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Abstract—Software systems need to be agile in order to
continuously adapt to changing business requirements. Nev-
ertheless, many organizations report difficulties while trying
to adapt their software applications. Normalized Systems (NS)
theory has previously been able to introduce a proven degree
of evolvable modularity into software systems, based on the
systems theoretic notion of stability. In this paper, we explore
the applicability of this other fundamental property of systems
(i.e., entropy) to the issues of software maintenance and
evolvability. The underlying concepts in entropy definitions will
be explained and applied to software systems and architectures.
Further, the considerable complexity of running multi-tier
multi-threading software systems and the relation with entropy
concepts is discussed and illustrated. Finally, the concordance
of design rules for controlling that entropy with previously
formulated NS principles is explored.

Keywords-Normalized Systems, Entropy, Systems engineer-
ing, Evolvability

I. INTRODUCTION

Current organizations need to be able to cope with in-
creasing change and increasing complexity in most of their
aspects and dimensions. As a consequence, all constructs
and artifacts of an organization have to be able to swiftly
adapt to this agile and complex environment, including its
business processes and organizational structure, as well as
its supporting information systems. Indeed, also the software
applications an organization employs, should be able to
evolve at an equivalent pace as the business requirements
of the organization they are embedded in.

However, many indications are present that most mod-
ular structures in software applications do not exhibit this
required evolvability, flexibility, etcetera. One very early
indication of this phenomenon was expressed by the for-
mulation of Manny Lehman’s Law of increasing complex-
ity, stating that “As an evolving program is continually
changed, its complexity, reflecting deteriorating structure,
increases unless work is done to maintain or reduce it.” [1,
p. 1068]. Interpreting entropy as a measure for uncertainty
or the degree of absence of structure (i.e., disorder) in a
system, one could conceive Lehman’s law as referring to
the irreversable tendency of software applications to build
up entropy (i.e., structure deterioration and degradation)

troughout their lifecyle and hence become more and more
complex while being less and less maintainable as time
goes by. Indeed, Lehman himself initially proposed his law
as an instance of the second law of thermodynamics [1].
Therefore, the law can also be interpreted as describing ever
increasing entropy or disorder in the structure of software
systems, unless effort is done in order to reduce the amount
of entropy. In a similar way, Frederick Brooks stated that
program maintenance is an inherently entropy increasing
process, and that even its most skilfull execution is only
able to delay the subsidence of the system into unfixable
obsolescence [2]. In practice, manifestations of this ever
increasing difficulty in maintaining software is for instance
reflected in terms of ever growing IT departments and rising
IT maintenance costs [3], [4].

Specifically focusing on these issues of software main-
tenance and evolvability, Normalized Systems (NS) theory
has recently proven to introduce a degree of proven ex-
ante evolvability at the level of software systems. To start
with, the theory states that the implementation of functional
requirements into software constructs can be considered as
the transformation of a set of requirements R into a set
of software primitives S [5], [6], [7]. In order to reach
evolvable modularity, NS theory demands that this transfor-
mation should exhibit systems theoretic stability. Mannaert
et al. have formally proven in [6] that this assumption
implies that the modular software structure should strictly
and systematically adhere to four design principles as a
necessary condition. In this paper, our goal is to explore
the applicability of this other fundamental property of sys-
tems, i.e. entropy, to software maintenance and evolvability.
Therefore, we propose a more precise definition of entropy
in software systems, and explore how this notion of entropy
might provide guidance to the software engineering process,
in order to control the amount of entropy continually built
up during the lifecyle of a software application. As an initial
step towards design rules, we attempt to relate this guidance
to the design principles of NS theory.

The remainder of this paper is structured as follows. In
section II, we briefly discuss some related work. A concise
overview of Normalized Systems Theory is presented in a
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third section. In section IV, an attempt is made to derive an
unambiguous definition of entropy in software architectures.
Next, the feasibility of controlling the entropy in software
systems is discussed in a fifth section, and the implications
for software design are related to NS design principles.
Finally, we present some conclusions and future work in
Section VI.

II. RELATED WORK

Entropy as expressed in the second law of thermodynam-
ics, is considered to be a fundamental principle. There are
many versions of this second law, but they all have the same
intent, which is to explain the phenomenon of irreversibility
in nature [8]. Moreover, mathematical derivations of the
principle of entropy start in general from a formula de-
scribing the number of possible combinations. In statistical
thermodynamics, entropy was defined by Boltzmann in 1872
as the number of possible microstates corresponding to the
same macrostate [9]. In information theory, entropy was
defined in 1948 by Shannon as the number of possible com-
binations or uncertainty associated with a random variable
[10].

It has been attempted in many areas to apply and oper-
ationalize the concept of entropy, both inside and outside
engineering sciences. In [11], Janow has studied organiza-
tions and productivity based on entropy. Janow concluded
that entropy offered an interesting means to explain why
organizations tend to become gradually more slow in their
decisionmaking processes, as well as lose productivy and
speed as they become larger over time. In the computing
area, entropy is defined as the randomness collected by
an operating system or application for use in cryptography
or other uses that require random data [12], [13]. This
randomness is often collected from hardware sources, either
pre-existing ones such as mouse movements or specially
provided randomness generators [14].

In software engineering, earlier attempts have been made
to apply entropy concepts to software. For example, Harrison
argued for an entropy-based metric for measuring the com-
plexity of software applications, based on the information
theory perspective on entropy [15]. Based on an analysis of
existing complexity metrics for software, Bianchi et al. [16]
propose a class of metrics aimed at assessing the amount of
software degradation as an effect of continuous change.

Further, Manny Lehman considered his law of increasing
complexity as an instance of the second law of thermo-
dynamics [1]. Therefore, the law can also be interpreted
as describing ever increasing entropy or disorder in the
structure of software systems. This disorder or structure
degradation hampers future adaptations of the software sys-
tem, unless effort is done in order to reduce the amount
of entropy [1], [17]. In a similar way, Frederick Brooks
related the severe complexities of software engineering to the
concept of entropy, and stated that program maintenance is

an inherently entropy increasing process [2]. Consequently,
as the theory on Normalized Systems [5], [6], [7] is aimed
at understanding and controlling the law of increasing
complexity, it can also be interpreted as an approach to
controlling entropy, as will be further highlighted below.

III. NORMALIZED SYSTEMS THEORY

Specifically focusing on the issues of software main-
tenance and evolvability, Normalized Systems (NS) theory
has recently proven to introduce a degree of proven ex-
ante evolvability at the level of software systems. To start
with, the theory states that the implementation of functional
requirements into software constructs could be regarded as
a transformation of a set of requirements R into a set of
software primitives S [5], [6], [7]:

{S} = I{R}

In order to limit the complexity of the evolvability anal-
ysis, it is argued in [6] that it is not a conceptual limitation
to limit the software constructs to those of procedural
programming languages, distinguishing data structures Sm

and processing functions Fn. However, in order to study the
evolvability, an additional variable needs to be introduced to
represent the version of the programming constructs, both
for data structures Sm,i and processing functions Fn,j .

Further, in order to obtain evolvable modularity, NS theory
demands that this transformation should exhibit systems
theoretic stability, meaning that a bounded input function
(i.e., bounded set of requirement changes) should result in
a bounded output values (i.e., a bounded impact or effort)
even if an unlimited time period and systems evolution is
considered (in which the number of primitives and their
dependencies becomes unbounded). Applied to information
systems, this means that the impact of a change can only
be dependent on the nature of a change itself. Alternatively,
changes having impacts also depending on the size of the
system are called combinatorial effects and thus should be
avoided in order to obtain a stable software architecture. In
fact, one could observe that the behavior of combinatorial
effects seems to be very similar to the ever increasing
complexity issue as coined by Lehman: a continuously
growing number of changes including combinatorial effects,
each of them exhibiting an ever increasing impact of N,
would contribute to the ever increasing complexity. As
such, Mannaert et al. [6] have formally proven that this
implies that the modular software structure should strictly
and systematically adhere to the following principles as a
necessary condition:

• Separation of Concerns, enforcing that each change
driver becomes seperated;

• Data Version Transparency, enforcing that communica-
tion between data is performed in a version transparant
way;
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• Action Version Transparency, requiring that action com-
ponents can be updated without impacting their calling
components;

• Separation of States, enforcing that each action of a
workflow becomes seperated from other actions in time,
by keeping state after every action.

These design principles show that current software con-
structs, such as for example functions and classes, by them-
selves offer no real mechanisms to accomodate anticipated
changes in a stable way. Moreover, as the systematic applica-
tion of these principles results in very fine-grained modular
structures, NS theory proposes to build information systems
based on the aggregation of instantiations of five higher-
level software elements, i.e., action elements, data elements,
workflow elements, trigger elements and connector elements
[5], [6], [7]. The internal structure of every of these elements
has been described in a very fine-grained way, proven to be
free of combinatorial effects. Hence, by building normalized
software applications based on an aggregation of instances
of the different elements, the stable software structure of an
application can be expanded, based on the internal structure
of the elements.

While NS theory thus originally originated from ap-
plying the concept of systems theoretic stability on the
transformation of (elementary) functional requirements into
constructional software primitives, it seems reasonable to
expect that the NS theory concepts can also be related to
entropy, and that the principles can be interpreted as a means
of controlling the amount of entropy built up during the
lifecyle of a software application.

IV. TOWARDS A DEFINITION OF SOFTWARE ENTROPY

In this section we will first discuss some underlying
concepts in general entropy definitions. Next, we will apply
these concepts on software systems by proposing a definition
for their macrostates and microstates.

A. Underlying Concepts in Entropy Definitions

Consider in more detail the statistical perspective on
entropy as introduced by the Austrian physicist Ludwig
Boltzmann. In statistical thermodynamics, the aim is to
understand and to interpret the measurable macroscopic
properties of materials – the macrostate – in terms of the
properties of their constituent parts – the microstates – and
the interactions between them. In Boltzmann’s definition,
entropy is a measure of the number of possible microstates
of a system, consistent with its macrostate. It is basically the
number of possible combinations of individual microstates
that yield the same macrostate [18]. This notion of entropy
can be seen as a measure of our lack of knowledge about
a system. Consider for example a set of 100 coins, each
of which is either heads up or tails up. The macrostates are
specified by the total number of heads and tails, whereas the
microstates are specified by the facings of each individual

coin. For the macrostate of 100 heads of 100 tails, there
is exactly one possible configuration, so our knowledge
of the system is complete. At the opposite extreme, the
macrostate which gives us the least knowledge about the
system consists of 50 heads and 50 tails in any order, for
which there are 1029 possible microstates. It is clear that
the entropy is extremely large in the latter case because
we have no knowledge of the internals of the system. An
obvious mechanism to decrease the entropy or complexity,
is to increase the structure and therefore knowledge of the
internals. Suppose we would have 10 groups of 10 coins,
each with 5 heads and 5 tails, the number of possible
combinations or microstates would only be 2520 [18]. In
summary, structure can be used to control entropy, in the
sense that the microstates are known, which leads to less
uncertainty and therefore, a kind of determinism.

Another example which is often suggested is that of a con-
tainer with a boundary in the middle and containing a gas in
the left part of the container. The macrostate is characterized
by observable variables such as pressure and temperature,
while the microstate is the union of the position, velocity,
and energy of all gas molecules in the container. Once
the boundary division is removed, the gas molecules will
spread out over the entire container, increasing the number
of possible microstates and therefore the amount of entropy.
In summary, entropy increase is typically related to a process
of spreading out, and intermediate boundary structures are
a typical mechanism to avoid the increase of entropy.

B. Macrostates and Microstates in Software Systems

Starting from the generic definition of entropy as the
number of microstates for a given macrostate, we first need
to propose a definition for the concepts of macrostate and
microstates. As a macrostate is in general an observable
state of the system, and all source code is observable in
a transparent way, it seems more promising to apply the
concept of entropy to the run-time analysis of a software
system, than to the compile-time analysis of the source code.
Therefore, the observable macrostate seems to be related to
information that is visible in output streams such as loggings,
or observable system states such as database entries.

Concerning microstates, they could be defined in terms
of the elementary instructions and data registers of the
processor. However, as our purpose is to establish principles
to guide the software engineering and architecture process,
we propose to define the concept of microstates at the level
of the constructs of the programming languages. As the
correct and faultless execution of software programs is in
general considered to be a worthwhile pursuit, we propose to
define microstates as binary values representing the correct
or erroneous execution of a construct of a programming
language. However, it is important to clearly specify the
molecules at this level, and to define clear boundaries
between them. For instance, the run-time execution of a
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Figure 1. Synchronous pipelines.

procedural function can be defined as the execution of a
specific procedural function operating on specific instances
of the argument data structures, and resulting in a specific
instance of an output data structure.

Moreover, these boundary divisions are not only needed
between the various programming constructs at a certain
point in time, but should also avoid coupling or leakage
in the temporal dimension. For instance, the operations of
a specific function could also be influenced by the values
of global variables that each have received their specific
value from other functions, or influence other functions by
assigning values to such variables. Only when avoiding these
effects, this function will not influence any other software
molecule in any other way than through the specified output
data arguments. In an object-oriented programming environ-
ment, all class member variables behave like global variables
for the various methods of the class.

Consider Figure 1, representing an action entity A calling
action entities B and (indirectly) C in a stateless way. Each
of the seperate action entities A, B and C will generate a
correct (0) or erroneous (1) outcome. In our representation,
the seperate action entities can be regarded as the ‘software
molecules’. The correct or erroneous outcome of each of the
subparts is defined as their microstate. The final outcome of
action entity A, after executing B and C, can be regarded as
the macrostate. Interestingly, one can note that the boundary
division between the individual modules exhibits leakage in
the temporal dimension. Indeed, action entity B (A) can only
be succesfully completed after the execution of action entity
C (B) and are hence interdependent. This inherently results
in an increase in the amount of entropy: suppose for example
that an error has occured as final outcome of A. This
situation generates an uncertainty effect regarding where the
actual error did occur. Did the returned final value originate

in one of the two genuine parts of A, one of the two genuine
parts of B, or C (or possibly a combination of them)? In
other words, multiple combinations of microstates (correct
or erroneous execution of the different (sub)activities) might
generate the same macrostate (the resulting error as a final
outcome of activity A), causing an increased degree of
entropy or uncertainty.

In accordance with the evolvability analysis in [6], we
only distinguish data structures Sm,i and processing func-
tions Fn,j . However, in order to represent the run-time state
of the system, an additional variable k needs to be introduced
representing the actual instance or value of the data structure
Sm,i,k, and a variable l representing the program thread
that is executing the processing function Fn,j,l. In order
to control the complexity, which is widely accepted to be
related to the concept of entropy, it seems reasonable to
adhere to the straighforward extension of this model to an
object-oriented programming environment, as proposed in
[6], [7]. This means that a dedicated class is defined for
every processing function, which is then the central method
of this class, and for every data structure, which fields are
the member variables of this class. Moreover, it is proven
in [6], [7], in accordance with the Separation of Concerns
principle, that no other functionalities should be added to
those classes.

V. TOWARDS ISENTROPIC SOFTWARE ARCHITECTURES

In the previous section we discussed by means of a
pedagogical example how entropy (and the according micro
and macrostates) can be defined in the context of software
systems. In this section, we will extend our analysis by
illustrating the degree of possible entropy in real-life running
software systems and which design rules might be formu-
lated in order to control this entropy.

A. Entropy in a Running Software System

In order to illustrate the complexity of running software
systems and its relation to our attempts in defining entropy,
we start from the programming patterns for basic data entry
operations in a multi-tier JEE (Java Enterprise Edition)
architecture, as described and elaborated in [19], [20], [7].
Every data element or table Obj uses the same simple
patterns for the various operations manipulating data, such
as create, update, retrieve, delete, and search. For instance,
in order to create a new instance, the webtier MVC (Model
View Controller) framework calls the method act on an
ObjEnterer class. The call is related to the application
tier through a method create in an ObjAgent class,
calling remotely through RMI (Remote Method Invocation)
the create method in an ObjBean class residing in the
application server. The various calls pass to each other
instances of a serializable ObjDetails class, that contains
the actual values of the various fields or attributes.
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Figure 2. 3D visualization of a state space representing a running data entry system.

While this programming pattern is quite straightforward
at compile-time, it is much more complicated at run-time
in a multi-tier and multi-threaded system. Figure 2 shows a
3D visualization of the state space of such a running system,
distinguishing three dimensions:

• The functional dimension horizontally, representing the
various data objects (Order, User, ...) and operations
(create, retrieve, delete, ...).

• The multi-tier dimension vertically, representing the
various tiers: the webtier controlled by the MVC, the
application tier called through RMI, and the data tier.

• The multi-thread dimension in the depth, representing
the various threads of the incoming calls.

The drawing also represents the thread instantiation pattern
of this simple software pattern for data entry. Every incom-

ing thread leads to the creation of a new and separate in-
stance of the appropriate action class, like OrderEnterer.
The agents, like OrderAgent, are designed as singletons,
and are a single point of access for that data element to
relay the calls to the application tier. In the application tier,
every call leads again to the creation of a new and separate
instance of a bean class, like OrderBean, though the same
class groups the various operations on a single data element
or table.

The aim of this section in general and this drawing in
particular is not to present a high quality pattern that should
be preferred over other existing or conceivable patterns. Its
goal is to explain that the run-time state of a software system
in general and a programming pattern in particular, has many
facets that are in general not explicitated in a compile-
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time software pattern. And it is this complicated run-time
statespace that needs to be analyzed and mastered, in order
to control the number of possible microstates, and therefore
the entropy of the software system.

B. Design Rules for Controlling Entropy

As our aim is to use the concept of entropy as guidance
for software engineering and architecture, we have proposed
to use the instantiations of programming constructs, such
as functions or class methods, as the molecules or basic
building blocks representing the microstates of the system.
Knowing that local variables cease to exist after the process-
ing function has been completed, and assuming that we do
not allow hidden coupling or information leakage through
all sorts of global variables, the microstate of such a function
— being a correct or erroneous execution — can be studied
in isolation from the rest of the system.

The synchronous pipelines that exist in Figure 2 in re-
laying the calls through the various tiers of the architecture,
seem to pose a problem. Indeed, as the act method of the
OrderEnterer is only completed after the calls to the
other tiers, its microstate cannot be studied in isolation from
these other processing methods. Splitting the method in its
two parts, before and after the remote call, would introduce
coupling between those parts through all the local variables
of the method. Therefore, the Separation of States principle,
as derived in [6], [7], seems to be in accordance with the
concept of software entropy control. Indeed, if seperation
of states is not adhered to (e.g., synchronous pipelines),
it is not clear or uncertain where exactly a certain error
or exception has occured in the modular structure. In such
architectures, the macrostate (i.e., an error has occured) can
be explained through many possible microstates (i.e., many
possible causes related to many possible atomic tasks which
are not seperated by keeping state) and by definition the
amount of entropy in the software system increases. Of
course, the use of synchronous pipelines in this example
is quite innocent, as it is limited to relaying a simple data
entry call through the various tiers of the architecture.

Also, because the essence of controlling entropy is the
reduction of uncertainty, and the operations of a software
system are described in terms of the various tasks or
concerns, the Separation of Concerns principle (as derived
in [6], [7]) seems to be in full accordance with the proposed
concept of software entropy as well. Indeed, encapsulating
every task or concern in a separate programming construct,
would allow us in general to externalize the state of every
task. Exporting every such microstate — through detailed
loggings for instance — to the observable macrostate, would
avoid the creation of multiple microstates for the same
macrostate, and would by definition avoid the creation of
entropy. Finally, while from a stability point of view the
identification of concerns should be based on so-called
change drivers, the identification of concerns from an en-

tropy point of view should be based on so-called uncertainty
drivers. While theoretically, concerns identified from one
point of view or the other might turn out to be different,
we anticipate that generally both perspectives will lead to
the identification of the same concerns in practice.

Two other principles derived in [6], [7], Data Version
Transparency and Action Version Transparency manifest
themselves at compile-time, and therefore seem less relevant
in this run-time analysis. However, the isentropic require-
ment demanding the ability to study every microstate of a
processing function in isolation of the rest of the system,
calls for the export of all microstate details to an observable
macrostate. More specifically, this implies the following
rules.

• Data Instance Traceability: the actual version and
values of every instance of a data structure serving
as an argument, need to be exported to an observable
macrostate.

• Action Instance Traceability: the actual version of every
instance of a processing function and the thread it is
embedded in, need to be exported to an observable
macrostate.

These observable macrostates may be implemented through
a wide range of possibilities, ranging from simple loggings
to more elaborate database entries.

VI. CONCLUSION AND FUTURE WORK

Triggered by the identified need for evolvable software ap-
plications, Normalized Systems theory has previously been
able to introduce a proven degree of evolvable modularity
into software systems, based on the systems theoretic notion
of stability. In this paper, we explored the applicability of
this other fundamental property of systems, i.e. entropy, to
the issues of software maintenance and evolvability. First,
the underlying concepts of the statical perspective on entropy
were applied to and defined specifically in the context of
software systems. More specifically, the macrostate was
related to observable output streams of the software system,
and the microstates were defined as a set of binary values
representing the correct or erroneous execution of program-
ming constructs. Next, the complexity of real-life multi-tier
software applications in terms of entropy was illustrated. In
order to control the amount of entropy, some design rules
were explored and related to the existing design principles of
NS theory. This suggested an initial concordance regarding
principles for software maintainability based on applying
concepts from (1) systems theoretic stability and (2) entropy
from thermodynamics.
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