ICNS 2024 : The Twentieth International Conference on Networking and Services

Anomaly Detection by Monitoring Communication
Volume at the Process Level of Each Host in SDN

Naoya Kitagawa

Research and Development Center for Academic Networks

National Institute of Informatics
Tokyo, Japan
kitagawa@nii.ac.jp

Kohta Ohshima
Marine Electromechanical Engineering Division
Tokyo University of Marine Science and Technology
Tokyo, Japan
kxoh@kaiyodai.ac.jp

Abstract—Software Defined Network (SDN), which enables
flexible routing control based on communication contents, has
been widely studied as a countermeasure against possible attacks
on the data plane by compromised SDN switches and hosts.
We have proposed a byte consistency verification method that
uses information such as transfer volume collected from SDN
switches to detect anomalous communications even when the
communications are encrypted. In addition, we have improved
the anomaly detection performance of this method by imple-
menting a high precision time synchronization and an SDN
switch function for each host. In this study, we extend the
scope of information collection to each host in addition to SDN
switches and propose a data plane anomaly detection method by
monitoring the communication volume of each process at each
host. Furthermore, we implemented and evaluated this method on
a network testbed and confirmed that it can be used to improve
anomaly detection accuracy.

Index Terms—Software Defined Network, Data-plane Verifica-
tion, Byte Consistency Verification

I. INTRODUCTION

Recently, network equipment using Software Defined Net-
work (SDN) and Network Functions Virtualization (NFV)
technology has been introduced into carrier networks and
data center networks, and further widespread use is expected
[1]. Compared to conventional router devices that input fixed
settings, SDN has the feature of being able to flexibly con-
trol routes using various information such as the content
of transmitted data, information on sending and receiving
terminals, and networks passed through. The SDN switches
that make up the SDN network cooperate according to control
information from the SDN controller, enabling fine control of
communication on a flow-by-flow basis.

In the operation of SDN, it is important to ensure com-
patibility with security-related technologies. Encrypted com-
munication is becoming mainstream as a measure against
information leaks, with Google reporting that 95% of its total
communication traffic was encrypted as of November 2023
[2]. While encrypted communication can ensure end-to-end
security, it also makes it difficult for network operators to use

Copyright (c) IARIA, 2024. ISBN: 978-1-68558-141-1

Naoki Moriyama
Graduate School of Marine Science and Technology
Tokyo University of Marine Science and Technology
Tokyo, Japan
m224018 @edu.kaiyodai.ac.jp

IDS and IPS, which provide security by checking the payload
of exchanged packets. Also, network administrators must also
be aware of countermeasures against SDN switches and silent
failures. SDN is often realized using software switches, which
are suggested to be more vulnerable than networks consisting
of traditional hardware-type switches [3] [4] [5] [6]. These
papers specifically point to the possibility that SDN controllers
may not be able to detect SDN switches that are compromised
or behave unintentionally. As a method to solve these security
issues, a security measure using byte integrity verification has
been proposed, which detects anomalies by collecting and
processing communication status data collected from a group
of SDN switches.

We have proposed a method to increase the granularity of
anomalies that can be detected in SDN communications by
using time information synchronized with high precision by
IEEE1588 PTPv2 [7] to ensure the time resolution of collected
communication status data, and by handling transfer volume
information in units of flows [8]. Furthermore, in order to solve
the problem of conventional byte consistency verification,
where the accuracy of information collected from the terminal
SDN switch cannot be verified, we have developed a method
to expand the range of devices that can detect anomalies
by incorporating a reporting function similar to that of SDN
switches in the host connected to the terminal SDN switch
[9]. Based on the results of our previous research, we focused
on the fact that the quality and variety of data that can be
collected from SDN switches and hosts is useful for improving
the anomaly detection performance of SDN.

In this paper, we confirmed the applicability of byte con-
sistency verification for anomaly detection in SDN networks
by collecting communication status data of each host for the
purpose of collecting more detailed communication status data
than the conventional method. In our approach, statistical
data on communication status, which can be obtained from
commands provided by the host OS (Linux), is formatted
to be compatible with SDN networks, and can be used

ICNS 2024 : The Twentieth International Conference on Networking and Services

I% SDN Controller
= |

~’-\ggregate operating status

Configuration Information

Forwarding Control
Instructions v

—

Conventional Network

SDN Switch

Control Plane

Software Defined Network

Fig. 1. Comparison of Conventional Network and Software Defined Network.

by SDN controllers and nodes that perform byte integrity
verification. Additionally, we implemented this method on a
network testbed to obtain per-process communication volume
information measured at each host and confirmed that it is
applicable to anomaly detection in SDN networks.

The rest of the paper organized as follows. Section II de-
scribes the techniques and research associated with this study.
Section III explains the proposed network verification scheme
that deals with the process-level communication volume of
hosts. Furthermore, Section IV describes an experiment in
which the proposed method was operated on a test bed. Finally,
Section V presents our concluding remarks.

II. RELATED WORK

In this section, we will explain the technology and previous
research related to this study.

A. Software Defined Network

SDN is a technology that centrally controls network devices
through software. In a conventional network, as shown in
Figure 1, the network administrator configures each router
with information for routing control, and the router forwards
packets according to the configuration. On the other hand,
SDN can issue forwarding control instructions to the entire
SDN switches by configuring the SDN controller, and the
SDN switches perform packet forwarding based on these
instructions from the SDN controller. Therefore, SDN allows
dynamic control based on the operating status of each SDN
switch. Flexible control in SDN is achieved by separating the
data plane, which handles data forwarding functions, and the
control plane, which handles control functions [10].

OpenFlow [11] is widely used as a specification for imple-
menting SDN, and OpenFlow controller implementations such
as Floodlight exist [12]. Although SDN allows for flexible
control of the network, several security issues have been
reported with SDN [3] [13]. For example, there are known
attacks in which malicious switches attack the data plane or
mislead the SDN controller about the network topology, and
methods have been reported to solve these problems [4] [5].

Copyright (c) IARIA, 2024. ISBN: 978-1-68558-141-1

| SDN Controller |
SDN Controller . |

Transmission
Information

SDN Switch

OpenFlow Switch

Fig. 2. Byte Consistency Verification by SPHINX.

B. Data Plane Security in SDN

If the network is compromised in SDN, unintended packets
may be discarded or generated, routes may be changed. In
order to prevent such problems from occurring, there are
verification techniques for protecting the data plane. SPHINX
verifies compromised switches using a technique called byte
consistency verification [4]. This method detects anomalies
by having each switch collect and compare transfer volume
information.

Figure 2 shows the operation of byte consistency verifi-
cation by SPHINX. This technique receives a report of the
forwarding volume information from each switch. Next, from
the information received, this method calculates a moving
average (>_) of the transfer volume information for each SDN
switch and a value (3, ;) obtained by averaging the moving
average for each SDN switch over all SDN switches. Then, this
method verifies whether the average value deviates from the
moving average value of each SDN switch by the inequality
in Equation 1, using a predetermined threshold 7 value.

DY

- < =< (1)

T Zavg
If the threshold 7 is smaller than an appropriate value,
false positives are likely to occur, and if it is larger than the
appropriate value, false negatives are likely to occur. Therefore

ICNS 2024 : The Twentieth International Conference on Networking and Services

SDN Controller
OpenFlow Switch

@ In-host SDN switch
L

Host

Alert

In-host Information

Transfer volume information
for each switch

5

Collection Function

Host Information
Collection

y- /|
Host Information
Collection Server

Host Information
Sending Agent

« Implementation of a function to
collect transfer information per

process in the hosts

Implemented a function to send
to host information collection

Transfer amount information
for each process

server with emphasis on
cooperation with SDN controller

Fig. 3. Overview of the Proposed Method.

the appropriate value for 7 varies depending on the network
configuration, the type of switch used, it is necessary to set an
appropriate value for each network. However, since SPHINX
performs byte integrity verification using network switch
forwarding volume information, it cannot verify whether an
edge switch is malicious or not, and it does not support flow
aggregation. In addition, various other SDN data plane security
measures have been proposed [13].

C. WhiteRabbit

As described in Section II-B, SPHINX has the issue that
the accuracy of detection is affected by variations in the
timing of obtaining statistic information from switches. To
address this issue, WhiteRabbit has improved the deterioration
of verification accuracy due to acquisition timing deviations
by using IEEE1588 PTPv2 for high-precision time synchro-
nization and scheduling the timing of acquisition of transfer
volume information [8]. However, WhiteRabbit, like SPHINX,
does not verify edge switches and does not support flow
aggregation.

D. Edge Switch Validation with In-host Switches

As mentioned in Sections II-B and II-C, there is a problem
in that byte consistency verification using only SDN switch in-
formation cannot verify edge switches. To solve this problem,
we proposed a method to obtain the communication volume of
each host [9]. This method builds a switch inside the host to
obtain the host’s communication volume and behaves like any
other SDN switch, allowing byte integrity verification between
the edge switch and the host. However, this method requires
the threshold 7 in Equation 1 to be larger than the conventional

Copyright (c) IARIA, 2024. ISBN: 978-1-68558-141-1

method, which may miss minute network anomalies or attacks
that take place in a very small amount of time.

III. PROPOSED METHOD

In order to overcome the issues described in Section II, in
this section, we describe a network verification scheme that
deals with the process-level communication volume of hosts.
Figure 3 shows an overview of the proposed method. As shown
in Figure 3, host information is collected by implementing
an in-host information collection function on hosts on con-
ventional SDN. In addition, we deployed a host information
collection server to compare the SDN controller’s collection
of each SDN switch’s forwarding volume information. This
allows the verification system to perform host information-
aware verification. By using this system, it is possible to
improve the accuracy of detecting abnormal networks by
classifying communication volume using more detailed host
information that could not be obtained using the conventional
method.

This system requires the implementation of the following
two functions.

1) A function for each host to send the collected data to
the host information collection server after collecting its
own process-level traffic information.

2) A function for the SDN controller to report the traffic
information of each switch to the host information
collection server.

In addition, the host information collection server needs to
know which host sent the data from the host and compare it
with the transfer volume information of each switch. Further-
more, the hosts need to implement a function to collect its

ICNS 2024 : The Twentieth International Conference on Networking and Services

own process-level traffic and send the collected information
to the server.

A. Host Information Collection Server

The host information collection server monitors the traffic
information of all hosts that have executed the intra-host
information transmission agent, and alerts the user according
to the conditions based on the statistics of the traffic infor-
mation. The host information collection server collects per-
process communication volume information from each host
and compares it with the transfer volume information of each
switch collected by the SDN controller, and outputs an alert
to the network administrator if any abnormality is found.

B. Host Information Collection Agent

The host information collection agent, which is imple-
mented on each host, executes the ss command provided by
the Linux OS as an external command execution to obtain
the cumulative amount of packet reception as statistical infor-
mation for each process. Then, the agent sends the acquired
information to the host information collection server. By
repeating these processes periodically, the host information
collection agent collects transfer volume information for each
host.

IV. EXPERIMENT

To verify and evaluate the operation of the host information
collection function using this method, we implement an ex-
perimental network on DeterLab, a network testbed operated
by University of Southern California Information Sciences
Institute and University of Utah [14].

We used a total of 18 nodes on DeterLLab, each with an SDN
controller, a verification component, SDN switches (7 nodes),
hosts (8 nodes), and a Prometheus server. The network for
this experiment is a tree network topology with Depth = 2
and Fanout = 2. Depth indicates the depth of the hierarchy
from the root node, and F'anout indicates how many nodes are
connected in one branching. We used Prometheus [15] [16] to
implement the host information collection server. Prometheus
is a network monitoring system developed by the Cloud Native
Computing Foundation that can collect and analyze time-
series data. Additionally, as mentioned in Section 3.2, we used
Linux’s ss command, which can obtain the status of network
sockets, to implement the host information collection agent.
We primarily used the bytes_received entry (the cumulative
number of bytes received by the socket) in the internal TCP
information that can be obtained by running the ss command
with the ¢ option added.

Table I shows the specifications of the MicroCloud on
DeterLab used in this experiment. All 18 nodes we used in
this experiment used equipment with the same specifications.
We used Floodlight v1.2 [17] as an SDN controller. Also, we
implemented an OpenFlow proxy, stopcock [18], between the
group of switches and the controller as the verification compo-
nent for route verification and used ofsoftswitch13_EXT340
[19] as the SDN switches. Since this experimental network

Copyright (c) IARIA, 2024. ISBN: 978-1-68558-141-1

TABLE I
SPECIFICATIONS OF MICROCLOUD NODES IN DETERLAB USED IN THIS
EXPERIMENT.

Type Specifications
CPU Intel(R) Xeon(R) E3-1260L Quad-Core Processor Running
at 2.4 GHz
Memory | 16GB
Storage 250GB SATA Western Digital RE4 Disk Drive
oS Ubuntu 16.04 STD

Fig. 4. Traffic Flows in This Experiment.

consists of actual equipment rather than simulators or emu-
lators, we can verify the operation in an environment that is
closer to actual operation.

A. Experimental Method

In this experiment, we generated traffic between hosts in the
network built on the testbed described in this section to verify
that the host information collection system could correctly
transmit host information. Figure 4 shows the traffic flow for a
TCP 3-hop path that uses iperf to generate traffic to port 5201.
As shown in this figure, we generated traffic simultaneously
and mutually between a total of four groups: R0 and h4, hl
and hb5, h2 and h6, and h3 and A7, and confirmed whether
the transfer amount information could be collected correctly
by the Prometheus server. As a validation of the operation,
we verify that the following four items are reported correctly:
(1) information reported by the host information collection
agent to the Prometheus server, (2) the host’s own IP address
and port number, (3) the source IP address and port number,
and (4) the received bytes. In addition, by verifying that time-
series data is produced from the reports and that reports can
be received from multiple hosts simultaneously, we evaluate
the feasibility of this host information collection system in a
real operational environment.

B. Evaluation of the experiment

As an example of a communication volume report sent from
a single host to the Prometheus server, Figure 5 shows the

ICNS 2024 : The Twentieth International Conference on Networking and Services

Q@ bute_received_sslinstance="10.1.100.107:8100" Lacs | _sddress_Far:=""10.1.200, 53,4}

. |

Table Grapt

BB e B - [EEE

Fig. 5. Number of Received Bytes Associated with iperf Communication in
hO Transition.

Q byte_received_ssilocal _address_Port=""10.1.200.+") ® m
ph !)
Fig. 6. Number of Bytes Received Related to iperf Communication for All
Hosts.

transition of the transfer volume information regarding iperf
sent from h0. As in the h0 example, we observed that iperf
traffic was generated on all other hosts as well, with each
host reporting an increasing number of bytes received and
organized as time-series data. Then, Figure 6 visualizes the
change in transfer volume information for all hosts rather
than a single host. As shown in this figure, we confirmed
that the Prometheus server receives traffic reports from all
hosts. By multiplying the information collected from these
hosts with the transfer volume information held by SPHINX
and WhiteRabbit, byte consistency verification can be achieved
with additional host information and is expected to improve
the reliability of anomaly detection.

V. CONCLUSION

With the spread of SDN, technologies to protect the data
plane are becoming increasingly important, and there is grow-
ing interest in protecting the data plane, which is achieved

Copyright (c) IARIA, 2024. ISBN: 978-1-68558-141-1

through software switches. One technology for protecting
the data plane is byte consistency verification, which detects
anomalies based on communication status data collected from
a group of SDN switches.

We have proposed a method to improve detection accuracy
by handling transfer amount information on a flow-by-flow
basis using high-precision time synchronization. We have also
developed a technology that expands the range of devices that
can be detected by implementing a switch on the host. Based
on the results of these previous studies, we hypothesized that
using host information for network verification in SDN could
improve the accuracy of network verification, and proposed
a method to collect forwarding volume information for each
host in this paper.

In this paper, in order to evaluate the proposed method,
we used the open source software Prometheus to obtain per-
process communication volume information measured at each
host and validated a scheme to use it to detect anomalies in
SDN networks. To achieve this verification, we developed an
agent that allows each host to send traffic information for
each process to the Prometheus server, and implemented the
proposed system on DETERLab, a network testbed, to confirm
its operation. When traffic was generated between the hosts to
verify the operation, we checked the traffic volume of each
host from the Prometheus server.

As future work, we plan to conduct verification experiments
that cross the communication volume information at the pro-
cess level of each host obtained in this study with SPHINX
and WhiteRabbit data.

ACKNOWLEDGEMENT

We would like to thank the team at the University of South
California Information Sciences Institute and the University of
Utah, which operates the DeterLab project, for providing the
network testbed for this research.

This work was supported by JSPS KAKENHI Grant Num-
ber JP19K20252.

REFERENCES

[1] R. Souza, K. Dias and S. Fernandes, “NFV Data Centers: A Systematic
Review,” IEEE Access, vol. 8, pp. 51713-51735, 2020.

[2] “HTTPS encryption on the web,” https://transparencyreport.google.com/
https/overview ?lang=en&hl=en (Accessed: Dec 10, 2023).

[3] D. Kreutz, F. M. V. Ramos, and P. Verissimo, ‘“Towards secure and
dependable software-defined networks,” Proc. of the 2013 ACM SIG-
COMM Workshop on Hot Topics in Software Defined Networking, pp.
55-60, 2013.

[4] M. Dhawan, R. Poddar, K. Mahajan, and V. Mann, “SPHINX: De-
tecting Security Attacks in Software- Defined Networks,” 2015, doi:
10.14722/ndss.2015.23064.

[5] A. Shaghaghi, M. A. Kaafar, and S. Jha, “WedgeTail: An intrusion
prevention system for the data plane of software defined networks,” Proc.
of the 2017 ACM Asia Conference on Computer and Communications
Security, pp. 849-861, 2017.

[6] A.Feldmann, P. Heyder, M. Kreutzer, S. Schmid, J. Seifert, H. Shulman,
et al., “NetCo: Reliable Routing with Unreliable Routers,” Proc. of 46th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, pp. 128-135, 2016.

[7]1 IEEE, 1588-2008, "IEEE Standard for a Precision Clock Synchroniza-
tion Protocol for Networked Measurement and Control Systems”, pp.
1-300, 2008.

ICNS 2024 : The Twentieth International Conference on Networking and Services

[8] T. Shimizu, N. Kitagawa, K. Ohshima and N. Yamai, “WhiteRabbit:
Scalable Software-Defined Network Data-Plane Verification Method
Through Time Scheduling,” IEEE Access, vol. 7, pp. 97296-97306,
2019.

[9]1 T. Amano, T. Shimizu, N. Kitagawa, and K. Ohshima, “SDN Data-Plane
Verification Method using End-to-End Traffic Statistics,” IEICE Tech.
Rep., vol. 120, no. 413, NS2020-163, pp. 238-243, 2021 (in Japanese).

[10] K. Benzekki, A. Fergougui, and A. Elalaoui, “Software- defined net-
working (SDN): a survey,” Security and communication networks 9.18,
pp. 5803-5833, 2016.

[11] N. McKeown, T. Anderson, H.i Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, et al., “OpenFlow: enabling innovation in campus networks,”
ACM SIGCOMM computer communication review 38.2, pp. 69-74,
2008.

[12] S. Scott-Hayward, S. Natarajan and S. Sezer, “A Survey of Security
in Software Defined Networks,” IEEE Communications Surveys &
Tutorials, vol. 18, no. 1, pp. 623-654, 2016.

[13] C. Black and S. Scott-Hayward, “A Survey on the Verification of
Adversarial Data Planes in Software-Defined Networks,” Proc. of the
2021 ACM International Workshop on Software Defined Networks &
Network Function Virtualization Security, pp. 3-10, 2021.

[14] “DeterLab,” https://www.isi.deterlab.net/ (Accessed: Dec. 10, 2023).

[15] “Prometheus,” https://prometheus.io (Accessed: Dec. 10, 2023).

[16] “GitHub - prometheus/Prometheus: The Prometheus monitoring system
and time series database,” https://github.com/prometheus/prometheus
(Accessed Dec. 10, 2023).

[17] “Floodlight Controller,” https://floodlight.atlassian.net/wiki/spaces/
floodlightcontroller/overview (Accessed Dec. 10, 2023).

[18] P. Wood, “stopcock,” https:/github.com/tignetworking/stopcock/ (Ac-
cessed Jun. 24, 2019).

[19] “ofsoftswitch13_EXT-340,” https://github.com/oronanschel/
ofsoftswitch13_EXT-340 (Accessed Dec. 10, 2023).

Copyright (c) IARIA, 2024. ISBN: 978-1-68558-141-1

