
All-In-One Streams for Content Centric Networks

Marc Mosko and Ignacio Solis

Palo Alto Research Center
3333 Coyote Hill Road, Palo Alto, CA 94304, USA

Email: {mmosko, isolis}@parc.com

Abstract—To reduce download latency, All-In-One content
streams concatenate many Content Centric Network (CCNx)
Content Objects in to one named stream so a requester may
open up a large Interest window and download a set of related
content objects without incurring a round-trip time to first read
a manifest. We describe the structure of an All In One Stream,
and how the manifest allows the use of the single object stream
or the parallel use of independent streams. We also describe how
a modular technology called Reconstructable Objects allows an
in-path cache to create sections of the All-In-One content stream
from cache rather than having to fetch the entire stream from
the origin. Modeling shows improved download speeds of up to
57%.

Keywords–Information Centric Networking, Content Centric
Networks, Flow Aggregation

I. INTRODUCTION

As is well known from typical server applications [1],
round trip times can add significant latency to content down-
load. For example, with HyperText Transfer Protocol (HTTP)
over Transmission Control Protocol (TCP), one typically has a
3-way TCP handshake then a GET request before beginning to
download the desired HTTP and HyperText Markup Language
(HTML) markup. Then, after parsing the HTML markup,
the client can request individual embedded objects. Just as
there are efforts to reduce to so-called “zero round trip time”
protocols in the IP world, we may devise such protocols for
CCNx [2]. All In One Streams is an efficient and secure zero-
round trip time protocol that allows a client to skip already
cached pieces of the download and to exploit external caching
of embedded objects.

In an Information Centric Networks (ICN), such as Con-
tent Centric Networks (CCNx) or Named Data Networking
(NDN) [3], one uses a flow control algorithm to manage a
receiver-driver congestion control protocol (for example [4]–
[6]). For our purposes, the exact flow control algorithm is not
important, because they generally all share the same overall
characteristics. For a given base name, for example /parc.com/
slides/allinone.ppt, the content is chunked in to a series of
smaller objects with individual names, such as by appending
a chunk number to the name. The flow controller then issues
requests for names and controls the number of outstanding
requests based on its congestion control algorithm, which are
variations on additive increase multiplicative decrease (AIMD).
This means in the beginning of the download of each base
name, the Interest window will be small and then grow. When
downloading many related items, such as collateral on a web
page, this could lead a flow control algorithm to have multiple
slow starts. We propose a method to aggregate multiple items
with different base names in to one flow control stream so

the same Interest window can be used for them all avoiding
multiple slow starts and avoiding stop-and-wait round trips
when downloading a table of contents (Manifest) that specifies
what other objects are needed.

It is not sufficient for a flow controller to simply open
up a large Interest window for each Content Object without
knowing how many chunks make up that object. For example,
if an image is only 16 KB, perhaps three chunks, and the
flow controller asks for 8 chunks, it is wasting 5 Interests.
In some systems this is only an upstream bandwidth penalty.
However, some systems traffic shape upstream Interests based
on expected downlink usage [7]. In such a system, asking for
chunks beyond the end of an object will needlessly penalize a
consumer and cause delay of other parallel stream.

All-in-one streams is also an efficient mechanism to handle
Manifest content. A CCNx Manifest enumerates other content
objects that make up the parent object. Normally, one would
need to fetch the manifest first, then fetch the constituent
pieces. Using an All-In-One stream, the manifest and it
contents may be fetch in a zero-round-trip Interest stream.
We extend this mechanism to include ways for intermediate
caches to serve embedded objects from cache rather than
fetching them as part of the stream using a technique we call
Reconstructable Objects.

In a typical CCN deployment, a system encodes user data
in to Content Objects. Each network transmissible content
object contains a small piece of the original data, say 1500
to 8000 bytes. After a receiver has all the constituent objects,
it may reconstruct the original user data. If the receiver wishes
to re-transmit the content objects, it must save them, along with
the user data, because the content objects are cryptographically
signed by the original publisher and the receiver cannot recon-
stitute that signature if it throws away the objects. This leads
to a potentially large set of duplicate data on a user’s system
to store the content object representation and the original
user data representation. We describe a method to avoid the
duplicate data using Reconstructable Content Objects. When
applied to an All-In-One stream, Reconstructable Objects
allows intermediate caches to respond to parts of the stream
without needing to fetch the entire stream from the source.

Section II describes how some protocols operate requesting
one element at a time. This happens, for example, when one
needs to download some or all of a manifest first before
downloading the embedded content, causing extra round-trip
times. Section III describes our solution for All In One streams
that allow a consumer to begin downloading one named
stream that contains the concatenation of all pieces. While this
scheme avoids extra round trips for manifest download, it does

108Copyright (c) IARIA, 2015. ISBN: 978-1-61208-404-6

ICNS 2015 : The Eleventh International Conference on Networking and Services

Web	 Page	

Markup	 file1.js	 File2.js	

Image	 1	 Image	 …	 Image	 N	

Figure 1. Typical web page components

/foo/page/s0,	 …,	 /foo/page/s3	

Requester	 Responder(s)	

/foo/file1.js/s0,	 …,	 /foo/file1.js/s3	

/foo/file2.js/s0,	 …,	 /foo/file2.js/s3	

Read	 Markup	 and	
request	 embedded	

objects	

Markup	

File1.js	

File2.js	

Figure 2. One-by-one download

not exploit caching of external collateral, such as images or
embedded pages. Section IV describes a method using what we
call Reconstructable Objects to allow intermediate caches to
contribute external content to the All In One stream, resulting
is zero round trips plus the ability for intermediate caches
to contribute to the stream. Section V presents performance
models of All In One streams versus a round-trip Manifest
style system. Section VI concludes the paper.

II. ONE-BY-ONE PROTOCOLS

Conventionally, a CCNx system would issue some initial
set of Interest messages to read an piece of content, such as an
HTML markup page, then begin downloading the individual
components from that page. The download is constrained by
some maximum number of outstanding interests that satu-
rate the bottleneck link. Also, a requester does not know
a priori how many chunks to request, so for small objects
the requester may waste some outstanding interests by over-
requesting chunks.

For example, in Figure 1, a notional web page consists of
the markup and objects references from the markup. These
subordinate objects may include some javascript files, such as
file1.js and file2.js and embedded images. To download the
complete web page, a client must first ask for the markup, and
then begin parsing the markup for embedded objects to request
those objects.

As illustrated in Figure 2, a conventional download may
end up staggering the download of embedded objects because
of the need to retrieve the manifest first. Also, because the
Requester does not know the number of chunks in an object
a priori, the Requester may open up too large of a window,
such as when the Requester issues 3 interests for file1.js when
it only needed to issue 2 interests. The extra interest could

Manifest	

/foo/markup	
S3	 –	 S9	
0x12AB,	 0x7798,	 …	 Markup	

File1.js	
File2.js	

Manifest	
s0	

s3	

s10	

s12	 /foo/file1.js	
S10	 –	 S11	 	
0xD2A0,	 0x3333	

Embedded	 object	 name	
Chunks	 in	 AllInOne	 Stream	
List	 of	 chunk	 hashes	 (SHA-‐256)	

Figure 3. All In One Manifest

Stream = Manifest *(Embed)
Manifest = *(ManifestEntry | ManifestContinuation)
ManifestEntry = Name StartChunk ChunkLength

[Flags] (ChunkLength)(Hash)
Name = <CCNx Name>
StartChunk = ChunkNumber
ChunkLength = Number
ChunkNumber = Number
Flags = [gzip]
gzip = <embedded object gzip’d>
Hash = <SHA-256 ContentObjectHash>
ManifestContinuation = [PreviousChunk] [NextChunk]
PreviousChunk = ChunkNumber
NextChunk = ChunkNumber

Figure 4. ABNF for All-In-One Stream

have been used to request useful content, such as beginning
the download for file2.js.

III. ALL IN ONE STREAMS

An All In One Stream is a method for a content provider
to aggregate a set of content in to one named stream. A
Stream consists of an initial Manifest followed by constituent
objects. The entire stream is under one chunked namespace,
so a requester can open up one large Interest window that
downloads the manifest plus all locally served content. The
manifest has enough information that a requester could skip
specific embedded objects if it already has them.

Figure 3 shows an example manifest, which is an array
of manifest entries. Each entry has the CCNx base name of
the embedded object (minus the chunk number), the list of
chunk numbers in the All In One stream, and the Content
Object Hash of each embedded content object. Enumerating
the chunk ranges of each embedded content object allows
the requester to determine if the object is already covered by
the outstanding Interest window or to skip embedded content
objects if the Requester already has an object with the same
Content Object Hash. Enumerating the Content Object Hashes
of each embedded object allows the requester to open up
separate Interest windows for the embedded object and request
it by hash.

Figure 4 shows the Augmented Backus-Naur Form (ABNF)
for an All-In-One stream. It begins with a stream Manifest and
is followed by embedded Content Objects. The stream manifest

109Copyright (c) IARIA, 2015. ISBN: 978-1-61208-404-6

ICNS 2015 : The Eleventh International Conference on Networking and Services

enumerates the CCNx base name (name before chunk number)
of an entry, the starting chunk number in the embedded stream
and the chunk length in the embedded stream. It also enu-
merates the ContentObjectHash of each embedded object (the
inner object, not the All-In-One stream object). At minimum,
the first content object of an All In One stream should carry
the public key used to sign the stream so intermediate nodes
and end systems can verify signatures.

The Manifest may be interleaved through the All-In-One
stream using ManifestContinuation records which point to the
previous Manifest and next Manifest using the All-In-One
stream chunk numbering. This organization is similar to a
Linear Tape File System (LTFS) [8] tape volume, where Index
and Data Extent partitions can be sequenced in the LTFS
Volume. Rather than include generation numbers in each index,
we use the fact that there is a common CCNx name prefix for
each chunk of the All-In-One stream, such as with a version
name component, to indicate that all indices and data extents
belong to the same stream.

The publisher creating an All-In-One stream may organize
the manifest to optimize download. For example, the manifest
may list only a few initial content object hashes of each em-
bedded object rather than a complete enumeration. Listing only
a few initial hashes gives the requester enough information to
determine if they have the object and to begin downloading
it under its own namespace. Later index sections could then
finish the embedded object enumerations.

The publisher may generate the embedded objects two
ways. It could create one embed object per embedded chunk.
Or, it could create a non-chunk aligned embedding of the
content. Either method may be used. If the stream uses
compression then one is generally using the second, non-
aligned method. If the gzip flag is present in a Manifest entry,
it means the embed object uses the Gzip protocol to compress
the inner object.

The Interest request could include a “modified since”
parameter in the name, so the All In One stream would only
include embedded content objects modified after the embedded
parameter. It may also included older objects that are newly
referenced, for example if an old photo has not been included
in a web page manifest for a long time, it could be included
in the All In One stream even though it has not been modified
since the Interest parameter.

A Requester may request embedded objects under their
own name, using a self-certified Content Object Hash name.
Downloading the objects under their own name could allow
the download to come from well-positioned caches, whereas
downloading the embedded objects might need to come from
a less optimal source. For example, image files may have very
long cache lifetimes, so would be cached in more places, while
the web page might have a short cache lifetime because it is
frequently updated.

Figure 5 shows an example All In One exchange, where
the producer has concatenated several related assets in to one
stream. The Requester may open up an Interest window to
begin downloading many chunks. In the figure, for example,
the Requester sends 4 Interests, which downloads the Manifest
(2 chunks) plus part of the Markup. Once the first chunks
return to the Requester, it can open up the window more and
continue reading chunks without even parsing and reading the

/foo/page/all-‐in-‐one/s0,	 …,	 /foo/page/all-‐in-‐one/s3	

Requester	 Responder(s)	

No	 need	 to	 read	
Markup,	 read	 a	
single	 stream	

Markup	

File1.js	
File2.js	

Manifest	

Figure 5. All In One Manifest

Markup	

Manifest	

/foo/page/all-‐in-‐one/s3	
Signed	 Info	

	
	
	

Signature	

Embedded	 Content	 Object	
/foo/markup/s0	

/foo/page/all-‐in-‐one/s4	
Signed	 Info	

	
	
	

Signature	

Embedded	 Content	 Object	
/foo/markup/s1	

/foo/page/all-‐in-‐one/s0	
Signed	 Info	

	
	
	

Signature	

Manifest	 Chunk	 0	

Figure 6. Example All In One Stream Content Objects

Manifest. This can all happen in a tight control loop of the
ICN flow controller.

Figure 6 illustrates an example stream. The manifest is
one or more content objects whose payload is the Manifest.
It is signed, as normal, for a CCNx Content Object. The next
objects in the stream are embedded inside stream objects. This
is because the stream objects have their own stream name.
Therefore, /foo/page/all-in-one/s3 is a CCNx Content Object
that embeds /foo/markup/s0, being the first chunk of the actual
markup. Both the wrapping object and the embedded object
have their own CCNx signatures. The embed objects could
omit the CCNx signature because of the ability to hash chain
from the Manifest.

The embedded objects might themselves be All In One
streams. For example, one HTML file might reference frames
of other HTML or other objects, which could themselves
be organized as an All In One stream. In such a case, the
embedded All In One stream is treated like one embedded
object in the parent manifest.

110Copyright (c) IARIA, 2015. ISBN: 978-1-61208-404-6

ICNS 2015 : The Eleventh International Conference on Networking and Services

Data	 File	

0	 1	 2	 3	 4	

Metadata	

Content	 Objects	

Transmit	 over	 network	

Metadata	

De
vi
ce
	 #
1	

De
vi
ce
	 #
2	

Produce	 Originals	

Reconstruct	 Objects	

0	 1	 2	 3	 4	 Content	 Objects	

Crypto	 Signatures	 Crypto	 Signatures	 Crypto	 Signatures	 Crypto	 Signatures	

Crypto	 Signatures	 Crypto	 Signatures	 Crypto	 Signatures	 Crypto	 Signatures	

Private	 Key	

Crypto	 Signatures	 Crypto	 Signatures	 Crypto	 Signatures	 Crypto	 Signatures	 0 1 2 3 4Metadata	

Data	 File	

Figure 7. Reconstructing individual content objects

IV. ALL IN ONE STREAMS AND RECONSTRUCTABLE
OBJECTS

Reconstructable Content Objects store the original user
data as a normal file on a user’s system. This is the normal form
an application would need to use the data, such as a JPEG or a
game’s data files. In addition to the user data, the system stores
a set of rules. The rules describes how to publish the user data,
such as the number of bytes per content object, the timestamps
to use, how to name the content objects, and other things that
go in each Content Object. With the original data file and
the reconstruction rules, a system can verbatim reproduce the
original content objects without duplicating the data. Finally,
the system stores the original publisher’s signature(s) for the
data. In a system that uses directly signed content objects,
there are many signatures. For a system that uses manifests
(secure catalogs), there may only be one or a small number of
signatures.

Reconstructable Content Objects consist of several com-
ponents. There is the underlying user data which is chunked
in to one or more Content Objects. The chunking is done via
a set of rules embodied in a ruleset. This ruleset provides all
information for all content objects except for the cryptographic
signatures. Finally, there is a set of cryptographic signatures,
one for each signed content object. This is a necessary and
sufficient set of objects to construct content objects from only
the underlying user data.

Figure 7 illustrates the process of creating and then recon-
structing content objects. An initial device, noted as “Device
#1” in the figure, has an original data file. Using a metadata
ruleset, it constructs and initial set of content objects. The
metadata ruleset specifies how a device fills in all the fields
of a content object, such as the Creation Time or when to use
an End Chunk field, and the format of the CCNx names. The
initial device then cryptographically signs each content object.
This creates the set of signatures shown in the figure, which
are actually part of each content object.

The initial device in Figure 7 then transfers the metadata
ruleset plus the content objects over the network to a second
device, noted as “Device #2”. The second device reconstructs
the original user data file and saves the metadata ruleset plus
the cryptographic signatures. This this small additional data,

0	 1	 2	 3	 4	 Content	 Objects	

0	 1	 Secure	 Catalogs	

Transmit	 over	 network	

Metadata	

Catalog	 Signature	

Catalog	 Signature	

De
vi
ce
	 #
1	

De
vi
ce
	 #
2	

Produce	 Originals	

Reconstruct	 Objects	

0	 1	 2	 3	 4	

0	 1	

Content	 Objects	

Secure	 Catalogs	

0 1 2 3 4Metadata	 Catalog	
Signature	 0 1

Data	 File	 Metadata	 Private	 Key	

Data	 File	

Figure 8. Reconstructing using secure catalog

it may reconstruct the original content objects by following
the metadata ruleset and plugging in the saved cryptographic
signatures.

In a variation of this system, the first device may use a
secure catalog to authenticate the content objects. This scheme,
show in Figure 8, only has a signature on the secure catalog,
not on each individual content object. Therefore, the state
transferred over the network and saved at the second device is
potentially much smaller than the system where each content
object is individually signed. In this variation, the rules for
creating the secure catalog are in the metadata, so the secure
catalog itself does not need to be stores.

A. All-In-One Streams with Reconstruction
A reconstructable content object comprises a set of rules

about how to construct content objects from user data, a
set of metadata, a set of cryptographic signatures, and the
user data. From this set of data, a system may re-construct
a CCNx Content Object without having the actual content
object. A reconstructable All-In-One stream uses this system
to reconstruct wrapped content objects. The original (inner)
content object is the “data file” and the reconstruction rules
describe how to wrap the inner content object in the All-In-
One stream. This allows, for example, a cache to respond to an
All-In-One chunk request while storing only the inner wrapped
content object and the reconstruction rules.

A forwarder, for example, may already have an embedded
object in its Content Store. Using a reconstructable stream
allows the forwarder to reconstruct a stream chunk from the
locally cached embedded object. Figure 9 shows an example
reconstructable All In One stream. The manifest is now a
Constructable Manifest, which includes the normal manifest
plus Reconstructable Object rules, metadata, and signatures.
This allows a system that already has the embedded object,
such as /foo/markup/s0, to construct the All In One stream
object, such as /foo/page/all-in-one/s3 without having to fetch
the wrapper /foo/page/all-in-one/s3.

An advanced forwarder that understands All In One mani-
fests can pro-actively fetch embedded objects before the user
asks for them, then use a the reconstructable stream to pass
them on to the user. It could cache the embedded objects

111Copyright (c) IARIA, 2015. ISBN: 978-1-61208-404-6

ICNS 2015 : The Eleventh International Conference on Networking and Services

Markup	

Construc[on	
Manifest	

/foo/page/all-‐in-‐one/s3	
Signed	 Info	

	
	
	

Implicit	 Signature	

Embedded	 Content	 Object	
/foo/markup/s0	

/foo/page/all-‐in-‐one/s4	
Signed	 Info	

	
	
	

Implicit	 Signature	

Embedded	 Content	 Object	
/foo/markup/s1	

Normal	 Manifest	

All	 In	 One	 Stream	
Reconstruc[on	 Rules	

Reconstruc[on	 Metadata	
Stream	 Signatures	

Content	 Object	
/foo/markup/s0	

Reconstruct	 	
/foo/page/all-‐in-‐one/s3	 	

using	 external	 knowledge	 of	
	 /foo/markup/s0	

Figure 9. Reconstructing Stream Content Objects

separately from the wrapped stream objects so in the future it
could respond with either content object using its hash-based
name.

Note that the Construct Manifest also serves as a secure
catalog. It contains all the signatures for the All In One stream,
so each subsequent content object in the stream may refer to
the Construct Manifest for signature verification.

If the Construction Manifest carries a globally unique ID
(GUID) (such as a SHA-256 hash of the manifest) in the first
content object of the manifest, then an intermediate forwarder
could detect if its seen the entire All In One stream before.
In such a case, the forwarder can immediately satisfy all
interests in the All In One Stream based on cached objects
or reconstructable streams. A system should only do this if it
can verify the signature of the first content object.

The Construction Manifest could specify the cryptographic
hashes of subsequent content objects in the All In One stream.
This means the subsequent content objects do not carry any
signatures, but are verified solely by the signatures in on the
Construction Manifest.

V. ANALYSIS

We model the performance of All-In-One streams using
several stream size distributions assuming a lossless network
and TCP-like window behavior. Each stream contains 3, 10,
or 30 embedded objects, where each object is uniformly
1KB . . . 50KB. All content objects are chunked at 1500 bytes
(about 1400 bytes of Manifest payload). Only the Manifest
chunks are signed. Wrapped objects are not signed, but may
be verified based on the Manifest hash. The TCP-like window
behavior begins each Content Object download with K initial
window Interest packets and doubles until link saturation. We
use 10 Mbps as the bottleneck link speed with a total 50 msec
one-way latency. We used 5 random simulations per data point
and present the average.

We compare a system that uses All-In-One manifests,
which maintains a single optimal TCP-like window over the
entire stream to a plain Manifest system. In the plain Manifest
system, once the first chunk of the Manifest is read, the system
can continue reading the referenced objects and we assume

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

4.5	

2	 4	 8	 16	 32	 64	 128	

Av
er
ag
e	
M
bp

s	

Ini/al	 Window	

All-‐In-‐One	

Plain	 Manifest	

Figure 10. Avearge Mbps for 86 KB download

0	

1	

2	

3	

4	

5	

6	

7	

8	

2	 4	 8	 16	 32	 64	 128	

Av
er
ag
e	
M
bp

s	

Ini/al	 Window	

All-‐In-‐One	

Plain	 Manifest	

Figure 11. Avearge Mbps for 296 KB download

the TCP-like window maintains its optimal size. That is, it
does not re-start the TCP window for each object. If the flow
controller implementation restarts the TCP window per object,
the performance will be significantly worse than what we show
here. Based on this setup, we expect that the All-In-One stream
will show the most improvement for smaller downloads where
the advantage of opening up a large initial window gains the
most benefit.

Figure 10 shows the average Mbps of download speed
when the system begins with a given initial window. In these
runs the average download size is 86 KB. Even with small
initial windows, the All-In-One stream can be 50% faster than
the plain Manifest version. At large initial window sizes, the
benefit is pronounced and consistent, ranging from a 42% to
57% improvement. At an initial window size of 4, the All-In-
One stream was 1% worse than the plain manifest.

Figure 11 shows the average Mbps of download speed
where the average download is 296 KB. At an initial window
of 2, the All-In-One stream is 8% worse than a plain manifest,
and in all other cases, the All-In-One stream is between 7%
better up to 39% better with a large initial window.

Figure 12 shows the average Mbps of download speed
where the average download is 905 KB. At 2, 4, and 16 for
the initial window size, the All-In-One stream was between
2% to 6% worse than a plain manifest. At other values, the
All-In-One stream is between 3% to 8% better. Clearly, at this
size of download the advantage of eliminating the initial round
trip to begin reading data is nearly lost.

VI. CONCLUSION

All In One streams is an optimized download method for
content networks. It allows a requester to open up one large
Interest window and download a manifest plus related objects

112Copyright (c) IARIA, 2015. ISBN: 978-1-61208-404-6

ICNS 2015 : The Eleventh International Conference on Networking and Services

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

2	 4	 8	 16	 32	 64	 128	

Av
er
ag
e	
M
bp

s	

Ini/al	 Window	

All-‐In-‐One	

Plain	 Manifest	

Figure 12. Avearge Mbps for 905 KB download

without needing to parse the manifest before downloading
actual content. The organization of an All In One stream allows
the requester to skip embedded objects it already has or to
download embedded objects from their manifest name using
their own namespace.

All In One streams offer several benefits to individual
content retrieval. A requester can open up a larger initial
Interest window without wasting Interests on many small
objects. The embedded content objects can be compressed in
the large stream, including the overhead of the names. Using
Reconstructable Objects allows caches to answer requests for
portions of embedded objects, even though they are being
requests under the All In One stream name. The content
provider an interleave manifest and embedded content in
most any order to optimize the download experience, such as
allowing initial rendering of content before all pieces have been
downloaded. Finally, All In One streams are secure. Because
the initial manifest sections are signed by the provider, all
subsequent chunks of the stream can be implicitly validated
with their hash.

Modeling of download of an All-In-One stream shows
significant improvement, up to 57% faster, than using just a
Manifest and waiting for an extra round trip before down-
loading content. If the download flow controller restarts the
download Interest window per object, the improvement of All-
In-One streams would be significantly higher. The benefit of
All-In-One streams is highest for smaller downloads, say under
500KB, and becomes small by 1MB, where the benefit of
having a large initial download window to avoid an extra round
trip begins to vanish.

REFERENCES

[1] M. Belshe, R. Peon, and M. Thomson, “Hypertext transfer protocol
version 2,” Working Draft, IETF Secretariat, Internet-Draft draft-ietf-
httpbis-http2-17, February 2015. [Online]. Available: {http://www.ietf.
org/internet-drafts/draft-ietf-httpbis-http2-17.txt}[accessed:2015-04-10]

[2] “Content centric networking specification,” 2015, URL: http://www.ccnx.
org/documentation [accessed: 2015-04-10].

[3] “Named data networking,” 2015, URL: http://named-data.net [accessed:
2015-04-10].

[4] L. Saino, C. Cocora, and G. Pavlou, “Cctcp: A scalable receiver-
driven congestion control protocol for content centric networking,” in
Communications (ICC), 2013 IEEE International Conference on, June
2013, pp. 3775–3780.

[5] G. Carofiglio, M. Gallo, and L. Muscariello, “Icp: Design and evaluation
of an interest control protocol for content-centric networking,” in Com-
puter Communications Workshops (INFOCOM WKSHPS), 2012 IEEE
Conference on, March 2012, pp. 304–309.

[6] F. Zhang, Y. Zhang, A. Reznik, H. Liu, C. Qian, and C. Xu, “A
transport protocol for content-centric networking with explicit congestion
control,” in Computer Communication and Networks (ICCCN), 2014
23rd International Conference on, Aug 2014, pp. 1–8.

[7] Y. Wang, N. Rozhnova, A. Narayanan, D. Oran, and I. Rhee,
“An improved hop-by-hop interest shaper for congestion control
in named data networking,” SIGCOMM Comput. Commun. Rev.,
vol. 43, no. 4, Aug. 2013, pp. 55–60. [Online]. Available: http:
//doi.acm.org/10.1145/2534169.2491233

[8] “Linear tape file system (ltfs) format specification,” Tech. Rep., August
2011.

113Copyright (c) IARIA, 2015. ISBN: 978-1-61208-404-6

ICNS 2015 : The Eleventh International Conference on Networking and Services

