
Evaluating Service-Oriented Orchestration Schemes for Controlling Pallet Flow

Johannes Minor, Jorge Garcia, Jaacan Martinez, Andrei Lobov, Jose L. Martinez Lastra
Tampere University of Technology

Tampere, Finland
{johannes.minor, jorge.garcia, jaacan.martinez}@tut.fi, {lobov, lastra}@ieee.org

Abstract—Incorporating web services at the device level is
expected to improve many aspects of automated manufacturing
systems, including scalability, reusability, reconfigurability,
compatibility between equipment from different vendors, and
cross-layer integration. There is much ongoing research into
architectural issues and enabling technologies for service-
oriented automation, but the body of knowledge surrounding
service identification and optimal orchestration schemes needs
improvement. In this project, the performance of a test system,
consisting of conveyors with embedded web service-enabled
devices, with three different orchestration schemes is evaluated.
The three schemes have similar message exchange patterns, but
differ in terms of the degree of involvement of a central
orchestrator. The schemes are compared in terms of pallet
transfer timing, and communications load. Performance is
similar for the small test system, but the results predicted
scalability problems for the schemes with high reliance on a
central orchestrator.

Keywords-SOA; orchestration; control schemes.

I. INTRODUCTION
The case for applying Service Oriented Architecture

(SOA) to industrial control systems has been made in many
previous research projects [1,5,10]. The benefits that Service
Orientation at the device level is expected to bring to
industrial applications include increased business agility,
easier and less costly equipment reusability and
reconfigurability, and improved cross-layer integration. In
addition, building systems around open standards reduces a
business' reliance on proprietary protocols, systems, and data
formats, and can drastically decrease the effort with which
systems from multiple vendors can be integrated, allowing
factories to choose the best-of-breed components for all
systems, without worrying about interoperability.

Much of the research into service orientation in industrial
automation has focused on architectural issues, and the
enabling technologies and standards. Still missing, however,
are the practical implementation details, best practices, and
system design methodologies that can help bridge the gap
between systems theory and a working SOA deployment that
exhibits some or all of the benefits touted by SOA advocates.

Although the benefits of service orientation have been
established, additional research is required to expand the
body of knowledge surrounding the field. Specific issues that
still need to be addressed are:

 How to combine scan-based and event-based
systems?

 Down to what level is it reasonable to have web
services?

 How best to compose services over a number of
distributed devices to execute business processes?

 How to integrate legacy equipment into a SOA-
based system?

This paper proposes and evaluates some possible
orchestration schemes for handling pallets on a system of
conveyors, in an attempt to provide some answers to the
following questions:

 What is the best approach for composing atomic
services into a more complex task?

 How can we combine event- and scan-based SOA
manufacturing systems?

A. Orchestration and Choreography
When discussing SOA in automation, orchestration

typically refers to the practice of composing a set of exposed
services, with a pre-defined interaction pattern that defines a
business or manufacturing process [1]. The process can be
described using a language such as Web Services Business
Process Execution Language (WS-BPEL). The orchestration
engine executes the application logic, sequencing and
synchronizing service invocations to reach the business goal
[15].

The focus of orchestration is on a high-level view of the
process workflow, whereas choreography considers the lower
level rules that define the message exchange sequences. The
W3C candidate recommendation Web Service Choreography
Description Language v1.0 (WS-CDL) [8] can be used to
describe peer to peer collaboration by defining their globally
observable behavior, where business goals are realized by
peer to peer message exchange.

B. Previous Research
EU project SODA [16] investigated the eco-system

required to build, deploy, and maintain a SOA application in
many domains. The SIRENA [17] project demonstrated the
feasibility of extending SOA to the device level, and
produced some proof-of-concept device-level services [10].
FP6 SOCRADES [18] evaluated a number of solutions for
SOA at the device level, and demonstrated a SOA solution
for automating electronics assembly.

Much research has been done on system modeling,
control, and decision making at higher levels, with Petri Net-
based approaches [2,4] and Timed Net Condition/Event

88Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

Systems (TNCES) [3]. Other research presents designs for
orchestration engines for controlling systems composed of
web service-enabled embedded devices [3,11].

Some software engineering approaches to combining,
modeling, and optimizing service orchestration and
choreography have been proposed [6,7], but the focus has
been on eliminating redundant data transfers to minimize
process execution time in IT systems. Time-consuming data
transfers between devices are not the primary concern on the
factory floor.

This paper describes some preliminary research into
optimal strategies for composing device-level, fine-
granularity, atomic services, to synchronize device
interactions to efficiently complete manufacturing processes.
This research aims to find a balance between device-to-device
interactions, and master-slave control schemes, with long-
term goal of providing an easier transition path

Sections II and III introduce the test system, and describe
the control schemes. Section IV analyzes the data, and
Section V presents conclusions and future work.

II. SYSTEM DESCRIPTION
For this study, three different pallet transfer control

schemes are tested using a varying number of pallets on the
system shown in Fig. 1.

The system consists of 21 conveyor segments. An

intelligent Web Services-enabled device controls each
segment. This line uses the InicoTech S1000 Smart RTU
[13]. The main loop is made up of the middle and lower lines,
connected at either end by a lifter, 13 segments in total. The
continuously moving loop acts as a buffer for the robot and
manual workstations off the main line. Pallets can be
introduced to the system at loading stations in the branches
off the main loop.

Each pallet has a unique RFID code, read when a pallet is
loaded at a loading station. To transfer a pallet from one
conveyor segment to the next, the following message
exchange takes place, independent of the control scheme.
This pattern is shown in Fig. 2.

 1) Reservation Request/Response: A message containing
the pallet ID and input transfer direction is sent to the
conveyor or lifter. The reservation status, and the ID of the
pallet holding the reservation are returned. If the pallet IDs
match, and the status is “RESERVED,” the transfer can
safely proceed. If the device is not in a position to accept a
pallet at the requested input position (e.g., reservation is
requested at the upper end of a lifter while the lifter is down),
the reservation status is “PENDING.” Reservation Requests
are sent until the reservation is successful.

 2) Transfer In Request/Response: A message containing
the pallet ID and the input transfer direction are sent. If they
match the reservation information, “ACCEPTED” is returned.

Fig. 1. System of conveyor segments used for testing pallet flow control schemes.

Fig. 2. Master-Slave Control Scheme

89Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

III. CONTROL SCHEME DESCRIPTIONS
For this study, varying numbers of pallets are added to the

main loop, driven by different control schemes. The three
schemes chosen for comparison represent different balances
between device-to-device interaction, and top-down
orchestration.

A. Master-Slave: All interactions through Orchestration Engine
Each remote device is a DPWS server, and a single master

DPWS client controls the pallet flow by invoking actions on
all remote devices. The remote devices themselves do not
autonomously invoke actions on other remote devices. Each
remote device supports the same set of operations:

1) Reserve: A reservation request message is sent,
containing a unique RFID (Radio Frequency IDentification)
Code to identify the pallet, and the input transfer direction.
Direction codes supported by each device can be determined
from metadata in the WSDL read from the device in the
discovery phase. This operation returns the reservation state
(free, pending, reserved), and the ID of the pallet that the
conveyor is reserved for, if any.

2) TransferIn: The transfer-in request message contains
the same data as the reservation request. The operation is
accepted if the request message matches the reservation data,
or rejected if it does not.

3) GetConveyorState: After the TransferIn action is
invoked, the conveyor state is polled at some interval. The
operation is complete when the conveyor state request returns
"occupied."

4) TransferOut: When a downstream conveyor is reserved,
the transfer-out operation is invoked. The request message
contains the pallet Id and the output direction code.

5) ReadRfidTag: Certain devices have an RFID tag reader,
which is used to read the unique RFID code of the pallet
when it is first loaded, and for consistency-checking during
operation.

One process is required on the master PC running the
Orchestration Engine for each pallet. The message exchange
pattern is shown in Fig. 2. This exchange pattern can be
described in WS-BPEL.

B. Peer to Peer: Devices handle pallet transfer autonomously
The devices cooperate autonomously with each other to

achieve common goals. Each remote device acts as a
combined DPWS client and server, each with the ability to
invoke actions on other remote devices. Each device supports
the same set of services, and follows the same interaction
pattern to allow for collision-free pallet flow. At startup, a
supervisory control system dynamically discovers the devices
present in the network, and based on some layout map, and
invokes a configuration service on each device, containing
the following information:

 Output transfer direction code
 Service Address of the downstream peer device
 Input transfer direction to the downstream peer

device
When pallet is introduced to the system at a loading

station, neighboring devices negotiate pallet transfer with the
message exchange pattern shown in Fig. 3, containing the
same Reserve and TransferIn operations as the Orchestrator
control scheme. No TransferOut, GetConveyorState, or
ReadRfidTag operations are required.

C. Hybrid Approach: Peer to Peer with Decision Request
Notifications

In this approach, lower-level pallet transfer control

Fig. 3. Peer to Peer Control Scheme, using TransferPattern from Fig. 2.

Fig. 4. Combined Control Scheme, using TransferPattern from Fig. 2.

1 2 3 4 5 6
40

50

60

70

80

C
yc

le
 ti

m
e

(s
)

Orchestrator
Peer2Peer
Combined

1 2 3 4 5 6
-1

0

1

2

3

4

(re
la

tiv
e

to
 P

ee
r2

P
ee

r d
at

a)
C

yc
le

 ti
m

e
(s

)

Pallets

Fig 5. Main Loop Cycle (Lap) Times for different Control Schemes.

90Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

messages (ReservationRequest, TransferIn) are exchanged
peer to peer, as in the previous scheme, but the device
receives transfer instructions (downstream peer service
address, output transfer direction, peer input transfer
direction) from the master after the device publishes a
notification that a pallet has been received (DecisionRequest).
This exchange pattern is shown in Fig. 4.

When the system is stared, the master PC dynamically
discovers all devices, and subscribes to the DecisionRequest
notifications. When a notification is received, some logic
executed on the master PC determines the appropriate next
step, and sends the appropriate transfer instructions.

IV. EXPERIMENT AND RESULTS

The tests were conducted as follows:
1) A configuration file describing the layout of the

conveyor system is loaded in the control software running on
the master PC. The master PC subscribes to the
“PalletInformation” notifications on each device, used for
logging purposes, common to all control schemes.

2) A single pallet is transferred from conveyor to
conveyor around the loop.

3) After fifteen minutes, a new pallet is placed at a
loading station, and introduced into the main loop with the
existing pallets

4) Additional pallets are introduced at approximately
equal intervals for 90 minutes

A. Average Pallet Lap Time
The average time for a pallet to complete one lap of the

main loop for the three schemes is shown in Fig 5. The
results are plotted relative to the data from the Peer to Peer
test, because it had the fastest lap times, on average. These
results are not surprising. Although all control schemes use
the same interaction pattern for reservation and pallet transfer
(i.e. polling at a 500ms interval for reservation), the Master-
Slave scheme has an additional, approximately 350ms polling
cycle to determine when the TransferIn operation is complete.
With thirteen devices in the loop, we would expect the lap
time to be approximately 13×(350/2)ms = 2.275s longer for a
single pallet.

The performance bottlenecks in the system were the
lifters, because of time taken to transfer a pallet between the
upper and lower lines. While fewer than four pallets are in the
loop, transfer times stay constant, because the pallets do not
interfere with each other. For four pallets, the marginally
faster performance of each transition using the Peer to Peer
approach results in noticeably faster average times for four
pallets, but the advantage fades for five or more pallets. This
behavior is coincidental, not inherent to the control scheme,
and would likely change if the conveyor line layout were
changed.

We can conclude that the orchestration scheme chosen has
a negligible impact on the timing of pallet transfers.

B. Communication Load
Access to network statistics for the devices was limited to

the number of packets sent and received since startup.
Although this is not useful as an absolute measure, it can be
used to compare relative performance. Fig. 8 shows a typical
data set for one test for one device. There is a spike in activity
when a new pallet is introduced, and then it stabilizes.

Fig. 6 and Fig.7 show the average load for devices before
and after the lifter bottleneck. For lower pallet numbers, the
communication load is lower devices operating under the peer
to peer and hybrid schemes. This is likely because there is no
polling taking place. Reservation requests are event-based
(i.e. sent when a pallet is received). When the pallets start to
interfere with each other, the peer to peer and combined
approaches create communication loads almost twice that of
the orchestrator approach. However, it is important to note

1 2 3 4 5 6
5

10

15

20

P
ac

ke
ts

 P
er

 S
ec

on
d

1 2 3 4 5 6
-10

-5

0

5

(re
la

tiv
e

to
 P

ee
r2

P
ee

r d
at

a)
P

ac
ke

ts
 P

er
 S

ec
on

d

Pallets

Orchestrator
Peer2Peer
Combined

Fig 6. Packets sent per second by a device before the lifter bottleneck

1 2 3 4 5 6
5

10

15

P
ac

ke
ts

 P
er

 S
ec

on
d

1 2 3 4 5 6
-2

0

2

4

6

8

(re
la

tiv
e

to
 P

ee
r2

Pe
er

 d
at

a)
P

ac
ke

ts
 P

er
 S

ec
on

d

Pallets

Orchestrator
Peer2Peer
Combined

Fig 7. Packets sent per second by a device after the lifter bottleneck

91Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

that the orchestration engine running on the PC is
experiencing a load roughly equivalent to the difference,
because the devices are not communicating directly with each
other. This raises scalability questions, because the
communications load from all devices is concentrated at the
orchestrator.

For devices after the bottleneck, as in Fig. 7,
communication load remains lower for the event-driven peer-
to-peer and combined control strategies.

V. CONCLUSIONS AND FUTURE WORK
This research shows that for small systems, timing of

physical operations, such as pallet transfers, are not very
sensitive to the choice of orchestration scheme. However,
analysis of the communication loads on the remote devices
and the orchestrator (or master PC) suggests that performance
will degrade with increasing system size for schemes that rely
heavily on a central orchestrator. Additional research is
required into the scalability of these methods.

This research lays the groundwork for designing and
testing more complex systems. A system with autonomous
devices interacting requires robust supervisory control and
monitoring. Implementing Complex Event Processing (CEP)
for monitoring and decision support for orchestration can be
also considered. Complex Event Processing, used in
conjunction with various formal system modeling methods
[2,12], is a promising approach for providing detailed
information about the state of the system, as well as fault
prediction, prevention, and detection, and deadlock
prevention in flow control.

REFERENCES
[1] F. Jammes, H. Smit, J.L. Martinez Lastra, and I.M. Delamer,

"Orchestration of service-oriented manufacturing processes,"
IEEE 10th Conference on Emerging Technologies and Factory
Automation (ETFA 05). vol. 1, pp. 617-624, 19-22 Sept. 2005

[2] C. Popescu and J.L. Martinez Lastra, "An incremental Petri
Net-derived approach to modeling of flow and resources in
service-oriented manufacturing systems," IEEE 8th
International Conference on Industrial Informatics (INDIN 10),
pp. 253-259, 13-16 July 2010

[3] A. Lobov, J. Puttonen, V.V. Herrera, R. Andiappan, and J.L.
Martinez Lastra, "Service oriented architecture in developing of
loosely-coupled manufacturing systems," 6th IEEE
International Conference on Industrial Informatics (INDIN 08),
pp. 791-796, 13-16 July 2008

[4] J.M. Mendes, P. Leitao, A.W. Colombo, and F. Restivo,
"Service-oriented process control using High-Level Petri Nets,"
6th IEEE International Conference on Industrial Informatics
(INDIN 08), pp. 750-755, 13-16 July 2008, doi:
10.1109/INDIN.2008.4618202

[5] F. Jammes and H. Smit, "Service-oriented paradigms in
industrial automation," IEEE Transactions on Industrial
Informatics, vol. 1, no. 1, pp. 62-70, Feb. 2005

[6] B. Haopin, S. Meina, X. Huiyang, W. Qian, and F. Lingyun,
"An Optimized Design of Service Orchestration," Third
International Conference on Pervasive Computing and
Applications (ICPCA 08), vol. 2, pp. 980-984, 6-8 Oct. 2008

[7] J. Sun, Y. Liu, J. Song Dong, G. Pu, and T. Hut Tan, "Model-
Based Methods for Linking Web Service Choreography and
Orchestration," 17th Asia Pacific Software Engineering
Conference (APSEC 10), pp. 166-175, Nov. 30-Dec. 3 2010,
doi: 10.1109/APSEC.2010.28

[8] Web Services Choreography Description Language Version 1.0
http://www.w3.org/TR/ws-cdl-10/ (retrieved: January, 2012)

[9] OASIS Web Services Business Process Execution Language
V2.0, 11 APR 2007, http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html (retrieved:
January, 2012)

[10] A.W. Colombo, F. Jammes, H. Smit, R. Harrison, J.L. Martinez
Lastra, and I.M. Delamer, "Service-oriented architectures for
collaborative automation," 31st Annual Conference of IEEE
Industrial Electronics Society (IECON 05), pp. 2649-2654, 6-
10 Nov. 2005, doi: 10.1109/IECON.2005.1569325

[11] Y.S. Park, T.D. Kirkham, P. Phaithoonbuathong, and R.
Harrison, "Implementing agile and collaborative automation
using Web Service orchestration," IEEE International
Symposium on Industrial Electronics (ISIE 09), pp. 86-91, 5-8
July 2009, doi: 10.1109/ISIE.2009.5213759

[12] D. Cachapa, R. Harrison, and A.W. Colombo, "Monitoring
functions as service composition in a SoA-based industrial
environment," 36th Annual Conference on IEEE Industrial
Electronics Society (IECON 10), pp. 1353-1358, 7-10 Nov.
2010, doi: 10.1109/IECON.2010.5675485

[13] InicoTech Technologies LTD; S1000 User Manual;
http://www.inicotech.com/doc/S1000%20User%20Manual.pdf
(retrieved: January, 2012)

[14] J. M. Garcia Izaguirre, A. Lobov, and J.L. Martinez Lastra,
"OPC-UA and DPWS Interoperability for Factory Floor
Monitoring using Complex Event Processing," 9 th IEEE
International Conference on Industrial Informatics (INDIN 11),
pp. 205-211, 26-29 July 2011
doi: 10.1109/INDIN.2011.6034874

[15] J. Puttonen, A. Lobov, and J.L. Martinez Lastra, "An
application of BPEL for service orchestration in an industrial
environment," IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA 08), pp. 530-
537, 15-18 Sept. 2008

[16] SODA Project Profile,
http://www.ims.es/pdf/eng/downloads/publications/SODA_prof
ile_oct-06.pdf (retrieved: January, 2012)

[17] SIRENA Project, http://www.sirena-itea.org/ (retrieved:
January, 2012)

[18] SOCRADES Project, http://www.socrades.eu/Home/
(retrieved: January, 2012)

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

Time (min)

P
ac

ke
ts

 P
er

 S
ec

on
d

Packets Per Second
New Pallet Introduced

Fig 8. Typical “Packets Per Second” data

92Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

