
Meshed Trees for Resilient Switched Networks

Peter Willis1, Nirmala Shenoy2

Dept. of Information Sciences and Technologies,
Golisano College of Computing and Information Sciences

Rochester Institute of Technology, Rochester, New York, USA
e-mail: 1pjw7904@rit.edu, 2nxsvks@rit.edu

Abstract— Layer 2 (L2) protocols are fundamental to all
network communications. Loop-avoidance in L2 operations
is essential for forwarding broadcast frames without them
looping throughout network. Loop-avoidance protocols
construct a logical tree on the meshed topology, normally
used to provide path redundancy in switched networks.
Repairing the tree on topology changes results in expensive
network downtime and is major challenge faced in L2
networks. In this article, we present the Meshed Tree
Protocol (MTP) based on a novel Meshed Tree Algorithm
(MTA) as a clean-slate approach to loop avoidance in
switched network. MTP leverages the connectivity in the
meshed topology to pre-construct several trees from a root.
Multiple backup paths are in readiness to takeover in the
event of failure of the main path for fast convergence. We
limit our work in this article to a comparison of a coded
prototype implementation of MTP vs. the Rapid Spanning
Tree Protocol (RSTP) in L2 customer networks. The
evaluation was conducted on the GENI (Global Environment
for Network Innovation) testbed.

Keywords-Meshed Trees; Pre-constructed Paths; Path
Vector VIDs; Hysteresis in Failure Detection.

I. INTRODUCTION

High-performance switched networks are in great
demand with the growth in L2 Customer (C), Service
Provider (SP) and Backbone Provider (BP) networks.
Meshed topologies are adopted in switched networks to
provide path redundancy. Consequently, handling of
broadcast frames poses a challenge. When a switch
receives a broadcast frame on a port it forwards it on all
other ports (except the port it was received on). Because
there are physical loops in the network due to the meshed
topology, this can result in broadcast frames looping in the
network infinitely and crashing the network. For this
purpose, it is important to forward brought broadcast
frames on paths that do not loop. The traditional approach
is to construct a logical tree on the physical meshed
topology and allow broadcast frames to be forwarded
along the tree paths. To construct a logical tree on the
switched network, loop avoidance protocols are used.
Loop-avoidance protocols use tree algorithms such as
Spanning tree and Dijkstra tree to construct the logical
tree. Tree algorithms allow construction of a single tree
from a root. Hence on a link or switch failure when a tree
branch fails, protocols based of these algorithms must
reconstruct/repair the tree. As a result, the convergence
latency in the event of a network component failure can be
high. This is a setback for applications running on
switched networks that desire high availability.

Constructing a single logical tree on a meshed topology
logically sacrifices the rich path redundancy in the meshed
topology. We propose a novel meshed trees algorithm
(MTA) that allows construction of multiple trees from a
single root. The branches from the multiple trees mesh at
the switches thus keeping the redundant paths in readiness
and the failover in the event of a (currently used) path
failure is immediate. We further propose a novel virtual
identifier to pre-construct and maintain the multiple trees.
This simplifies the meshed tree protocol implementation
significantly, making the protocol lightweight and robust.

In this article, we limit our performance comparison of
MTP vs RSTP to highlight the significant performance
improvement (several magnitudes) in terms of
convergence on link failures that can be achieved with a
simple and robust protocol, especially in L2 customer
networks. RSTP is a standard protocol and its code is
available on the GENI testbed, hence it is readily available
to compare the two working prototypes. RSTP also serves
as a reference. We collect measurements of an
implementation of MTP and RSTP on the GENI testbed
[10], for multiple network topologies. A detailed analysis
and study of MTP vs RSTP convergence process
considering tree construction and recovery on failures,
based on message exchanges and port role changes is
provided. Several sets of test cases were evaluated. The
tree construction process with MTP and RSTP are
highlighted and contrasted to explain the difference in
operational complexity between the two protocols and to
justify the performance improvements with MTP. Future
work will cover a study of MTP vs IS-IS based loop-
avoidance protocols for L2 SP and BP networks.

The rest of the paper is structured as follows. In
Section II, we discuss background work on loop-avoidance
protocols, primarily focusing on standards, followed by an
introduction to meshed trees. We discuss IS-IS based
protocols, the latest loop avoidance protocol standards to
address convergence delays experienced by spanning tree
protocols, only to highlight their complexity and
limitations. We also introduce and compare meshed trees
with Dijkstra and spanning trees. Section III describes a
meshed trees implementation in a switched network with
an example highlighting several of its attributes. Section
IV focusses on the performance metrics that will be
studied and their significance. Section V provides details
on protocol evaluations, and tools and techniques to assess
performance. Subsections discuss in detail the performance
in three different topologies for multiple test cases. The
failures were limited to single link failures and the relative
position in the tree which plays an important role in the

39Copyright (c) IARIA, 2020. ISBN: 978-1-61208-786-3

ICNS 2020 : The Sixteenth International Conference on Networking and Services

Figure 1. Meshed Trees vs Spanning/Dijkstra Tree

convergence latency experienced in switched networks.
Section VI provides a summary of the results highlighting
the significant difference protocol recovery latency and
messages among the 2 protocols. Section VII provides a
brief conclusion and future work.

II. BACKGROUND

In this section, we present the two major categories of
loop avoidance protocols for use in switched networks.
Though other alternatives have been proposed we focus on
these two categories as they are widely used and serve as a
standard for performance comparison. They are:

1. The Spanning Tree Protocol family
2. Dijkstra’s Tree Algorithm based Protocols

A. The Spanning Tree Protocol (STP) Family

This includes STP and its faster version – Rapid STP
(RSTP), for construction of a single tree in a local area
network (LAN). (We limit the discussions in this article to
a single LAN). STP has been an IEEE standard since
1998 [8]. In STP, switches exchange Bridge Protocol Data
Units (BPDUs) to decide on a logical spanning tree. Roles
are assigned to ports so they can allow or block frames.
Bridge Medium Access Control (MAC) addresses and
port numbers are used to break ties during spanning tree
construction. STP recovery process on topology changes
result in transients and high recovery delays, as STP uses
many timers. RSTP IEEE 802.1w [2] avoids delays
incurred due to extensive timer usage by STP and speeds
up convergence through fast exchange of proposal and
agreement message among switches. RSTP further
reduced convergence times by holding a port in readiness
if the best port to reach the root bridge (the root port) fails.

B. Dijkstra’s Tree Algorithm based Protocols

For high performance networks, such as L2 SP and BP
networks, the delays incurred with RSTP were
unacceptable. As a consequence, Inter-System Inter-
System (IS-IS) based Layer 3 routing solutions that use
Dijkstra trees were introduced into L2 operations to
improve path and root switch failure resiliency. The IS-IS
based solutions construct shortest paths trees from every
switch (as a root), to cut down root reelection time. Loop
avoidance protocols that use Dijkstra’s algorithm are
TRILL (Transparent Interconnection of Lots of Links) on
RBridges (Router Bridges) [4][5] and Shortest Path
Bridging (SPB) [7]. Radia Perlman, the inventor of STP,
introduced TRILL [5] as an Internet Engineering Task
Force (IETF) effort, as it operates above L2. The TRILL
protocol uses the IS-IS routing protocol to take advantage
of the numerous trees constructed using Dijkstra’s
algorithm. Similar to TRILL, SPB, is an IEEE effort that
introduced IS-IS link state routing into L2 [7]. Using IS-IS
links state routing incurs the following
overhead/limitations:
o IS-IS messages are encapsulated in L2 or TRILL

messages adding to operational overhead and
complexity.

o IS-IS cannot guarantee true loop-freedom; a hop count is
included to track and discard looping frames.

o Dijkstra’s tree construction is computation intensive [9]
and not suited for fast convergence in dynamic
networks. During the re-computation time on topology
changes, frame delivery is not guaranteed.

o Any link state change must be propagated to all
switches, which then wait for a settling time to compute
new Dijkstra trees. During this period, frame forwarding
is unreliable.

o Reverse congruency requires all switches to compute
Dijkstra trees from all other switches, so they can use the
same ports in source address tables to forward frames to
end devices connected to the other switch. This
multiplies the operation complexity and overhead by the
number of switches and is a scalability issue.

C. The Need for a New Approach

Current loop-avoidance protocols construct a single
logical tree to avoid looping of broadcast frames in meshed
networks. This is true for protocols based on spanning
trees or on Dijkstra trees. In the event of a single link
failure both categories of protocols require dissemination
of this information to all switches so they can
reconstruct/repair the trees. Repairing trees takes time
which is the reason for the convergence latency faced in
current loop avoidance protocols. We propose a clean slate
approach, which uses Meshed Tree Algorithm that enables
construction of multiple trees from a single root.

D. The Meshed Tree Algorithm

Instead of a single spanning tree or shortest path tree as
possible with current tree algorithms, MTP [1] adopts a
new MTA to compute multiple trees from a root. The
multiple paths constructed mesh at the switches and hence
are called meshed trees. MTP leverages the connectivity in
meshed networks to provision redundant paths from every
switch to the root. The redundant paths are in readiness to
takeover in the event of a link or main path failure.
Maintaining multiple branches would seem to add to the
operational complexity, but we use a novel Path Vector
virtual ID technique to construct and maintain meshed
trees resulting in an extremely light weight protocol, as
discussed in Section III.

The Meshed Tree Algorithm – is the first of its kind
that allows preconstruction of multiple tree branches from
a single root. We describe the concept of Meshed trees
using Figure 1. In Figure 1, we compare spanning /shortest
path tree constructed using Dijkstra and Spanning Tree

40Copyright (c) IARIA, 2020. ISBN: 978-1-61208-786-3

ICNS 2020 : The Sixteenth International Conference on Networking and Services

algorithms to meshed trees. On the top left is a 5-node, 6-
edge connected graph. Using either Dijkstra’s or Spanning
Tree algorithm, one of three trees, i.e. red, blue or orange
tree, can be constructed – the outcome is always one tree,
from the root node A. The bottom left shows a meshed
tree, in which all three trees (red, blue and orange) co-exist
allowing each node to have multiple paths to the root node
A and to reach any other node. In the event a path fails,
another path is readily available.

III. THE MESHED TREE PROTOCOL

The Meshed Tree Protocol builds fault tolerance in
switched networks by computing multiple tree paths from
each switch to the root. This ensures that there are
alternative paths in readiness on switch or link failures.
The number of alternative paths that a switch records can
be set as a parameter. MTP computes and maintain these
paths with very low overhead and operational complexity
using virtual identifiers (VIDs). A VID at a switch
identifies a path to the root. A switch acquires and stores
multiple VIDs. Hop count is inherent in the VID. VIDs
also aid in loop-detection, cutting down on processing time
and operational overhead significantly. VIDs are discussed
in the Sections below.

A. Meshed Tree Protocol Overview

In this section we explain the construction of meshed
trees by MTP in a switched network. We start by
designating a root switch it and assigning it a unique VID.
Rationale for Root switch designation is discussed next.

1) Root Switch Designation
A switch is designated to be the root. We decided to

designate a root to avoid root election delays. However, in
the event of failure of this root, we need another root to
take over. In spanning tree-based protocols, on the failure
of the root, a root election is conducted to elect the next
root, subsequent to which the spanning tree is constructed.
The root election process incurs heavy delays. Spanning
tree protocols, further bias the root election by setting the
switch priority such that the switch with higher capacity
gets elected as root. This is necessary as the traffic carried
by the root switch is significantly higher than other
switches. In the case of Dijkstra’s algorithm based
protocols, every switch is a root, which is an overkill as the
number of trees constructed equals the number of switches.

With Mesh Tree Protocol, we designate an optimal
number of switches to be roots – one is the primary root,
the next is the secondary root and so on. The number of
meshed trees constructed equals the number of roots

designated. Depending on the network availability needs
and based on the services they support, the number of roots
can be optimized. The rational for using an optimal set of
roots is to avoid root election delay if we used one root, as
in spanning tree protocols, and at the same time avoid
excessive computations required in computing trees from
every switch as with Dijkstra algorithm based protocols.
In this article, we restrict our presentation and analysis to a
single rooted meshed tree. The goal is to demonstrate fast
convergence and quick recovery of broadcast frame
forwarding (due to the pre-constructed backup paths) in
the event of link failures.

2) Meshed Tree Construction
Meshed trees are constructed and maintained at the

switches where the tree information is stored as VIDs. As
previously stated, a root is designated and is assigned a
VID - say ‘1’. All other switches acquire VIDs as MTP is
executed in the switches. A VID stored at a switch (not the
root) is a concatenation of numbers where the first number
is the VID of the root. The numbers following the root
VID are the port numbers of switches that identify a path
to the root. We use a dotted decimal notation for this
purpose. For example, a switch – say S1 connected on port
2 of the root switch, will acquire a VID of 1.2. A switch S2
connected on port 3 of switch S1, will acquire a VID of
1.2.3 where the VID 1.2.3 defines the path from switch S2
to the root via switch S1. We next describe the process of
using VIDs to define multiple tree paths from every switch
to the root using an example 5-switch network.

We use Figure 2 to explain meshed tree construction
in a 5- switch network. Figure 2A shows the 5-switch
topology. Switch port numbers are noted besides each
switch. In Figure 2B, a pink logical tree starting at the root
and reaching all switches is shown. We now walk through
the process of how the pink logical tree was constructed.
The tree construction begins from the root. The root offers
(through an advertisement) VID 1.1 on port 1 (appending
the outgoing port number 1 to its VID 1). Switch S1 that
receives this offer accepts and joins the pink tree by storing
VID 1.1. Next, S1 offers VID 1.1.2 to S3 on its port 2. S3
offers VID 1.1.2.2 to S2, and 1.1.2.3 to S4 (as S2 is
connected at port 2, and S4 at port 3, of S3). VIDs 1, 1.1,
1.1.2, 1.1.2.2, 1.1.2.3 define the pink logical tree.

In Figure 2C, a similar procedure is used to build the
orange tree, from the Root via switch S2 and this tree is
defined by VIDs 1, 1.2, 1.2.2, 1.2.3, 1.2.2.1. Figure 2D
shows how both trees, are maintained at the switches by
simply storing both sets of VIDs.

Figure 2. Meshed Trees in Switched Networks

41Copyright (c) IARIA, 2020. ISBN: 978-1-61208-786-3

ICNS 2020 : The Sixteenth International Conference on Networking and Services

MTP uses messages that advertise VIDs, and a switch
that accepts a VID informs the upstream switch of the
VIDs it accepts. We do not include the protocol
implementation details in this article, but restrict our
presentation to its operations. On startup as only the root
switch has a VID, switches that do not have a VID will
issue a join-request message on their ports. Figure 3 is a
flow chart used at the switches to construct meshed trees.

When MTP is started in a switch, the switch first
checks if it is designated root. If this is true (it will have
an assigned VID), the root will send a VID advertisement
on all its ports. The VID advertisement on each port will
be different because when advertising its VID it will
append the port number on which the VID advertisement
will be sent. Switches that are not designated roots will
send a join-request to receive VID advertisements from its
neighbors. Every switch that acquires a VID will advertise
on all other ports except the port on which the VID was
acquired. Thus, switches receive multiple VID
advertisements and are able to select VIDs based on the
path metric and store them in a VID table, in order of
preference. Before accepting a VID, switches do a loop
check which is explained below. MTP uses the hello timer
to keep its neighbors informed about its current active
status. Any changes to the VID tables are advertised.

3) Loop Detection and Preemption
We explain loop detection and pre-emption using an

example from Figure 2D. Let S3 offer VID 1.1.2.1 to
switch S1. S1 compares the offered VID with its current
VIDs, 1.1 and 1.2.2.1. Its current VID 1.1 is a proper
prefix of the offered VID 1.1.2.1, so S1 knows it is its
own ancestor in the offered path to the root. S1 thus
detects a loop and will not accept this VID. (Note - the
number of digits in the VID is direct measure of hop
count).

4) The Distributed Approach to Tree Construction
The process of selecting the best set of VIDs is decided

by each switch independently based on the advertisements
it hears from its neighbors. On receiving multiple VIDs, a
switch stores them in order of preference based on hop
count, path cost, or any other metric. In this article, hop
count is used. To limit the tree meshing and conserve on
memory usage the number of VIDs stored by a switch is
limited. The limited number of VID’s in this
implementation is 3. The fact that each switch
independently decides on the VIDs it stores based on a
preference criterion makes the protocol robust.

5) The Broadcast Tree
Of the multiple tree paths from each switch to the

root, at any time only one path will be used to avoid

looping of broadcast frames. For this purpose, a switch
declares one of its VIDs as Primary VID (PVID). The
PVID is decided based hop count in this study. Thus, in
this study, switches use the shortest VID from the set of
VID’s that they have stored, as the PVID. A PVID and the
PVID port provide the lowest cost path from a switch to
the root.

A switch also records its neighbors who have chosen it
as the “PVID parent”, noting their PVID as a child-PVID
(CPVID) and their port of connection. While a PVID and
its port of acquisition connect a switch to the Root, a
CPVID port and its port of connection provides the link
between a downstream switch and an upstream switch.
The PVID, CPVID ports map out the broadcast tree to
reach every switch – the broadcast tree is the tree that
spans all switches and is used to forward the broadcast
frame. We use Figure 2D to explain the broadcast tree
defined by MTP. In Figure 4 we show Figure 2D only
with the PVID selected by each switch, its port of
acquisition and the CPVID port recorded by a switch and
the port on which the CPVID was issued. In Figure 4, the
connected CPVID and PVID ports using green arrows
represent the broadcast tree. Note that the broadcast tree
reach is limited to the switches and not extended to the
links between the switches. This is in line with the later
loop avoidance protocols that do not support hubs or
shared media: example IS-IS based protocols. This
further simplifies the tree construction as compared to
spanning tree protocols.

6) Reducing Failure Detection Time
Failure detection time is one of the major contributors

to convergence latency in most routing and loop-avoidance
protocols. To reduce failure detection, Bidirectional
Failure Detection (BFD) protocols was introduced [13].
BFD can be invoked by any protocol or application that

Figure 4. Broadcast Tree for Meshed tree in Figure 2D

Figure 3. Flow Chart for Simplified Meshed Tree Construction in Switched Network

42Copyright (c) IARIA, 2020. ISBN: 978-1-61208-786-3

ICNS 2020 : The Sixteenth International Conference on Networking and Services

requires faster notification on connection failures. It is
implemented in the forwarding engine of the system. The
idea behind BFD is similar to a ‘hello protocol’ and it
sends hello messages at a higher frequency. However, a
flapping interface can generate excessive change
notifications in the system resulting in an unstable system.
BFD introduces dampening [14] for this purpose, where
the client application is not informed if the interface is
flapping. However, during the time that an interface is
flapping, frames being forwarded or received via that
interface may not be forwarded correctly.

RSTP did not adopt BFD and instead uses a hello timer
of 2 seconds and a dead time interval which is 3 times the
hello timer – these are the default settings. This results in
a failure detection time of anywhere between 5 to 7
seconds. In the set of studies presented in this article, we
used these default settings as they serve as a reference.
However, we separately recorded the failure detection time
and the protocol recovery time to highlight the significant
role played by protocols in the recovery time experienced
in networks. It is the protocol recovery time and the
messages exchanged during convergence that we compare
primarily between RSTP and MTP.

7) Failure Detection with Hysteresis in MTP
The VID based approach in MTP and the storage of

multiple VIDs provides a mechanism for us to speed up
failure detection with MTP without the need for BFD.
This approach also avoids the flapping interface problem.
Because there are multiple pre-constructed paths which are
identified by the VID’s, in the event of a single missing
hello message from a neighbor switch, a switch that has a
VID derived on the port (of failure) removes this VID
immediately into a quarantine table. The switch falls back
to the next VID in its VID table. The VID changes
(deletes) are advertised in the switched network and other
switches if required update their VID table. However, if
the port comes up active, this switch will wait for ‘n’
consecutive hello messages before re-instating the deleted
VID from the quarantine table. Maintaining the deleted
VID in the quarantine table helps to identify a recovering
VID and avoid impacts of interface flapping – we call this
the hysteresis approach. The value of ‘n’ was set to 3 in
the studies. This avoids the flapping interface problem and
hello messages between switches could be exchanged at a
higher frequency. Thus MTP provides an efficient solution
to the flapping interface problem.

In this experimental study, we set the hello interval to 1
second and the dead time interval to 2 times the hello
interval. The hello interval and dead time interval can be
further adjusted to speed up failure detection. The hello
messages used in MTP are single byte messages and incur
very little overhead- considerably less than BFD messages.
Tuning the hello interval and a dead time interval of MTP
would be a more desirable approach as there is no need to
set up communication between MTP and BFD and also
establishing sessions between every pair of switches –
which is typically the approach used when BFD is used for
failure detection.

With MTP, we are able quarantine the deleted VID and
fallback on the next VID as all these VID’s are

precomputed and stored in the VID table. No re-
computation is required on a topology change and MTP
bypasses this delay completely. This is the first protocol
that can support fast failure detection using a hysteresis
approach.

IV. PERFORMANCE METRICS

The performance metrics analyzed are 1) protocol
recovery delay, 2) failure detection delays 3) number of
messages exchanged during convergence and the 4)
number of port role /states changed (only for RSTP).
Metrics 3 and 4 provide a means to assess a protocol’s
processing needs on topology changes. Typically:
Convergence Delay = Failure Detection Delay + Change
Dissemination Delay + Recovery Delay
Dissemination Delay + Recovery Delay = Protocol Recovery
Delay.

Protocol Recovery Delay depends on a protocol’s
recovery process subsequent to failure detection. With
RSTP, the protocol recovery latency depends on network
size, connectivity, the point of failure on the logical tree
i.e. the relative position of the failure point with respect to
the root and also on the port role of the failed port. RSTP
recovery delay includes dissemination and tree recovery.
MTP dissemination and recovery of tree proceed
simultaneously. MTP recovery latency has low
dependency on the network size/connectivity, the tree
pruning is done with minimal number of messages and is
significantly faster than RSTP.

A. Protocol Recovery Delay Contributors

In RSTP, in the case of a designated port failure, the
switch on the other end of the link connected to the
designated port must wait for failure detection before it can
send topology change notifications. As per standards
specifications, when a designated port fails, the port roles
and states stabilize after a handshake between the node
whose designated port failed, and any downstream
switches connected on other designated ports. Proposal
agreements speed up RSTP convergence – but these
handshake messages must go down the branch(es) and
switches are in ‘discarding’ state until a concurrence of
port role changes arrives from downstream switches.
When a root port fails, that switch immediately falls back
on the alternate port, if any, else it assumes it is the root
switch and messages with its neighbors for a quicker
resolution of the tree. Besides, when a root port fails and if
there is an alternate port, this port becomes the root port
and initiates a TCN. Else it is initiated by a node that
receives the changed BPDU from the node with the failed
root port. In larger diameter topology this takes time.
These are discussed under the protocol evaluation Section.

With MTP, on the deletion of a lost VID, which is
immediate on failure detection, a delete message is sent
out on all control ports of this switch (i.e. ports connecting
to other switches running MTP). The switches that receive
the delete message, remove any VIDs derived from the
deleted VID and further propagate the message. Frame
forwarding is impacted, only if the PVID in a switch is
deleted. This can be noted in the results that we recorded
during the prototype evaluations.

43Copyright (c) IARIA, 2020. ISBN: 978-1-61208-786-3

ICNS 2020 : The Sixteenth International Conference on Networking and Services

Using Figure 5, we explain the tree pruning process
with MTP, on topology changes. In Figure 5, the link
between the root switch and switch S1 is failed at port 1 of
switch S1. On the failure of interface (port) 1, switch S1
deletes VID 1.1 acquired on port 1. It then sends out a
delete message on its port 2 (containing the deleted VID
1.1). Switch S3 deletes its primary VID 1.1.2, moves its
VID 1.2.1.2 as its PVID and sends out a delete message on
its ports 2 and 3. Switch S2 deletes VID 1.1.2.2 that is
derived from 1.1.2, but this has no change on the PVID.
Similarly switch S4 deletes VID 1.12.3. Note the change
in the broadcast tree (indicated with green arrows in Figure
5) –was achieved with three messages, as seen in Figure 5.

There is only one PVID change – thus, disruption to the
broadcast tree is minimal and tree convergence is very fast.

V. PROTOTYPE EVALUATIONS

The hardware for the implementation of MTP was
acquired using GENI testbeds [10]. GENI is an open
infrastructure for at scale networking and distributed
systems research and education that spans the United
States. It provides the infrastructure needed to carry out
networking research. A set of compute resources like
switches and network links to connect them can be
acquired from GENI to set up the desired topology. RSTP
is available on Open View switches at certain GENI sites
and has been used in this performance study. MTP code
was written in the C language and tested and deployed on
GENI switches. The computer resources used from GENI
ran Linux distributions. We used the Linux kernel
networking stack to create raw Ethernet frames to carry
MTP messages. The type field in the Ethernet frame was
set to an unused number and messages sent by MTP would
be picked up at Layer 2 and delivered to MTP processes at
a receiving switch.

Identical topologies were used to evaluate the two
protocols. To emulate identical operational conditions, we
biased a switch’s priority in networks running RSTP so it
would get elected the root. An identical positioned switch
in networks running MTP, was designated as the root
switch. We used three different sized topologies: a simple
5-node 2-loop topology, a moderate 8-node 4-loop
topology, and a more connected 17-node topology, with 7-
hop diameter – the max specified in IEEE 802.1 standards
[2]. This allowed us to assess and understand the protocol
operation in a simple topology and study how the protocol
scaled with increased network size and in more connected
topologies.

A. Methodology

Tshark [11] was installed at all active GENI node
interfaces to capture RSTP Bridge Protocol Data Units
(BPDUs). RSTP operational states were logged at every
node. The logs and captures were scanned to collect
BPDUs generated and port roles/state changes as RSTP
converged on topology changes. Chrony [12] was
installed in all nodes to ensure the clocks on the nodes
were consistent and time drifts minimal. GENI allows
recording timestamps to an accuracy of 1 millisecond (ms).
MTP code recorded events using the system’s timer, with a
timing accuracy of microseconds. Automation scripts
were written in Python, to

 upload and execute the code in the GENI nodes,
 continuously collect the results into log files as the

protocol is running at the GENI nodes,
 transfer the log files into our local system, and scan

the log files to collect relevant data,
The automation scripts were written to repeat the
experiment in each topology 5 times. The averages of
these 5 runs were then recorded in the tables provided
below.

B. Small Topology (5 switches)

In tests running RSTP, the Convergence Time (CT) is
the time when a port is brought down to the time when
ports that are changing roles and states in all switches
settle down to their final roles and states. The Failure
Detection Time (FDT is the time a switch across from the
failed port recognized the failure and initiates action. The
Protocol Recovery Time (PRT) is the time taken by the
protocol to recover from the failure and converge after
failure detection. Thus, CT is FDT plus PRT. In certain
cases, we noticed that Topology Change Notifications
(TCN) continue even after the port roles and states (PRS)
stabilized. This is because, switches are required to send
TCNs for a duration of tcWhile [8]. This was discounted in
the calculations.

The RSTP 5-node topology with port roles (R for Root

port, D for Designated port and A for Alternate port) are
shown in Figure 6. The performance recorded in Table 1
reflect the dependencies on the port roles of ports that were
failed noted in column 2 from Table 1. For the 5-node
topology the test cases are noted in column 1 from Table 1.
Single link failures were introduced by disabling a port in
a switch. S1(1) indicates failed port 1 in switch S1. The
role of the disabled port is noted in column 2 - D for
Designated port and R for Root. PRS changes and TCN
message exchanges that happen during convergence are
noted. Under the FDT column we also note the switch that
initiated change notifications.

Figure 6. RSTP 5 Node Topology with Port Roles

Figure 5. Meshed Tree Pruning on Link Root-B1 Failure

44Copyright (c) IARIA, 2020. ISBN: 978-1-61208-786-3

ICNS 2020 : The Sixteenth International Conference on Networking and Services

1) Convergence Process in 5-node RSTP Topology
Root Port Failures: This happens in cases 2, 5, 7. Note

that there is no FDT time, as the switch with the failed port
initiates TCNs immediately. However, in case 2 the PRT
was recorded as 3.523 seconds with 13 port role and state
changes, (which indicates message exchanges such as
proposal-agreements among switches) and 20 TCNs. In
case 5, the PRT was recorded as 18 ms, with 5 port
role/state changes and 26 TCNs. Under case 7, the PRT is
very low, as this required S4 to fallback on its alternate
port. The failure was at the edge of the tree – and this did
not require TCN dissemination.
Designated Port Failures: Cases 1, 3, 4, and 6 relate to
designated port failures. In all these cases the PRT was
recorded to be around 3 seconds and TCNs varied from 20
to 30 messages. In certain cases the PRS were as low as 3
while we recorded 9 PRS under case 1.

2) Convergence in 5-switch MTP Topology
The broadcast tree established by MTP is given by the

PVID and CPVID ports as discussed using Figure 4. In
Figure 7, the PVID and CPVID ports are shown for the 5-
node topology. Ports identical to the ones failed in the
RSTP topology were failed in the MTP network. With
MTP, in certain cases (e.g. 3 and 5 in Table 2), failing a
port has no impact on the broadcast tree. This is because
the MTP broadcast tree stops at the switches and is not
extended to links.

PVID Port Failures: Case 2, 6 and 7 involve a PVID port
failure. In each of the cases the number of messages
required to prune the tree is less than 3 – which should be
compared to the number of TCN messages exchanged
with RSTP. Following the messages exchanged, in case 2,
switch S1 informs switches S2 and S3 about the failed
VID, Switch S2 updates its PVID and informs its new
PVID parent. The PRT is 1ms or less in these cases
which should be compared to approximately 3 sec PRT
recorded with RSTP.

CPVID Port Failures: In cases 1 and 4, the CPVID port is
failed. The PRT with MTP is around 1.5 ms several
magnitudes less than a similar port failure with RSTP.
This value is less than the lowest recorded with RSTP
(under case 7, when a port at the tree edge was failed). In
most cases with MTP the tree resolves with less than 5
MTP messages.

3) Summary 5-switch Protocol recovery
The profound difference in PRT noticed between RSTP

and MTP is because of the VIDs used by MTP to simplify
both tree construction and pruning operations. With MTP,
the VIDs maintain the tree information, whereas with
RSTP, each switch has to maintain its ports in Root,
Designated or Alternate role to define the spanning tree.
Thus, in the event of a topology changes, all switches
exchange BPDUs, to resolve the port roles and repair the
tree.

C. Medium Topology (8 switches)

The 8-switch topology running RSTP, along with the
port roles is given in Figure 8. As before we failed single
ports as indicated in column 2 of Table 3. We also record
the port roles.

TABLE I. RSTP CONVERGENCE IN A 5-NODE TOPOLOGY

C

as

e

Failed Port -

Role

FDT-

initiated

PRT PR

S

TCNs

1 Root(2) ---D 5.115s by

S2

3.519s 9 24

2 S1(1) -----R 0s by

S1

3.523s 13 20

3 S1(3) -----D 4.030s by

S2

2.999s 3 16

4 S1(2)------D 4.810s by

S3

3.018s 8 25

5 S3(1) ----R 0s by

S3

18ms 5 26

6 S3(2)------D 4.733s by

S4

3.164s 3 18

7 S4(1) -----R 0s by

S4

9ms 5 0

R- Root port, D- Designated port, FDT – Failure Detection time,

PRT – Protocol Recovery Time, CT- Convergence time, PRS –

Port/Role State Changes, TCN – Topology Change Notifications

TABLE II. MTP CONVERGENCE IN A 5-NODE TOPOLOGY

Cas

e

Failed Port –

(C)PVID

FDT PRT Messages

1 Root(1)-----CPVID 1.15s 1.5 ms 2

2 S1(1)-----PVID 2.71s 0.14 ms 3

3 S1(3)-----X No Impact

4 S1(2)-----CPVID 1.8 ms 4

5 S3(1)----- X No Impact

6 S3(2)-----PVID 1.77 ms 2

7 S4(1)----- PVID 0.7 ms 2

X – Port not part of tree

Figure 7. MTP 5 Node Topology with PVID, CPVID

Figure 8. RSTP 8 Node Topology with Port Roles

45Copyright (c) IARIA, 2020. ISBN: 978-1-61208-786-3

ICNS 2020 : The Sixteenth International Conference on Networking and Services

1) Convergence in 8-node RSTP Topology
Root Port Failures: Cases 2, 5, 8, and 11 record data

on Root port failures. Notice that the FDT is 0 seconds as
the switch with the failed Root port initiates TCN
immediately on the port failure detection. However, the
PRT is approximately 3 seconds except in the case 11,
where the failed Root port was at the tree edge, and the
switch had an alternate port, which took over immediately
on the root port failure. Compared to the PRS and TCNs
recorded for the 5-switch topology, in this case there is an
increase in the PRS and TCNs. This is because these
messages are generated by more switches, and more
switches change their port roles/states. This could
contribute to high PRT. This also indicates instability in
the network while the network is stabilizing after the port
failure.

In case 2, on S1(1) (root port) failure, S1 immediately
initiates recovery. However, as S1 does not have an
alternate port, S1 assumes it is the root and negotiates
with its neighbors. Hence the PRT was 3.032s. Failure of
S5(1) (root port) in the middle of the network resulted in a
PRT of 3.525s, even though S5 immediately takes action
on its port failure. Failure of S7(2), (root port) edge of the
tree, resulted in its alternate port taking over within 12ms.
Designated Port Failures: Cases 1, 3, 4, 6, 7, 9, and 10

record data collected on a Designated port failure. The
PRT is again approximately 3 seconds. In case 3, even
though there were only 3 PRS, a total of 37 TCNs were
recorded and RSTP still took approximately 3 seconds of
PRT.

The PRT with RSTP is very much dependent on the
point of failure with respect to the root and also if the
failed port was designated or root.

2) Convergence in 8-Node MTP Topology
The 8-switch MTP topology is given Figure 9. Instead

of providing the broadcast tree, we decided to show the
three VIDs stored at each switch. The PVIDs at each
switch connected by red lines and show the broadcast tree.
Following the VID dotted decimal format the multiple
paths from each switch to the root switch will be clear. The
green lines and purple lines show how the other 2 VIDs

were derived at each switch. They also show how the VIDs
provide the path from a non-root switch to the root switch.
In Table 4, we record only 9 cases as we did not record
port failures that had no impact on the broadcast tree. PRT
is still very low – tens of ms. In certain cases we recorded
microseconds and these are noted as <1ms in the table.

PVID Port Failures: Cases 2, 5, 8 and 11 are PVID port
failures – i.e. the main path between that switch and root
switch failed. This is however repaired by MTP in
around17 ms, when the PVID at a switch closer to the root
failed (worst case). As the PVID port is further away from
the switch the recovery time with MTP drops down – and
is less than 1 ms in cases 11 and 8. The fast recovery is
attributed to the fact that the only action in these cases is
reinstating the next VID in the VID table as the PVID.
Note the very low number of message exchanges.

CPVID Port Failure: In cases 1, 4, 7 and 10 a CPVID port
was failed. The PRT in these cases also reduced as the
failure port was further away from the Root. Closer to the
root the PRT was around 15ms, further from the root the
PRT was around 5 to 6 ms. The low number of message
exchanges are primarily the delete messages sent to prune
the VIDs from the deleted VID – as described in Section
IV.A, Figure 5.

D. Large Topology (17 switches)

Figure 10 shows a bigger, and more connected 17-node
topology, with a diameter of 7 hops. A higher diameter
topology should result in higher convergence times, but the
higher connectivity counteracts this. With higher
connectivity, there are several alternate ports at switches
S4, S6, S7, S9, S10, S11, S14 and S15. In Figure 10, we
also show the spanning tree constructed by RSTP. We will
refer to this tree when comparing results from the MTP 17-
node topology. The single port failures are noted in
column 1 Table 5.

TABLE III. RSTP CONVERGENCE IN A 8-NODE TOPOLOGY

Case Failed Port --Role FDT-

initiated

PRT PRS TCN

1 Root(1) -----D 5.037s by S1 3.021s 22 75

2 S1(1)-----R 0s S1 3.032s 19 68

3 S1(2) -----D 4.023s by S2 3.005s 3 37

4 S1(3)-----D 5.206s by S3 3.027s 13 59

5 S4(1)-----R 0s S4 2.528s 15 72

6 S4(2)-----D 5.017s by S4 3.004s 3 37

7 S4(3)-----D 5.526s by S6 3.014s 6 30

8 S5(1)----R 0s S5 3.525s 15 40

9 S5(2)-----D 4.199s by S7 3.012s 6 35

10 S5(3)-----D 5.018s by S6 3.005s 3 39

11 S7(2)-----R 0s S7 12 ms 3 36

TABLE IV. MTP CONVERGENCE IN A 8-NODE TOPOLOGY

Case Failed Port– (C)PVID FDT PRT Messages

1 Root(1)-----CPVID 1.740s 14.6ms 6

2 S1(1)-----PVID 17ms 4

3 S1(2) No Impact

4 S1(3)-----CPVID 1.024s 15ms 5

5 S4(1)-----PVID 6ms 4

6 S4(2) No Impact

7 S4(3)-----CPVID 2.407s 7ms 4

8 S5(1)-----PVID 2.290s < 1ms 4

9 S5(2) No Impact

10 S5(3)-----CPVID 1.046s 5ms 3

11 S7(2)-----PVID 2.756s < 1ms 0

Figure 9. MTP 8 -Node Topology with Meshed
Trees

46Copyright (c) IARIA, 2020. ISBN: 978-1-61208-786-3

ICNS 2020 : The Sixteenth International Conference on Networking and Services

1) Convergence in 17-Node RSTP Topology
Root Port Failures: Cases 4, 5, 9, 11, 12 and 14 introduce
Root port failures. Except for case 12 in all other cases the
PRT is low and varies from 15 ms to 40 ms. In case 12, the
PRT is around 3 seconds –the reason is that at switch S15,
there are no alternat ports to take over immediately.
Though this is at the farther end from the Root, the switch
declares itself as root switch which then takes time to
resolve. In all other cases, the switch with a failed root port
had an alternate port. The number of TCN messages
exchanged are very high.

Designated Port Failures: All other failure cases were
designated port failures and the PRT averaged around 3
seconds.

2) Convergence in 17-node MTP Topology
Figure 11 shows the 17-node MTP topology, with

Broadcast Tree supported by PVIDs and CPVIDs.
PVID Port Failures: They are cases 4, 7, 9, 10, 12 and 14.
In all these cases the PRT varies from 12 ms to 6 ms. The
convergence is achieved with very few message
exchanges much lower than RSTP.
CPVID Port Failures: These are cases 1, 3, and 13. The
maximum PRT recorded was for case 1, where the failure
of a port at the root switch results in the tree originating
from this VID which had to be pruned through 9
messages. For cases 3 and 13 it was as low as 5 and 3 ms.
Compared to RSTP – where every change resulted in
transients, this indicates a major reduction in processing
overhead. PRT is in tens of ms compared to RSTP.

VI. SUMMARY

MTP and RSTP were evaluated for several failure test
cases where we tracked the number of message exchanges
and port role/state changes (for RSTP). The high number
of message exchanges with RSTP indicate the complexity
of the convergence process which in turn is reflected in
the convergence latency. To capture the significant
difference in PRT and messages exchanged we plotted
MTP vs RSTP data on a log scale. They are provided in
Figures 12-15. Figures 12 and 13 capture the PRT
experienced for single port failures in the 5 and 8 node
topologies. We used a log scale for the latency (seconds)
to highlight the difference in PRT with MTP and RSTP.
The green line in the figures show the cases where the
port failure had no impact on broadcast tree. In certain
root port failures RSTP recovered fast if there existed an
alternate port. MTP consistently had a PRT lower than
these cases of RSTP. The no impact points further prove
the improved network stability with MTP for single port
failures.

In Figures 14 and 15, we plotted the number of
messages exchanged on a topology change for MTP vs
RSTP. While RSTP exchanged 10 to 100 messages, MTP
exchanged less than 10 messages. This shows how
lightweight MTP is as compared to RSTP. Even when the
PRT was low, RSTP still exchanged several messages, the
overhead and operational complexity with RSTP is very
much higher than MTP.

TABLE V. RSTP CONVERGENCE IN A 17-NODE TOPOLOGY

Cas

e

Failed Port -

Role

FDT PRT PR

S

TCN

1 Root (1)-----D 4.501s by S3 3.462s 26 100

2 S1 (1)-----D 5.024s by S4 3.010s 3 80

3 S1 (2)-----D 4.086s by S3 3.028s 10 80

4 S1 (3)-----R 0s by S1 40ms 20 110

5 S7 (2)-----R 0s by S7 24ms 3 90

6 S7 (3)-----D 4.680s by S9 3.019s 6 85

7 S8 (1)-----D 3.231s by S8 3.000s 3 84

8 S8 (2)-----D 3.998s by S10 3.001s 3 84

9 S8 (3)-----R 0s by S8 32ms 10 106

10 S14 (1)-----D 4.466s by S10 3.007s 3 93

11 S14 (2)-----R 0s by S14 25 ms 3 100

12 S15 (2)-----R 0s by S15 3.054s 30 153

13 S15 (4)----D 5.475s by S11 3.011s 3 80

14 S16 (1)-----R 0s by S16 15ms 5 88

TABLE VI. MTP CONVERGENCE IN A 17-NODE TOPOLOGY

Case Failed Port –

(C)PVID

FDT PRT Messages

1 Root (1)-----CPVID 2.763s by S2 36ms 9

2 S 1 (1) No Impact

3 S 1 (3)-----CPVID 2.726s by S3 5ms 2

4 S1 (2)-----PVID - 11ms 4

5 S7 (1) No Impact

6 S7 (2) No Impact

7 S7 (3)-----PVID 5.4ms 2

8 S8 (2) No Impact

9 S8 (3)-----PVID 2.450 by S6 7ms 3

10 S14 (2)-----PVID 1.911 by S12 6ms 2

11 S14 (4) No Impact

12 S15 (3)-----PVID 12ms 5

13 S15 (4)-----CPVID 2.453s by

S16

3ms 2

14 S16 (1)-----PVID 2.946s by

S15

6ms 1

Figure 10. RSTP 17- Node Topology with Port Roles and Broadcast Tree
Figure 11. MTP 17- Node Topology with Broadcast Tree

47Copyright (c) IARIA, 2020. ISBN: 978-1-61208-786-3

ICNS 2020 : The Sixteenth International Conference on Networking and Services

Figure 15. Message Exchange MTP vs RSTP (17 switch topology)

VII. CONCLUSION

MTP uses a novel meshed tree algorithm to construct
and stores multiple tree information constructed from a
single root, which is carried in simple structured VIDs.
The VID information is very powerful both for tree
construction, maintenance and pruning on failures. The
presented data and tree construction and maintenance
information indicates the robustness of the protocol and
high resiliency to failures offered by MTP. Using MTP in
customer, SP and BP networks will outperform RSTP and
IS-IS based solutions in all aspects – performance,
resource usage and reduced operational complexity. In
this article, we limit the comparison to RSTP. Future
work will extend the comparison studies to IS-IS based
solutions.

REFERENCES

[1] P. Willis and N. Shenoy, “A Meshed Tree Protocol for Loop
Avoidance in Switched Networks”, Workshop, IEEE International
Conference on Computing, Networking and Communications, 18-
21 Feb. 2019, Honoulu, Hawai, USA, ICNC 2019

[2] IEEE 802.1w - Rapid Reconfiguration of Spanning Tree,
supplement to ISO/IEC 15802-3:1998 (IEEE Std 802.1D-1998)

[3] R. Perlman, “Rbridges: Transparent Routing”, IEEE Proceedings
of Infocomm 2004.

[4] R. Perlman, D. Eastlake, G. D. Dutt and A. G. Gai, “Rbridges:
Base Protocol Specification”, RFC 6325, July 2011.

[5] J. Touch, R. Perlman, “Transparent Interconnection of Lots of
Links (TRILL): Problem and Applicability Statement”, RFC 5556.

[6] P. Ashwood-Smith (24 February 2011). "Shortest Path Bridging
IEEE 802.1aq Overview". Huawei. Retrieved 11 May 2012.

[7] "IS-IS Extensions Supporting IEEE 802.1aq Shortest Path
Bridging", http://tools.ietf.org/html/rfc6329, IETF. April 2012.
Retrieved 2 April 2012. Retrieved 4th Nov 2014.

[8] IEEE LAN/MAN Standards Committee of the IEEE Computer
Society, ed. (1998). ANSI/IEEE Std 802.1D, 1998 Edition, Part 3:
Media Access Control (MAC) Bridges

[9] L. Goodman, A. Lauschke, and E. W. Weisstein, “Dijkstra's
Algorithm,” MathWorld—AWolfram Web Resource. [Online].
Available:
https://mathworld.wolfram.com/DijkstrasAlgorithm.html.
[Accessed: 10-Jun-2020].

[10] www.geni.net [Accessed: 10-Jun-2020].

[11] https://www.wireshark.org/docs/man-pages/tshark.html, Retrieved
31 Oct. 2018

[12] https://chrony.tuxfamily.org/ [Accessed:31-July-2020]

[13] Bidirectional Forwarding Detection
https://tools.ietf.org/html/rfc5880#section-3.1 [Accessed:1-May-
2020]

[14] BFD Dampening https://www.cisco.com/c/en/us/td/docs/ios-
xml/ios/iproute_bfd/configuration/xe-3s/irb-xe-3s-book/irb-bfd-
damp.html [Accessed:31-July-2020]

Figure 12. PRT - MTP vs RSTP (5 and 8 switches)

Figure 14. PRT - MTP vs RSTP (5 and 8 switch topology)

48Copyright (c) IARIA, 2020. ISBN: 978-1-61208-786-3

ICNS 2020 : The Sixteenth International Conference on Networking and Services

