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Abstract—Incorporating web services at the device level is 
expected to improve many aspects of automated manufacturing 
systems, including scalability, reusability, reconfigurability, 
compatibility between equipment from different vendors, and 
cross-layer integration. There is much ongoing research into 
architectural issues and enabling technologies for service-
oriented automation, but the body of knowledge surrounding 
service identification and optimal orchestration schemes needs 
improvement. In this project, the performance of a test system, 
consisting of conveyors with embedded web service-enabled 
devices, with three different orchestration schemes is evaluated. 
The three schemes have similar message exchange patterns, but 
differ in terms of the degree of involvement of a central 
orchestrator. The schemes are compared in terms of pallet 
transfer timing, and communications load. Performance is 
similar for the small test system, but the results predicted 
scalability problems for the schemes with high reliance on a 
central orchestrator. 
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I. INTRODUCTION 
The case for applying Service Oriented Architecture 

(SOA) to  industrial  control  systems has  been made in  many 
previous research projects [1,5,10]. The benefits that Service 
Orientation at the device level is expected to bring to 
industrial applications include increased business agility, 
easier and less costly equipment reusability and 
reconfigurability, and improved cross-layer integration. In 
addition, building systems around open standards reduces a 
business' reliance on proprietary protocols, systems, and data 
formats, and can drastically decrease the effort with which 
systems from multiple vendors can be integrated, allowing 
factories to choose the best-of-breed components for all 
systems, without worrying about interoperability. 

Much of the research into service orientation in industrial 
automation has focused on architectural issues, and the 
enabling technologies and standards.  Still missing, however, 
are the practical implementation details, best practices, and 
system design methodologies that can help bridge the gap 
between systems theory and a working SOA deployment that 
exhibits some or all of the benefits touted by SOA advocates. 

Although the benefits of service orientation have been 
established, additional research is required to expand the 
body of knowledge surrounding the field.  Specific issues that 
still need to be addressed are:  

 
 

 

 How to combine scan-based and event-based 
systems? 

 Down to what level is it reasonable to have web 
services? 

 How best to compose services over a number of 
distributed devices to execute business processes? 

 How to integrate legacy equipment into a SOA-
based system? 

This paper proposes and evaluates some possible 
orchestration schemes for handling pallets on a system of 
conveyors, in an attempt to provide some answers to the 
following questions:  

 What is the best approach for composing atomic 
services into a more complex task? 

 How can we combine event- and scan-based SOA 
manufacturing systems? 

A. Orchestration and Choreography 
When discussing SOA in automation, orchestration 

typically refers to the practice of composing a set of exposed 
services, with a pre-defined interaction pattern that defines a 
business or manufacturing process [1]. The process can be 
described using a language such as Web Services Business 
Process Execution Language (WS-BPEL). The orchestration 
engine executes the application logic, sequencing and 
synchronizing service invocations to reach the business goal 
[15]. 

The focus of orchestration is on a high-level view of the 
process workflow, whereas choreography considers the lower 
level rules that define the message exchange sequences. The 
W3C candidate recommendation Web Service Choreography 
Description Language v1.0 (WS-CDL) [8] can be used to 
describe peer to peer collaboration by defining their globally 
observable behavior, where business goals are realized by 
peer to peer message exchange. 

B. Previous Research 
EU project SODA [16] investigated the eco-system 

required to build, deploy, and maintain a SOA application in 
many domains.  The SIRENA [17] project demonstrated the 
feasibility of extending SOA to the device level, and 
produced some proof-of-concept device-level services [10]. 
FP6 SOCRADES [18] evaluated a number of solutions for 
SOA at the device level, and demonstrated a SOA solution 
for automating electronics assembly.  

Much research has been done on system modeling, 
control, and decision making at higher levels, with Petri Net-
based approaches [2,4] and Timed Net Condition/Event 
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Systems (TNCES) [3]. Other research presents designs for 
orchestration engines for controlling systems composed of 
web service-enabled embedded devices [3,11].  

Some software engineering approaches to combining, 
modeling, and optimizing service orchestration and 
choreography have been proposed [6,7], but the focus has 
been on eliminating redundant data transfers to minimize 
process execution time in IT systems. Time-consuming data 
transfers between devices are not the primary concern on the 
factory floor. 

This paper describes some preliminary research into 
optimal strategies for composing device-level, fine-
granularity, atomic services, to synchronize device 
interactions to efficiently complete manufacturing processes. 
This research aims to find a balance between device-to-device 
interactions, and master-slave control schemes, with long-
term goal of providing an easier transition path  

Sections II and III introduce the test system, and describe 
the control schemes. Section IV analyzes the data, and 
Section V presents conclusions and future work. 

II. SYSTEM DESCRIPTION 
For this study, three different pallet transfer control 

schemes are tested using a varying number of pallets on the 
system shown in Fig. 1.  

The  system  consists  of  21  conveyor  segments.  An  

intelligent Web Services-enabled device controls each 
segment. This line uses the InicoTech S1000 Smart RTU 
[13]. The main loop is made up of the middle and lower lines, 
connected at either end by a lifter, 13 segments in total. The 
continuously moving loop acts as a buffer for the robot and 
manual workstations off the main line. Pallets can be 
introduced to the system at loading stations in the branches 
off the main loop. 

Each pallet has a unique RFID code, read when a pallet is 
loaded at a loading station. To transfer a pallet from one 
conveyor segment to the next, the following message 
exchange takes place, independent of the control scheme. 
This pattern is shown in Fig. 2.  

 1) Reservation Request/Response: A message containing 
the  pallet  ID  and  input  transfer  direction  is  sent  to  the  
conveyor or lifter. The reservation status, and the ID of the 
pallet holding the reservation are returned. If the pallet IDs 
match, and the status is “RESERVED,” the transfer can 
safely proceed.  If the device is not in a position to accept a 
pallet at the requested input position (e.g., reservation is 
requested at the upper end of a lifter while the lifter is down), 
the reservation status is “PENDING.” Reservation Requests 
are sent until the reservation is successful. 

 2) Transfer In Request/Response: A message containing 
the pallet ID and the input transfer direction are sent. If they 
match the reservation information, “ACCEPTED” is returned. 

 
Fig. 1.  System of conveyor segments used for testing pallet flow control schemes. 

  

 
Fig. 2.  Master-Slave Control Scheme 
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III. CONTROL SCHEME DESCRIPTIONS 
For this study, varying numbers of pallets are added to the 

main loop, driven by different control schemes. The three 
schemes chosen for comparison represent different balances 
between device-to-device interaction, and top-down 
orchestration. 

A. Master-Slave: All interactions through Orchestration Engine 
Each remote device is a DPWS server, and a single master 

DPWS client controls the pallet flow by invoking actions on 
all remote devices.  The remote devices themselves do not 
autonomously invoke actions on other remote devices. Each 
remote device supports the same set of operations: 

1) Reserve: A reservation request message is sent, 
containing a unique  RFID (Radio Frequency IDentification) 
Code to identify the pallet, and the input transfer direction. 
Direction codes supported by each device can be determined 
from metadata in the WSDL read from the device in the 
discovery phase. This operation returns the reservation state 
(free, pending, reserved), and the ID of the pallet that the 
conveyor is reserved for, if any.  

2) TransferIn: The transfer-in request message contains 
the same data as the reservation request. The operation is 
accepted if the request message matches the reservation data, 
or rejected if it does not.  

3) GetConveyorState: After the TransferIn action is 
invoked, the conveyor state is polled at some interval. The 
operation is complete when the conveyor state request returns 
"occupied."  

4) TransferOut: When a downstream conveyor is reserved, 
the transfer-out operation is invoked. The request message 
contains the pallet Id and the output direction code. 

5) ReadRfidTag: Certain devices have an RFID tag reader, 
which is used to read the unique RFID code of the pallet 
when it is first loaded, and for consistency-checking during 
operation. 

One  process  is  required  on  the  master  PC  running  the  
Orchestration Engine for each pallet. The message exchange 
pattern is shown in Fig. 2. This exchange pattern can be 
described in WS-BPEL. 

B. Peer to Peer: Devices handle pallet transfer autonomously 
The devices cooperate autonomously with each other to 

achieve common goals. Each remote device acts as a 
combined DPWS client and server, each with the ability to 
invoke actions on other remote devices. Each device supports 
the same set of services, and follows the same interaction 
pattern to allow for collision-free pallet flow. At startup, a 
supervisory control system dynamically discovers the devices 
present in the network, and based on some layout map, and 
invokes a configuration service on each device, containing 
the following information: 

 Output transfer direction code 
 Service Address of the downstream peer device 
 Input transfer direction to the downstream peer 

device 
When pallet is introduced to the system at a loading 

station, neighboring devices negotiate pallet transfer with the 
message exchange pattern shown in Fig. 3, containing the 
same Reserve and TransferIn operations as the Orchestrator 
control scheme. No TransferOut, GetConveyorState, or 
ReadRfidTag operations are required. 

C. Hybrid Approach: Peer to Peer with Decision Request 
Notifications 

In this approach, lower-level pallet transfer control 

Fig. 3.  Peer to Peer Control Scheme, using TransferPattern from Fig. 2. 
  

Fig. 4.  Combined Control Scheme, using TransferPattern from Fig. 2. 
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Fig 5.  Main Loop Cycle (Lap) Times for different Control Schemes. 
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messages (ReservationRequest, TransferIn) are exchanged 
peer to peer, as in the previous scheme, but the device 
receives transfer instructions (downstream peer service 
address, output transfer direction, peer input transfer 
direction) from the master after the device publishes a 
notification that a pallet has been received (DecisionRequest). 
This exchange pattern is shown in Fig. 4. 

When the system is stared, the master PC dynamically 
discovers all devices, and subscribes to the DecisionRequest 
notifications. When a notification is received, some logic 
executed on the master PC determines the appropriate next 
step, and sends the appropriate transfer instructions. 

IV. EXPERIMENT AND RESULTS 

The tests were conducted as follows:  
1) A configuration file describing the layout of the 

conveyor system is loaded in the control software running on 
the  master  PC.   The  master  PC  subscribes  to  the  
“PalletInformation” notifications on each device, used for 
logging purposes, common to all control schemes. 

2) A single pallet is transferred from conveyor to 
conveyor around the loop. 

3) After fifteen minutes, a new pallet is placed at a 
loading station, and introduced into the main loop with the 
existing pallets 

4) Additional pallets are introduced at approximately 
equal intervals for 90 minutes 

A. Average Pallet Lap Time 
The average time for a pallet to complete one lap of the 

main  loop  for  the  three  schemes  is  shown  in  Fig  5.   The  
results are plotted relative to the data from the Peer to Peer 
test, because it had the fastest lap times, on average. These 
results are not surprising. Although all control schemes use 
the same interaction pattern for reservation and pallet transfer 
(i.e. polling at a 500ms interval for reservation), the Master-
Slave scheme has an additional, approximately 350ms polling 
cycle to determine when the TransferIn operation is complete. 
With thirteen devices in the loop, we would expect the lap 
time to be approximately 13×(350/2)ms = 2.275s longer for a 
single pallet. 

The performance bottlenecks in the system were the 
lifters, because of time taken to transfer a pallet between the 
upper and lower lines. While fewer than four pallets are in the 
loop, transfer times stay constant, because the pallets do not 
interfere with each other. For four pallets, the marginally 
faster performance of each transition using the Peer to Peer 
approach results in noticeably faster average times for four 
pallets, but the advantage fades for five or more pallets. This 
behavior is coincidental, not inherent to the control scheme, 
and would likely change if the conveyor line layout were 
changed. 

We can conclude that the orchestration scheme chosen has 
a negligible impact on the timing of pallet transfers.  

B. Communication Load 
Access to network statistics for the devices was limited to 

the number of packets sent and received since startup. 
Although this is not useful as an absolute measure, it  can be 
used to compare relative performance. Fig. 8 shows a typical 
data set for one test for one device. There is a spike in activity 
when a new pallet is introduced, and then it stabilizes. 

Fig. 6 and Fig.7 show the average load for devices before 
and after the lifter bottleneck. For lower pallet numbers, the 
communication load is lower devices operating under the peer 
to peer and hybrid schemes.  This is likely because there is no 
polling taking place.  Reservation requests are event-based 
(i.e. sent when a pallet is received). When the pallets start to 
interfere with each other, the peer to peer and combined 
approaches create communication loads almost twice that of 
the orchestrator approach. However, it is important to note 
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Fig 6.  Packets sent per second by a device before the lifter bottleneck 
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Fig 7.  Packets sent per second by a device after the lifter bottleneck 
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that the orchestration engine running on the PC is 
experiencing a load roughly equivalent to the difference, 
because the devices are not communicating directly with each 
other. This raises scalability questions, because the 
communications load from all devices is concentrated at the 
orchestrator. 

For  devices  after  the  bottleneck,  as  in  Fig.  7,  
communication load remains lower for the event-driven peer-
to-peer and combined control strategies.  

V. CONCLUSIONS AND FUTURE WORK 
This research shows that for small systems, timing of 

physical operations, such as pallet transfers, are not very 
sensitive to the choice of orchestration scheme. However, 
analysis of the communication loads on the remote devices 
and the orchestrator (or master PC) suggests that performance 
will degrade with increasing system size for schemes that rely 
heavily on a central orchestrator. Additional research is 
required into the scalability of these methods. 

This research lays the groundwork for designing and 
testing more complex systems. A system with autonomous 
devices interacting requires robust supervisory control and 
monitoring. Implementing Complex Event Processing (CEP) 
for monitoring and decision support for orchestration can be 
also considered. Complex Event Processing, used in 
conjunction with various formal system modeling methods 
[2,12], is a promising approach for providing detailed 
information about the state of the system, as well as fault 
prediction, prevention, and detection, and deadlock 
prevention in flow control. 
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