 9

0 1 2 3 0 0 0 1 1 2 2 3 3 1 2 3

0 0 0 0 1 2 3 2 3 1 3 1 2 1 2 3

1 6 9
← u=10 →

Figure 2 Profiles of sparse functions of 13 variables (u = 100)

From the inspection of Fig. 2, the following hypothesis can
be formulated:

Hypothesis 4.1 The cost of the MTBDD for multiple-
output sparse function Fn: (Z2)

n
 → ZR, R = 2r and the memory

area to store the MTBDD is much lower than the cost and
memory area to store r BDDs for its r single-output
component logic functions.

V. MAPPING MTBDDS TO BRANCHING PROGRAMS

Branching programs have typically two instructions: (multi-
way) branch and output instruction. Their format depends on
the architecture of a DDM as well as on the type of the DD.
For a multi-output function, a partition into single output

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13

R=2
R=4
R=8
R=16
R=u+1

j

wj

m
i

t

i

i

i
kn uR

i

t
iuqR

i

t
Rutw =−








<<+−








== ∑∑

==
+−)1(0)1(),,(

10
1 for

σ

λ

112Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

functions (BDDs) or into groups of functions (multiple
MTBDDs) has been used [3]. Due to our hypothesis we will
use partition into groups of functions. Our starting point will
be the MTBDD with sub-optimal ordering of variables
obtained by heuristic [7], that can be easily converted to a 2k-
valued DD with generally non-uniform k (heterogeneous
DDs). The architecture of a suitable DDM is in Fig. 3.

The code memory stores instructions that evaluate nodes
of the DD. Each node is represented by a 2k-way dispatch
table that starts at a node base address and its items are
indexed by k-bit offset. Each item contains a code for input
multiplexers (group id) and the mask which together specify
the offset for the next node. Fig. 4 shows two instruction
formats. The multi-way branch instruction evaluates a non
terminal 2k-ary node, while the output instruction evaluates a
terminal node:
1) the jump to an address in the PC modified by BCU;

Ln: branch Lm@x1...xk;
2) output and the unconditional jump to the specified address

Ln: output, go to Lm .

Fig. 3 Architecture of Decision Diagram Machine (DDM)

branch instruction
FI group id mask node base address

output instruction
FI output data next address

Fig. 4 Instruction formats for a DDM with the support for multi-way

branching

The multi-way indirect branch is executed in 1 clock cycle,
the current base address in the PC gets modified by external
variables (operator @), by up to 4 variables at a time,
including 0 variable (no modification, the unconditional
jump), by means of 16-way Branch Control Unit (BCU). Input
variables are selected by multiplexers, so that instructions
contain MXs control field and a BCU mask. The task of the
16-way BCU4 is to shift up to 4 active inputs, selected by a 4-
bit BCU mask, to the lowest positions of the 4-bit output
vector and reset the rest of outputs. The output vector then
serves as an offset from the base address of a dispatch table.

This way the dispatch tables can be stored in code memory in
a compact form; the bits of the base address supplied by the
BCU must be reset to 0 if wired-OR is used for modification.
Tri-state outputs of the BCU are wire-ORed to the address
inputs of the code memory.

The advantages of above architecture are:
- the word lengths for the multi-way branches are the same
- relatively short word lengths for instructions (single base
address only)
- easy extension for other instructions and addressing
(incrementing PC for longer output sequences, support for a
return address stack, etc.)

Example 5.1 Let us implement the Round Robin Arbiter
(RRA) with 4 input requests r0, r1, r2, r3. The priority register
[p0, p1, p2, p3] points to the requester i, currently with the
highest priority (one-hot encoding). Priority decreases for
subsequent inputs:

g3 = p3r3 + p0!r0r3 + p1!r1!r0r3 + p2!r2!r1!r0r3
g2 = p2r2 + p3!r3r2 + p0!r0!r3r2 + p1!r1!r0!r3r2
g1 = p1r1+ p2!r2r1+ p3!r3!r2r1 + p0!r0!r3!r2r1
g0 = p0r0 + p1!r1r0+ p2!r2!r1r0 + p3!r3!r2!r1r0.

The quaternary MTBDD for this RRA obtained by means of
HIDET tool [2] is at Fig. 5. The sample of a branching
program with inspection of two binary inputs at a time is
shown at Fig. 6. The symbolic program is composed of 9 4-
way and of 2 2-way dispatch tables. The base addresses of
dispatch tables shown in Fig. 6 as L1 to L11 correspond to the
same labels in the MTBDD in Fig. 5. The total number of
instructions is

9×4 + 2×2 = 40. (End of example)

VI. BRANCHING PROGRAM OPTIMIZATION

 The most important parameters that are usually subject of
optimization are memory size, execution time, and power
consumption. Since code memory occupies the most area for
the whole DDM, we assume that the area is proportional to the
memory size. Area-time complexity, or the product of
memory size and performance, is important for embedded
systems. In this section, we will focus on optimizing the area-
time product only. As a by-product, a processing with low
area (time) means low dissipation of static (dynamic) power,
too.

There are two possibilities for optimization, ordering of
input variables (not discussed in this paper) and their
grouping. Whereas variable ordering influences the size of a
MTBDD and required code memory, grouping of input
variables impacts the speed of processing. Testing several
input variables simultaneously can also be visualized as
converting the MTBDD into a multi-valued DD (MVDD), [8]
– [9]. Very often the nodes of such MVDD are degenerated in
a certain degree, i.e., not all the output edges are distinct. The
DDM architecture at Fig. 3 can utilize this fact for
minimization of memory requirements; it can vary the number
of variables tested in each step according to the local structure
of the MTBDD on the followed path. For example if we test

x1
x2

xn

M
X

Code
Memory

M
X
s

16-way
Branch
Ctrl Unit

+1

Controller

I
R

m =4

Wired
OR

FI

 4

P
C

O
R

FI , Format Indicator
IR, Instruction Register
OR, Output Register
PC, Program Counter

113Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

three variables at a time, the complete tree of 7 nodes could be
converted to a single 8-valued node. However, there are

∑
=

=
7

0

72),7(
i

iC

possible configurations of i = 0, 1, …. 7 degenerate nodes and
if they occur in the same level of the diagram, we can skip
their testing and reduce the size of a dispatch table. Fig. 7
shows all possible sub-graphs rooted at a local node subject to
such reduction. An extreme case is that there are no true
decision nodes on the path and a dispatch table is eliminated
completely. If we test k variables at a time, then there are

∑
−

=

−=
1

0

12),(
k

i

kikC

 r3, r2

r1, r0

p1, p3

p2, p0

no_g

g2

g1 g3

L1

L2

L4 L5

L7 L9

L3

L11 L10

g2

00

01
1x

00 01 1x

1x
00

L6

00 1x 0x x1

g4 L8

00
10

00 x1

10
01

00

1x

g4

00
1x

01

Fig. 5 MTBDD of the 4-input RR arbiter.

RRA: exit L1@r3r2
L1@00: exit L2@r1r0
L1@01: exit L4@p1p3
L1@10: exit L5@p1p3
L1@11: exit L5@p1p3
L2@00: no_g exit Next
L2@01: exit L6@p3
L2@10: exit L3@p1p3
L2@11: exit L3@p1p3

…..
L10@00: g4 exit Next
L10@01: g1 exit Next
L10@10: g3 exit Next
L10@11: g3 exit Next
L11@0: g4 exit Next
L11@1: g1 exit Next
Next:

Fig. 6 A symbolic microprogram for the RRA.

sub-graphs leading to dispatch tables of reduced size.
Simplifying nodes with 2k outputs wherever possible leads to a
heterogeneous MVDD with nodes controlled by k or less
variables.

Example 6.1 Continuing in Example 4.1, we can apply
various grouping of input variables and then reduction of
multi-valued nodes to the smaller ones. If we create groups of
2 input variables, we will do with 7 4-way nodes (7 dispatch
tables of size 4) and 4 binary nodes (4 dispatch tables of size
2), altogether 36 instructions. Had we used only single
variable tests (a binary program with 2-way branching), we
would need 17 dispatch tables of size 2, i.e., 34 instructions in
total. However, the performance would be 2- times lower due
to execution of a chain of 8 instructions, one in each level of
the MTBDD. Processing in three steps could test 2, 3, 3 or 2,
2, 4 decision variables, but the area-time product would get
worse. The fastest execution tests 4 decision variables at a
time (16-way branching). The features of various options are
summarized in Table 3. The area × time product is a figure of
merit of quality of the implementation. It gets its best (lowest)
value for testing two and four variables at a time.
(End of Example)

Fig. 7 MTBDD sub-graphs with 0, 1, 2 and 3 decisions on each path

TABLE 3 VARIOUS MICROPROGRAM OPTIONS

 tested total micro- execution space x

 variables: instructions time time

 8 x 1 34 8 272

 4 x 2 36 4 144

 2, 3, 3 52 3 156

 2, 2, 4 64 3 192

 2 x 4 72 2 144

 8 256 1 256

Similar optimization has been carried out by a home-made

software tool for a number of logic modules such as branch
control units (bcu), round robin arbiters (rra), least-recently-
served arbiters (lrs) and priority encoders (pe) with a various
number of inputs.

 MTBDDs of these logic modules have been obtained and
optimized by HIDET tool from cube specification [2].

114Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

MTBDD parameters (cost c, size s, and width w) for these
modules are listed in Table 4, together with optimal grouping
of input variables ordered by HIDET and resulting area × time
(a×t) product. This product is calculated as the aggregate
number of all instructions in dispatch tables (a dispatch table
for a k-ary node has 2k instructions) multiplied by the number
of dispatch tables from the root to leaves.

 The results show that the best area-time complexity is
obtained for k = 3 or 4 variables tested simultaneously. This
does not corresponds to the result in [6], where quaternary (k =
2) DDs were found best with respect to this figure of merit in a
different set of benchmarks. The reason for this may be not
only in benchmarks, but also in our different DDM
architecture supporting variable multi-way branching.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we have proposed a new MTBDD machine
that could outperform known DDM architectures. The size of
the branching programs and the maximum required code
memory for this machine can be estimated using derived upper
bounds on the cost of MTBDD for logic functions specified in
u input vectors and attaining only a single value (0) for other
input vectors. The bounds are not limited to sparse functions
with u << 2n, but are valid generally. The case of incomplete
functions can be treated similarly, replacing don´t - cares by a
dominant function value (0).

TABLE 4 OPTIMUM BRANCHING PROGRAM CONFIGURATIONS

 n m s c w groups a×t
bcu4 8 4 45 30 16 2x4 160
bcu6 12 6 189 126 64 3x4 1008
bcu7 14 7 381 254 128 4,4,4,2 2368
bcu8 16 8 765 510 256 4x4 5440
rra4 8 4 37 17 8 2x4 144
rra6 12 6 91 40 11 3x4 438
rra8 16 8 179 75 22 4x4 1248

rra12 24 12 489 189 44 8x3 4688
lrs4 10 4 39 17 6 3,3,3,1 168
lrs6 21 6 119 36 9 7x3 742
pe8 8 4 8 8 2 4x2, 2x4 64

pe12 12 5 12 12 2 4x3 128
pe16 16 5 16 16 2 8x2, 4x4 256

Firmware implementation of a MTBDD is usually a matter
of trade-off between performance and the size of memory
storing the code. The memory size can be derived as an
aggregate size of all dispatch tables, and the performance is
given by the number of dispatch tables on the path from the
root to leaves of the MTBDD. The area-time complexity has
been optimized for the MTBDD machine that supports multi-
way branching in one clock cycle with variable number of
ways (0 to 16). On the given set of benchmarks the optimum
area-time product has been reached for DDM for k-ary nodes

with k = 3 and 4, what is in contradiction to finding QDD (k =
2) as optimal in [3].

Future research should compare the MTBDD Machine to
other published DDMs on the common set of benchmarks and
thus verify hypothesis 4.1 and implied superiority of MTBDD
Machines. The library of optimal MTBDDs for a such a
benchmark suite should be created first, it is not available as
yet. Another optimization problem is to pack dispatch tables
of all MTBDD nodes into as small memory as possible. The
final step would be a hardware implementation of the
MTBDD machine and also of its parallel version in FPGA.

ACKNOWLEDGMENT

This research has been carried out under the financial support
of the research grants GP103/10/1517 “Natural Computing on
Unconventional Platforms”, and MSM 21630528 “Security-
Oriented Research in Information Technology” and the
European Regional Development Fund in the IT4Innovations
Centre of Excellence project (CZ.1.05/1.1.00/02.0070).

REFERENCES
[1] T. Sasao, Memory-Based Logic Synthesis. Springer, New York, 2011,

189 pages.

[2] V. Dvořák and P. Mikušek, "Design of Arbiters and Allocators Based on
Multi-Terminal BDDs". In: Journal of Universal Computer Science,
Vol. 16, No. 14, 2010, AT, pp. 1826-1852.

[3] H. Nakahara, T. Sasao, and M. Matsuura, "A comparison of
architectures for various decision diagram machines," International
Symposium on Multiple-Valued Logic, Barcelona, Spain, May 26-28,
2010, pp. 229-234.

[4] H. Nakahara, T. Sasao, M. Matsuura, and Y. Kawamura, "A parallel
branching program machine for sequential circuits: Implementation and
evaluation," IEICE Transactions on Information and Systems, Vol. E93-
D, No. 8, pp. 2048-2058, Aug. 2010.

[5] H. Nakahara, T. Sasao, and M. Matsuura, "Packet classifier using a
parallel branching program machine," 13th EUROMICRO Conference
on Digital System Design (DSD-2010) Lille, France, Sept. 1-3, 2010,
pp. 745-752.

[6] T. Sasao, "On the number of LUTS to realize sparse logic functions,"
18th International Workshop on Logic and Synthesis, (IWLS-2009),
Berkeley, CA, U.S.A., July 31-Aug. 2, 2009, pp. 64-71.

[7] P. Mikušek and V. Dvořák, "On Lookup Table Cascade-Based
Realizations of Arbiters". Proc. of the 11th EUROMICRO Conference
on Digital System Design DSD 2008, Parma, IT, IEEE CS, pp. 795-802.

[8] S. Nagayama and T. Sasao, "On the optimization of heterogeneous
MDDs," IEEE Transactions on CAD, Vol. 24, No.11, Nov. 2005,
pp.1645-1659.

[9] H. Nakahara, T. Sasao, and M. Matsuura, "A Comparison of
heterogeneous multi-valued decision diagram machines for multiple-
output logic functions," International Symposium on Multiple-Valued
Logic (ISMVL-2011), Tuusula, Finland, May 23-25, 2011.

[10] T. Sasao, H. Nakahara, K. Matsuura, Y. Kawamura, and J.T. Butler, "A
quaternary decision diagram machine: Optimization of its code," IEICE
Transactions on Information and Systems, Vol. E93-D, No. 8, pp. 2026-
2035, Aug. 2010.

[11] V. Dvořák and P. Mikušek, "On the cascade realization of sparse logic
functions". In: Euromicro Proceedings, Oulu, FI, IEEE CS, 2011, pp.
21-28.

115Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

