
Securing Ford Mobility System - GoodTurn

Katherine Snyder and Kevin Daimi
Computer Science and Software Engineering

University of Detroit Mercy
Detroit, USA

email: {snyderke, daimikj}@udmercy.edu

Abstract—Ford Mobility System, GoodTurn, is an
application developed by the University of Detroit Mercy
through a Ford Motor Company grant. In a manner similar to
Uber, the application connects Ford employees interested in
volunteering their time and vehicles with nonprofit
organizations needing to transport goods and resources. Both
drivers and requesters will use their iPhones to connect to the
application and each other. The privacy of the data collected
from drivers, requesters, and the nonprofit organizations is
critical. The goal of this paper is to introduce the needed
security protocols to protect the GoodTurn application. The
proposed security protocols will rely on the advocated
GoodTurn security architecture.

Keywords—Security Architecture; Security Protocol,
Symmetric Cryptography; Public Key Cryptography; Ford
Mobility System(GoodTurn)

I. INTRODUCTION

 Ford Motor Company offered a program to solicit ideas
from their employees regarding the best ways to serve the
society at large and chose three of these projects to fund.
The program was carried out in both USA and UK. One of
the ideas presented was to have Ford employees donate their
spare time and vehicles to help nonprofit organizations in
moving their goods and resources. Given the existing
support for iPhones by Ford for its employees, the initial
release of the application was specified to use iOS, with the
intention to expand to other devices and systems in later
versions. The idea for the application was reminiscent of
the way the Uber application connects drivers with riders,
but with no money exchanged. Ford Motor Company
provides a grant to develop this system and the University
of Detroit Mercy was selected to develop and implement the
application, currently referred to as the Ford Mobility
System, GoodTurn. Xcode [1] was used to develop the
GoodTurn application, based on the Swift language [2].
Furthermore, Firebase 3.0 was employed for several
components of the application [3].
 As stated above, the idea for this application was modelled
after Uber. However, the security approach followed by this
paper has nothing to do with Uber. The security of Uber has
not been made public to allow others to compare their own
security approaches to Uber. There has been some
controversy about the operation and use of Uber. In 2015,
McCallion [4] stressed that Uber has accidentally leaked the
private information of many of its drivers when the app was

newly launched. This initial release of the Uber app
apparently had a design defect that allowed drivers to access
various sensitive scanned documents containing details such
as, social security numbers, tax forms, insurance documents,
and drivers’ licenses. The bug emerged when an Uber driver
tried to upload or edit such documents. The driver was
directed to a screen containing details of Uber drivers within
the United States.
 Bernstein [5] and Kovacs [6] indicated that a Portuguese
team has recently found 14 flaws in Uber apps which have
enabled the team to obtain free rides and access details of
passengers and drivers. Another flaw detected by the team
was linked to Uber’s promotion codes. The riders.uber.com
website did not involve any countermeasures against brute-
force attacks. This flaw enabled attackers to continue to
create promo codes until valid codes were obtained. With
the emergent attractiveness of developing Uber-style
applications, the attempts to use Uber as a development
platform for various applications accessible via the cloud,
requires more vigilant attention to security issues.
 Armerding [7] emphasized that scammers attacking Uber
can get a free ride, while victims pay the the bill. This
occurred when cyber attackers manage to obtain the login
credentials of legitimate users and sell them to fraudsters.
Popular apps like Uber are targets for online scammers and
cybercriminals; therefore, these apps must employ rigorous
security and privacy measures to deter and prevent these
malicious activities. Taking into consideration the above-
mentioned incidents regarding Uber security, Uber
continues to introduce app improvements with the aim of
further securing the application and safeguarding privacy of
drivers and passengers. Cava [8] stated that Uber added a
new feature requiring drivers to authenticate their identities
via a selfie photo prior to each shift. The goal of such real-
time ID proof is to thwart fraudulent utilization of a driver's
account and provide passengers with a higher degree of
confidence in using Uber vehicles.
 With the constantly increasing sophistication of security
threats and attacks on software applications, advances in
security countermeasures should at least parallel this
sophistication. Dong, Peng, and Zhao [9] suggested using
security patterns to avoid security problems. They believed
that security patterns provide professional solutions to
common security problems and capture best practices on
secure software design and development. Security risk
analysis is definitely the first step to design a secure system.

1Copyright (c) IARIA, 2017. ISBN: 978-1-61208-554-8

ICNS 2017 : The Thirteenth International Conference on Networking and Services

 Baca and Petersen [10] introduced the notion of
countermeasure graphs — a risk analysis approach for
software security. They added that countermeasure graphs
grant decision support for prioritizing countermeasures, and
support software developers in determining critical threats
and implementing optimal solutions. A Case-Based
Management System (CBMS) comprised of an artifact
management system and a knowledge-based management
system (KBMS) to handle cases for secure software
development was introduced by Saito, et al. [11]. The goal
was to manage the software artifacts created in the secure
software life cycle, in addition to the software security
knowledge using the two components of CBMS. Although
useful in secure software development, nevertheless, none
of these approaches addressed secure communication
between the software itself and its external interface.
 Software security vulnerabilities give rise to many
security breaches and attacks. New security vulnerabilities
are discovered daily. Vulnerabilities are behind many
software failures. In any software development, coding is
the critical issue because many security deficiencies are
developed during the coding phase. Okun, Guthrie,
Gaucher, and Black [12] investigate the use of static
analyzers to identify defects in source code that could result
in security breaches. Jain and Ingle [13] argued that to have
secure software, a software security requirements process is
essential. They designated a Software Security
Requirements Gathering Instrument (SSRGI) and claimed it
can help developers extract security requirements from
various stakeholders, and indicated SSRGI can strengthen
security during the consequent phases of software
development. Software security testing plays an important
role in detecting security flaws. According to Tian-Yang,
Yin-Sheng, and You-Yuan [14], Software security testing is
the process of identifying whether the security attributes of
software implementation are consistent with the design.
They stipulated that software security testing involves
security functional testing and security vulnerability testing.
Security functional testing analyzes whether the software
security attributes are implemented appropriately and
consistently with security requirements. While testing for
vulnerabilities and security flaws are essential for secure
development, they do not necessarily prevent security
attacks where software applications are accessed via the
internet.
 This paper presents a security architecture for the Ford
Mobility System, GoodTurn. A cryptographic protocol is
used to implement the security architecture. A protocol is a
multi-party technique represented as a sequence of steps that
exactly identifies the actions required of two or more parties
in order to accomplish a specified goal. Mainly, the goal is
to secure the exchange of messages between the parties. If
cryptography is used to secure messages, a cryptographic
protocol will be involved. Protocols are probably the most
difficult part of cryptography because neither the designer

nor the implementer of the protocol has any control over
other parties’ behavior. Normally, it is very challenging to
isolate the vulnerabilities of cryptographic protocols as they
can be the outcome of subtle design flaws [15]-[17]. The
remainder of the paper is organized as follows: Section II
provides the FMS operation overview. Section III
elaborates on the FMS security architecture. Section IV
depicts the cryptographic protocols needed to secure the
FMS. Section V concludes the paper.

II. FMS OPERATION OVERVIEW
 The following use case scenario briefly illustrates the
operation of the Ford Mobility System, GoodTurn. This is
needed to understand the security architecture of GoodTurn
and the associated cryptographic protocol. Volunteer drivers
will be referred to as “driver”. A representative of the
nonprofit requesting a driver to move goods will be referred
to as “requester”.

1. The system starts with a splash screen to indicate the

application is being launched.
2. New drivers/ requesters register with the system first.
3. The application requests the user name and the

password of the user (driver/requester). Subsequent use
is authenticated against this information.

4. Driver/requester can modify their information/profile.
5. If needed, the system can recover password, deactivate

or reactivate user account.
6. Non-profit organization/Non-government organization

(NPO/NGO) adds and removes requester users, and
provides them with administrative rights

7. Drivers and requesters sign off on a privacy policy.
8. The system provides a list of current jobs to drivers

provided by requesters to move goods.
9. The system calculates the estimated time needed to

complete a job by a driver.
10. Requesters enter new jobs, include their organization

information, add a job to job queue, modify a job
request, or cancel a job.

11. If a requester/driver does not want to deal with a
specific driver/requester, the driver/requester is added
to that driver/requester’s blacklist. At any time,
driver/requester can be removed from a black list.

12. Driver/requester view the job history.
13. Drivers filter jobs, sort them in any way they prefer,

accept jobs, reject jobs or cancel accepted jobs. As a
result, the job list is updated.

14. The system notifies the requesters/drivers regarding any
action listed in step #13.

15. If a requester’s job reaches its pick-up time without
being accepted, the system will allow the requester to
reschedule it.

16. The driver/requester indicates that a job is completed.
17. FMS allows communication between requester and

driver.

2Copyright (c) IARIA, 2017. ISBN: 978-1-61208-554-8

ICNS 2017 : The Thirteenth International Conference on Networking and Services

18. Both drivers and requesters provide feedback, submit
problems if any, and ask for help.

19. Drivers and requesters rate each other.
III. GOODTURN SECURITY ARCHITECTURE

 The Ford Mobility System (GoodTurn) security
architecture introduced in Figure 1 illustrates all the
components used. The participating parties are shown in
Table 1 below. Furthermore, Table 2 provides a clarification
of the symbols used.

A. Key Distribution Center
 The Key Distribution Center (KDC) is the heart of the
security architecture. It manages the symmetric keys
distribution for each pair of the communicating parties, and
providing the needed public keys for communicating
parties. It further provides the keys needed for Message
Authentication Code (MAC), which will be used for
ensuring the integrity of various exchanged messages. The
designated Security Service Agent (SSA) will act on behalf
of host and servers it represents. Any of the servers or hosts
of Fig. 1 can request communication with the components
they are allowed to communicate with. Because some of the
messages are relatively large and others are small,
symmetric and public key cryptography will be used
respectively. The request for keys should include the ID of
the party to communicate with and the type of key. There
are two types of keys, session key and MAC key. The
MAC key will be used for message authentication. The SSA
of the requesting party asks the Key Distribution Center for
a session key, KXY, to be shared between components X and
Y to be sent to the component requesting it. Here X is the
requesting component and Y is the component that X needs
to communicate with. The KDC send the session key to
party X together with the ID of the other party and type of
key so that each party knows whom it will be
communicating with and what will the key be used for. In
what follows, IDX and IDY are the IDs of component X and
Y respectively, Key Type is 1 for session key and 2 for
MAC key, and SSAX is the SSA for component X. Note X
and Y stand for Application server, Database Server,
NPO/NGO, Driver or Requester. KS is the symmetric key
shared by KDC and SSAX. Note that à indicates sending,
and || stands for concatenate.

SSAX à KDC: E [KS, Request for Key || IDX || IDY || Key

Type]
KDC à X: E [KS, KXY || IDY || Key Type]

 It is assumed that KDC and SSA shared public keys.
Upon successful login of a component, the component
receives the public key of KDC, PUKDC via its SSA. This is
needed to contact the KDC when requesting various keys.
The component X who has received the session key and
MAC key will then request the public key, PUY, of the
component Y it wishes to communicate with and waits for

Y to confirm the connection. The public key of Y is needed
by X to share the session key and MAC key with Y. The
protocol to achieve that is as follows:

1. X sends its ID and the ID of Y encrypted with the

public key of KDC. A nonce, NX is needed for
assurance. A nonce is used by the sender to assure the
receiver (party following à) the message is from
sender.

X à KDC: E [PUKDC, IDX || IDY || NX]

2. KDC sends X the public key of Y together with ID of Y

and its nonce, NKDC, all encrypted with KDC’s private
key (signed) and then with the public key of X.

KDC à X: E [PUX, E (PRKDC, IDY || PUY || NX ||
NKDC)]

3. X contacts Y providing its ID, Y’s ID, and a nonce NX
to show that the message is current. All these are
encrypted with the public key of Y

X à Y: E [PUY, IDX || IDY || NX]

4. Y verifies with KDC to see if it can communicate with

X.

Y à KDC: E [PUKDC, IDX || IDY || NX]

5. If KDC confirms the message, it encrypts the public

key of X, ID of X, and a time stamp TKDC. Note that
the message is first signed with PRKDC, and then made
confidential with PUY.

KDC à Y: E [PUY, E (PRKDC, IDX || IDY || PUX ||
TKDC)]

6. Y carries out the required decryptions and obtains PUX.

It informs X it is ready to communicate by encrypting a
message containing the ID of X, ID of Y, and a nonce,
NY encrypted with the public key of X.

Y à X: E [PUX, IDX || IDY || NY]

7. At this point X shares the session key and the MAC

key, KMXY, with Y. Here the message is also signed by
PRX first and then confidentiality is enforced through
encryption by PUY.

X à Y: E [PUY, E (PRX, IDX || IDY || NX || KXY ||
KMXY)]

3Copyright (c) IARIA, 2017. ISBN: 978-1-61208-554-8

ICNS 2017 : The Thirteenth International Conference on Networking and Services

 The session and MAC keys are valid for a single
communication only. Fresh session and MAC keys are
requested for subsequent communications. Note that in
what follows, the communication with the Key Distribution
Center will not be mentioned because it has already been
taken care of in this section. For example, the Application
Server communicates with five components including the
KDC. The link with the KDC will be subtracted from the
total number of links resulting in four links only.

B. Application Server
 The Application Server (AS) runs the FMS, and therefore,
controls all the functions of the system. It communicates
with Database Server, NPO/NGO, Driver, and Requester
components. To achieve all these communications securely,
four session keys and four MAC keys are needed.
Certainly, the Application Server could have also played the
role of KDC in addition to its original role. However, it is
safer to have independent server taking care of key
distribution.

C. Database Server
 The Database Server (DS) stores information about
drivers, requesters, and NPO/NGO. In addition to profiles
of the requesters and drivers, it keeps the blacklist of drivers
and requesters, job history, active jobs,
deactivated/reactivated user accounts, rejected jobs, and
accepted jobs. The DS aids the Application Server in
carrying out its job. From Fig. 1, it is clear that DS
exchanges messages with the Application Server only. No
other component is allowed to access the Database Server.
Hence, one session key and one MAC key are needed.

D. Non-Profit/Non-Government Organization
 Non-Profit Organization (NPO) / Non-Government
Organization (NGO) component communicates with the
Requester and with the Application Server. It adds and
removes users and requests some reports and displays from
the Application Server (AS). Two session keys and two
MAC keys are needed for such interaction.

E. Requester
 The Requester (R) should be associated with an
NPO/NGO. It interacts with both the Driver and the
Application server. The requester exchanges a number of
messages with the Driver and Application Server. Some of
these messages include registration, profile change, list of
current job, privacy policy, job addition, job cancelling,
feedback, blacklist addition, driver rating, and completed
jobs. Because there are two connections, two session keys
and MAC keys are needed.

F. Driver
The Driver (D) communicates with both the Application
Server and the Requester to exchange various messages,
such as registration, profile change, list of current jobs,

privacy policy, accepted jobs, blacklist insertion, requester
rating, and completed jobs. The driver needs two sessions
keys and two MAC keys.

TABLE I. PARTICIPATING PARTIES

Symbol Meaning

KDC Key Distribution Center
SSA Security Service Agent
NPO Non-Profit Organization
NGO Non-Government Organization
AS Application server
DS Database Server
R Requester
D Driver

IV. SECURING THE SYSTEM
 The security of the FMS system relies on both symmetric
and asymmetric cryptography. In addition, MAC keys are
shared between the communicating parties. As noted above,
the KDC will provide symmetric and MAC keys to the party
initialing the communication. Then that party will request
the public key of the receiver to forward the session and
MAC keys. Several messages shared by the Driver and
Requester components with the Application Server are
similar. Those messages will not be repeated.

Figure 1. GoodTurn Security Architecture

4Copyright (c) IARIA, 2017. ISBN: 978-1-61208-554-8

ICNS 2017 : The Thirteenth International Conference on Networking and Services

A. Driver-Server Communication
 The Driver component needs to send the following short
messages to the Application Server (AS): email, password,
security question/answer, request to reactivate account,
request to register, registration information (name, email,
driver/requester, address, company name, phone #,
organization code, accepting/rejecting privacy policy,
request to rate, rating, and job completed. All these
messages are the same for the Requester (R). The symbol
M will refer to any of these messages because the security
procedure handling them is the same. D signs a message
including its ID, ID of AS, M, the MAC of M (E (KMD-AS,
M)), and time stamp TD, and then encrypt them all with the
public key of AS, PUAS

D à AS: E [PUAS, E (PRD, IDD || IDAS || E (KMD-AS, M) || M

|| TD)]

 On receiving such messages, AS performs the needed
decryptions to obtain M. It then calculates the MAC of M
and compares with the received MAC, and checks the
currency of the message using TD. Once they are equal, it
accepts these messages and informs the Database Server
(DS) to store the information or acts on them.
 The Driver component also sends other messages that are
specific to the Driver. They include vehicle make, model,
year, color, license plate, type, maximum mileage, and
messages to indicate job is accepted, job is rejected, and job
is cancelled. These messages are treated as above.
 The SA sends D messages that are somehow long, such as
privacy policy, available jobs, accepted jobs list, cancelled
jobs list, and completed jobs list. For this purpose,
symmetric key will be adopted because public key tends to
be slow with long messages. To this end, AS encrypts the
ID of D, its ID, the MAC of message M, message M, and
the time stamp TAS with the symmetric key, KD-AS, shared
with D. TAS is inserted to assure D the message is current

AS à D: E [KD-AS, IDD || IDAS || E (KMD-AS, M) || M || TAS]

 D will decrypt this message using the key, KD-AS, and
verify the MAC and the message is current.

B. Requester-Server Communication
 Most of the messages sent by the Requester, R, are the
same as those sent by D. These are mentioned in the first
paragraph of the Driver-Server Communication above.
Here, a message is first signed with the private key of R,
PRR, and KMR-AS is the MAC key shared between R and
AS.

R à AS: E [PUAS, E (PRR, IDR || IDAS || E (KMR-AS, M) || M

|| TR)]

 The requester transmits more messages that are specific to
it. Some of these messages are: new job request, items to be

moved, quantity, size of vehicle (truck, Sedan, SUV), load
weight estimate (heavy, medium, light), pickup location,
drop off location, date and time, ASAP, modify job, and
reschedule job if not selected by driver. These are treated as
above using the R à AS message. However, the requester
has a long message to report a problem. This is treated
using symmetric key, KR-AS, which shared between R and
AS, as follows:

R à AS: E [KR-AS, IDR || IDAS || E (KMR-AS, M) || M || TR]

 The AS server disseminates the following messages to R:
new password, credentials accepted, and privacy policy.
New password and credentials accepted are communicated
using public key. However, because the policy is long,
symmetric key is used.

M1 = New password | Credentials accepted

M2 = Privacy policy

AS à R: E [PUR, E (PRAS, IDR || IDAS || E (KMR-AS, M1) ||
M1 || TAS)]

AS à R: E [KR-AS, IDR || IDAS || E (KMR-AS, M2) || M2 || TAS]

C. Server-Database Communication
 In this communication, there are many frequent messages.
In addition, both the AS and DS perform a lot of processing.
Using public key will further slow the system. Therefore,
symmetric key cryptology will be used.
 The Application Server transmits the following messages
to DS: request to verify password, user name, security Q/A,
and registration information, deactivated/reactivated
accounts, rating of both drivers and requesters, feedback,
blacklist update, job history update, completed jobs list, and
problems (lost item, complaint, vehicle feedback, broken
link). Using M to refer to any of these messages, the
message sent to DS can be represented as:

AS à DS: E [KDS-AS, IDDS || IDAS || E (KMDS-AS, M) || M ||
TAS]

 On the other hand, DS transfers the following messages to
AS: password verified, name verified, security Q/A,
activation/deactivation info completed, rating stored,
feedback stored, blacklist updated, driver job selection
updates, requester requests for service, alerts on
driver/requester of blacklisted requesters/drivers, removing
from blacklist completed, privacy policy, list of completed
jobs, and job history. The transferred message, M, is
protected as follows:

DS à AS: E [KDS-AS, IDDS || IDAS || E (KMDS-AS, M) || M ||
TDS)]

5Copyright (c) IARIA, 2017. ISBN: 978-1-61208-554-8

ICNS 2017 : The Thirteenth International Conference on Networking and Services

D. AS-NPO/NGO Communication
 The NPO/NGO exchanges few messages with the
Application Server. Three of which, request to add user,
request to remove a user, and request to join, are short.
Hence, public key is used. The third message, information
about the organization, is large, and therefore, symmetric
key is used.

M1 = Request to add user | Request to remove user | Request
to join
M2 = Information about NPO/NGO

NPO/NGO à AS: E [PUAS, E (PRNPO/NGO, IDNPO/NGO || IDAS

|| E (KMNPO/NGO-AS, M1) || M1 || TNPO/NGO)]

NPO/NGO à AS: E [KNPO/NGO-AS, IDNPO/NGO || IDAS || E
(KMNPO/NGO-AS, M2) || M2 || TNPO/NGO]

 The AS server will forward these messages to the
Database Server after carrying out the needed decryptions
and verifying the MAC. The server will send
acknowledgement messages to the NPO/NGO using public
key cryptography.

E. Requester-NPO/NGO Communication
 Normally, the Requester should join an NPO/NGO to be
able to request moving goods and resources. Obviously, a
message to get information about the organization before
joining, and if the user is convinced, a message to request to
add the user is issued. Obviously, “information about
NPO/NGO” is large.

R à NPO/NGO: E [PUNPO/NGO, E (PRR, IDNPO/NGO || IDR || E

(KMNPO/NGO-R, add-user-info) || add-user-info || TR)]

R àNPO/NGO: E [KNPO/NGO-R, IDNPO/NGO || IDR || E
(KMNPO/NGO-R, NPO-info) || NPO-info || TR]

F. Requester-Driver Communication

 Communication between Driver and Requester is needed
for last minute changes to the job, check list for delivered
items, and delivered item status list (good condition,
damaged). The secured messages forwarded by D to R are
given below. Note that Check-out list can be small or large.
To be safe, symmetric key is used.

M1 = Check out list of delivered items

M2 = Last minute changes (driver-side) | Approved last
minute changes

D à R: E [KD-R, IDD || IDR || E (KMD-R, M1) || M1 || TD]

D à R: E [PUR, E (PRD, IDD || IDR || E (KMD-R, M2) || M2 ||
TD)]

 For the Requester to Driver communication, we have the
following relations:

M1 = Delivered item status list | signed check out list
M2= Last minute changes (Requester-side) | Approved last
minute changes

R à D: E [PUD, E (PRR, IDD || IDR || E (KMD-R, M2) || M2 ||

TR)]

R à D: E [KD-R, IDD || IDR || E (KMD-R, M1) || M1 || TR]

TABLE II. SYMBOLS USED

Symbol Meaning

PUAS, PRAS Public and Private key of AS
PUDS, PRDS Public and Private key of DS
PUNPO/NGO Public key of NPO/NGO
PUNPO/NGO Private key of NPO/NGO
PUD, PRD Public and Private key of D
PUR, PRR Public and Private key of R
KD-R Symmetric key shared by D, R
KD-AS Symmetric key shared by D, AS
KR-AS Symmetric key shared by R, AS
KDS-AS Symmetric key shared by DS, AS
KNPO/NGO-AS Symmetric key shared by NPO/NGO, AS
KNPO/NGO-R Symmetric key shared by NPO/NGO, R
MAC Message Authentication Code
KMD-R MAC key shared by D, R
KMD-AS MAC key shared by D, AS
KMR-AS MAC key shared by R, AS
KMDS-AS MAC key shared by DS, AS
KMNPO/NGO-AS MAC key shared by NPO/NGO, AS
KMNPO/NGO-R MAC key shared by NPO/NGO, R
HDS Historical data store
à Then in Section III, Sends in section IV
ß à Both parties apply security requirements
TD Time stamp issued by D
TR Time stamp issued by R
TAS Time stamp issued by AS
TDS Time stamp issued by DS
TNPO/NGO Time stamp issued by NPO/NGO

V. CONCLUSION AND FUTURE WORK
 This paper presented a security architecture for the Ford
Mobility System, GoodTurn. To secure the communication
between various components of this architecture, a
cryptography protocol was adopted. Both symmetric key
and public key cryptography were employed. Furthermore,
Message Authentication Codes were relied upon. The
suggested approach satisfied the security requirements;
integrity, confidentiality, and authentication. The
architecture will be tested and implemented when the Ford
Mobility System, GoodTurn, is completed.

6Copyright (c) IARIA, 2017. ISBN: 978-1-61208-554-8

ICNS 2017 : The Thirteenth International Conference on Networking and Services

REFERENCES
[1] MacUpdate, “Xcode: Integrated Development Environment (IDE) for

OS X,” https://www.macupdate.com/app/mac/13621/xcode, 2016,
[retrieved: March, 2017].

[2] Swift Documentation, “The Swift Programming Language,”
https://swift.org/documentation, 2006, [retrieved: March, 2017].

[3] Firebase, “Apple Success Made Simple,” https://firebase.google.com,
[retrieved: March, 2017].

[4] J. McCallion, “Uber suffers massive security breach,”
http://www.itpro.co.uk/data-leakage/25435/uber-suffers-massive-
security-breach, 2015, ITPRO, 2015, [retrieved: March, 2017].

[5] P. Bernstein, “Bounty Hunters find Security Flaws in Uber Apps,”
2016, http://www.cloudsecurityresource.com/topics/cloud-
security/articles/422447-bounty-hunters-find-security-flaws-uber-
apps.htm, [retrieved: March, 2017].

[6] E. Kovacs, “Flaws Allowed Hackers to Access Uber Driver,
Passenger Details,” http://www.securityweek.com/flaws-allowed-
hackers-access-uber-driver-passenger-details, Security Week, 2016,
[retrieved: March, 2017].

[7] T. Armerding, “Uber fraud: Scammer takes the ride, victim gets the
bill,” http://www.csoonline.com/article/3059461/data-breach/uber-
fraud-scammer-takes-the-ride-victim-gets-the-bill.html, CSO Online,
2016, [retrieved: November, 2017].

[8] M. Cava, “Uber to use driver selfies to enhance security,”
http://www.usatoday.com/story/tech/news/2016/09/23/uber-use-
driver-selfies-enhance-security/90859082/, USA Today, 2016,
[retrieved: March, 2017].

[9] J. Dong, T. Peng, and Y. Zhao, “Automated Verification of Security
Pattern Compositions,” Information and Software Technology, vol.
52, 2010, pp. 274-295.

[10] D. Baca and K. Petersen, “Countermeasure Graphs for Software
Security Risk Assessment: An Action Research,” The Journal of
Systems and Software, vol. 86, 2013, pp. 2411-2428.

[11] M. Saito, A. Hazeyama, N. Yoshioka, T. Kobashi, H. Wahizaki, H.
Kaiya, and T. Ohkubo, “A Case-based Management System for
Secure Software Development Using Software Security Knowledge,”
Procedia Computer Science, vol. 60, 2015, pp. 1092-1100.

[12] V. Okun W. F. Guthrie, R. Gaucher, and P. E. Black, “Effect of Static
Analysis Tools on Software Security: Preliminary Investigation,” in
Proc. the 2007 ACM Workshop on Quality of Protection (QoP’07),
Alexandria, Virginia, USA, 2007, pp. 1-5.

[13] S. Jain and M. Ingle, “Software Security Requirements Gathering
Instrument,” International Journal of Advanced Computer Science
and Applications (IJACSA), vol. 2, no. 7, 2011, pp. 116-121.

[14] G. Tian-Yang, S. Yin-Sheng, and F. You-Yuan, “Research on
Software Security Testing,” International Journal of Computer,
Electrical, Automation, Control and Information Engineering, vol. 4,
No. 9, 2010, pp. 1466-1450.

[15] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied
Cryptology, CERC Press, 1997.

[16] N. Ferguson and B. Schneier, Practical Cryptology, John Wiley,
2003.

[17] T. Coffey and R. Dojen, “Analysis of a Mobile Communication
Security Protocol,” in Proc. the first International Symposium on
Information and Communication Technologies, Dublin, Ireland,
2003, pp. 322 – 328.

7Copyright (c) IARIA, 2017. ISBN: 978-1-61208-554-8

ICNS 2017 : The Thirteenth International Conference on Networking and Services

