
On Service-Oriented Architectures for Mobile and Internet Applications

Sathiamoorthy Manoharan
Department of Computer Science

University of Auckland
New Zealand

Abstract–Service-oriented architectures have been
around for long now, but the surge in the Smartphone
and tablet market and the wide availability of fast mobile
networks now cast new light on service-oriented architec-
tures. The diversity of mobile platforms demand applica-
tion abstraction. Such abstraction can be made possible
by adapting a service-oriented architecture where the
bulk of the business logic is hosted as a service. A service-
oriented architecture may appear to be unsuitable when
mobile networks are slow or unreliable. However, most
modern mobile networks are reliable and reasonably
fast, and thus applications employing a service-oriented
architecture do not necessarily reduce user experience
when compared to native, device-hosted applications.
This paper reviews some of the technological advantages
and challenges arising from the use of a service-oriented
architecture for mobile and Internet applications.

Keywords-Service-oriented architecture (SOA), Software ar-
chitecture, Application layer, Application security.

I. INTRODUCTION

The surge in the Smartphone and tablet market and the
wide availability of fast mobile networks now cast new light
on service-oriented architectures.

The diversity of mobile platforms poses interesting chal-
lenges to application developers. To reach all potential
users of the application, the developers need to make the
application available for a number of platforms where the
operating systems [1], [2], development environments and
languages [3], [4], [5] may substantially differ. This may
therefore require the developers to ‘replicate’ code for these
different platforms. However, code replication, in whatever
form, does not follow good software engineering principles.
Depending on the type of the application, a possible alterna-
tive that mitigates code ‘replication’ is to employ a service-
oriented architecture [6]. In this case, the bulk of the business
logic is centralized in a service and is published on a
centrally located server (typically in the Cloud). Thin clients
are then developed for the chosen number of platforms; these
clients consume what the service offers and typically share
little code.

See Figure 1 that shows a broad overview of service-
oriented architecture. The clients can either be native or
browser-based, depending on the application requirements.

Service

Client Client Client

Figure 1. An overview of service-oriented architecture

Two immediately recognizable challenges with such a
service-oriented approach is availability and performance.
The thin client may not be available for use if there is
no or limited connectivity to the service. The amount and
frequency of data transfer between the client and the service
may lead to performance bottlenecks. Not only that the
application logic needs to take into account its algorithmic
efficiency, but also it needs to take into account its data
transfer efficiency.

This paper reviews some of the technological advantages
and challenges arising from the use of service-oriented archi-
tectures for mobile and Internet applications. Note that this
is a review paper drawing from the practice and experience
of constructing services and clients. It does not propose new
research results.

The rest of the paper is organized as follows. Section II
reviews the fundamental aspects of services and service-
oriented architectures. Section III discusses performance
of various segments of service-oriented architectures. Sec-
tion IV explores how service-oriented architectures can be
secured using standard Internet authentication mechanisms.
Section V presents a case study illustrating some of the
concepts discussed in this paper. The final section concludes
the review with a summary.

102Copyright (c) IARIA, 2014. ISBN: 978-1-61208-330-8

ICNS 2014 : The Tenth International Conference on Networking and Services

II. SERVICES AND SERVICE-ORIENTED ARCHITECTURES

The World Wide Web Consortium (W3C) defines service-
oriented architecture as a “set of components which can be
invoked, and whose interface descriptions can be published
and discovered” [7]. Sprott and Wilkes extend this to say
that “services can be invoked, published and discovered,
and are abstracted away from the implementation using a
single, standards-based form of interface” [8]. The service
interface defines the operations provided by the service
and the message types and formats to be used with these
operations.

SOAP [9] has traditionally been the message format used
by service operations. The SOAP envelope has a header and
body and the body wraps the object requested of or sent
to the service. SOAP is based on XML, and is verbose.
The verbosity can result in slower transfer speeds as well as
slower parsing of messages. In addition, being a text format,
it requires binary objects to be encoded in text, typically
using base-64 [10] which expands the binary object by a
factor of 4

3 .
SOAP-based Web Services consume SOAP messages and

produce SOAP message. Since SOAP messages are verbose
(and thus large), the messages are generally sent to the
service using HTTP POST. A downside of using HTTP
POST is that POST responses are not easy to cache.

SOAP-based Web Services are therefore not quite effi-
cient. SOAP messages are heavy-weight and the responses
from SOAP-based Web Services are difficult to cache.

Representational state transfer (REST) is an HTTP-based
light-weight protocol that provides loose-coupling between
the service and the client consuming the service [11], [12].
REST does not have a fixed message format, and thus
a REST-based service (commonly known as a RESTful
service) can deliver any message (i.e., any MIME type). For
instance, binary objects such as a PNG image need not be
encoded into a textual format in a RESTful service, thus
there is no message bloat required by REST. Besides, objects
can be delivered to the service using HTTP GET (i.e., as part
of the URL). For example, the following URL describes a
service operation that searches for the term “soa” and returns
the top 10 results:

http://search.site.org/?term=soa&results=10

This URL passes to the service at serach.site.org two
objects: a string named term with value soa, and an integer
named results with value 10.

HTTP GET has the advantage of letting its response
cacheable. For example, the response from the above URL
may be cached in the client (e.g., browser) or any other
intermediaries (e.g., proxy) for a period of time.

Modern Web Services are based on REST [13]. The
service operations of a RESTful Web Service are defined by
URLs and are therefore a lot simpler than the equivalents in

a SOAP-based service. The messages in a RESTful service
are more efficient than SOAP messages. Besides, service
responses can often be cached for re-use, thus saving on
server resources, network bandwidth, and latency.

Overall, a RESTful Web Service is more efficient than a
SOAP-based Web Service. Service-oriented architectures are
therefore best-implemented using RESTful services [14].

III. PERFORMANCE CONSIDERATIONS IN
SERVICE-ORIENTED ARCHITECTURES

As we have already seen in the previous section, RESTful
services outperform SOAP-based services. Thus, it is desir-
able to use RESTful services unless there is a strong reason
not to (e.g., compatibility with legacy systems).

Given the inefficiencies of SOAP-based services, we will
discuss performance considerations only for RESTful ser-
vices.

One of the most important performance consideration in
RESTful services is to reduce latencies involved in data
transfer. Principles of latency reduction can be summarized
by the three “R”s:

• Reuse
• Repetition avoidance
• Redundancy removal
In the context of service-oriented architecture, reuse is

achieved by exploiting temporal locality. Items that have
been used in the past are likely to be used again, and thus
it pays to keep those items cached for later reuse. Effective
caching can result in large savings in latencies, for there is
little data transfer involved when the item is found locally
in the cache.

The transport protocol HTTP supports caching exten-
sively [15], [16]. All service responses should be considered
carefully to permit caching at the service so as to optimize
repeat-requests. Such caching reduces load on the service as
well as reducing latency for the service consumer. Personal-
ized responses (e.g., bank balances) will need to be cached
on a per-user basis at the service; if this is not possible, then
such responses must not be cached. Caching at the client end
(i.e., service consumer end) should always be allowed.

When a response is cacheable, a suitable expiry time
stating how long a cache could keep the response fresh
should be indicated by the service. The service is in the best
position to determine such expiry times. An item that is past
its expiry date may not always be stale. In this case, it can
still be used from the cache so long as it is re-validated to be
fresh by the service. To help such re-validation, the service
should consider setting a validator (e.g., HTTP ETag [16]).

Repetition avoidance and redundancy removal are typi-
cally achieved through compression. HTTP supports com-
pressing the payload in responses. RESTful services thus
can benefit from this. However, payload in a request is not
typically compressed (by a client): payloads are allowed in
HTTP POST but not in HTTP GET. If POST has to be used

103Copyright (c) IARIA, 2014. ISBN: 978-1-61208-330-8

ICNS 2014 : The Tenth International Conference on Networking and Services

to transfer data, then it is important to consider compressing
the data prior to the transfer; and this has to be done by
the service consumer manually and the service should be
designed to accept compressed payloads.

HTTP headers are never compressed. The service and the
consumer have to be mindful of this and ensure the headers
and header values are optimally used. For instance, unnec-
essary headers and header values should not be exchanged.

Similarly, it is beneficial to keep service URLs terse.
Given that the URLs are seldom manually processed, terse-
ness will not be an issue. Smaller URLs are quicker to send.
Besides, there are limits on URL length imposed by HTTP
entities (such as browsers). For example, the sample service
URL we saw in the previous section

http://search.site.org/?term=soa&results=10

can be shortened to

http://search.site.org/?t=soa&r=10

Such shortening will allow room for larger data input to the
service still using HTTP GET.

Output of a service operation is typically a custom object.
Both XML and JSON (JavaScript Object Notation) can be
used to serialize a custom object so that the object can be
transferred to the service consumer. In a RESTful service,
the XML response does not include a SOAP envelope and
therefore the response is more compact. However, XML is
still verbose. The other widely used alternative is JSON and
JSON-serialized objects are generally more compact than
XML-serialized objects. BSON is binary-encoded JSON and
thus is even more compact than JSON.

With compression, the size difference between JSON-
serialized objects and XML-serialized objects may not be
apparent. However, generating and parsing large serialized
forms require additional resources, so usually it is beneficial
to use a compact serialized form.

When choosing the serialization format for custom objects
in a service-oriented architecture, we must consider both

1) data transfer time, and
2) serialization and de-serialization times.

IV. SECURITY CONSIDERATIONS IN RESTFUL
SERVICE-ORIENTED ARCHITECTURES

In many systems, the service operations should only be
made available only to those who have access rights.

One of the simplest form of limiting service consumers is
based on their IP addresses. The service can be configured
to either allow or deny accesses from service consumers
originating at a given range of IP addresses.

The other simple form of limiting access is based on
username and password. A consumer in this case will first
need to authenticate herself by supplying the pre-registered
username and password combination. Once authenticated,

the service may decide either to authorize the consumer or
not based on the access rights setup for the user.

HTTP servers support two standard authentication mech-
anisms: basic and digest access authentication [17].

With basic authentication, the username and password
are supplied in clear in the HTTP headers. Basic authen-
tication is thus prone to man-in-the-middle attacks and is
not secure. However, used with HTTPS which encrypts all
the transactions including the authentication headers, basic
authentication is secure enough.

Digest authentication never transfers the password across
the transport channels [17]. It only sends the digest of the
password and a number of other entities (such the user name
and realm) using a challenge posed by the server. Therefore,
digest authentication is stronger than basic authentication,
and is a candidate to consider if using HTTPS is not possible
(e.g., because of setup costs or speed).

Another aspect to consider is the security of data dur-
ing transmission. Sensitive data should not be available to
eavesdrop. Use of HTTPS is the widely-interoperable and
simplest means of protecting data from eavesdroppers.

V. CASE STUDY

The case study involves revamping a University website
to using a service-oriented architecture so that both native
mobile and web applications can be created providing a
richer user experience than what is currently available with
the site through a standard browser.

Most of our websites are not easily viewable on smart
devices with a small screen (e.g., Smartphones). As an exam-
ple, accessing the Computer Science website at the Univer-
sity of Auckland from a Smartphone shows the difficulties
of reading and navigation [18]. This case study involves re-
architecting Computer Science’s information services so that
the information can be rendered to suit the target device.

To this end, we (1) separate information content from
the user-interface and make available the information as
a service, and (2) construct applications for smart devices
that consume the information service and render them to
fit within the interface paradigm of the device. This is an
approach taken by a number of news media providers to
provide a richer experience to the readers.

A number of data sources that supply key information
content from the current site have been identified. These en-
able separation of information content from the presentation.

A. Service Operations

The descriptions of the operation contracts supported by
the service are as follows.

1) Get a list of offered courses. The URL cor-
responding to this service operation resembles
http://www.site.org/css/courses.

104Copyright (c) IARIA, 2014. ISBN: 978-1-61208-330-8

ICNS 2014 : The Tenth International Conference on Networking and Services

2) Get a list of staff IDs (or keys). The URL
corresponding to this service operation resembles
http://www.site.org/css/people.

3) Given the ID (or key), further details, such as
email, phone number and picture, of staff can
be obtained in the form of a vCard [19]. The
URL corresponding to this service operation resem-
bles http://www.site.org/css/vcard?id=jbon077 where
jbon007 is an ID within the list of staff IDs.

4) Get a home screen image. The home screen image
is one that changes from invocation to invocation.
The image is randomly picked from a repository
of images. The URL corresponding to this service
operation resembles http://www.site.org/css/himg. This
service operation returns an image (of type PNG, JPG
or GIF, which can be inferred from HTTP Content-
Type header).

5) Get an RSS feed of active seminars. The URL
corresponding to this service operation resembles
http://www.site.org/rss?c=seminars. The RSS feeds
have the MIME type application/rss+xml.

6) Get an RSS feed of active events. The URL
corresponding to this service operation resembles
http://www.site.org/rss?c=events.

7) Get an RSS feed of current news items. The URL
corresponding to this service operation resembles
http://www.site.org/rss?c=news.

The service employs some of the performance and secu-
rity considerations outlined in sections III and IV.

• All of the service operations except operation 4 (home
image) return compressed (gzipped) data. Note that
since PNG, GIF and JPG images are already com-
pressed, further compression is unlikely.

• The custom objects (course list and people list) are
serialized to JSON.

• All operations permit client-side caching
• Given the simplicity of the operations, there is no server

side caching. However, there is provision to turn on
server-side caching should this become necessary.

• IP-based access restriction is supported. However, given
the public nature of the data, the restriction is not turned
on.

• Both basic and digest access authentication are sup-
ported. Again, given the public nature of the data, no
authentication is turned on.

B. Clients

Rich mobile apps that render data provided by the service
operations are then constructed. These apps fit within the
UI paradigm of a smart device with a small screen (e.g.,
Smartphone).

The client app includes logical spaces displaying course
information, staff details (including photo, email, and phone

number), current seminars, current events, and published
news stories.

Where possible, the client app provides simple smarts
to render a rich user experience. These smarts include the
following.

1) If an email is selected, the Mail app is fired to compose
an email to the selected address.

2) If a phone number is selected and if the device is
capable of making an outgoing call, an outgoing call
is initiated.

3) Being able to add the contact details from the vCard
to the Address Book.

4) Being able to add events and seminars to the Calendar.

VI. SUMMARY AND CONCLUSION

The “write-once run-anywhere” application development
paradigm does not always provide the best user experience:
the application may be slow (for instance, because of lay-
ering or poor virtualization); and the user-interface may be
poor (for instance, due to being unable to use native device
capabilities).

Using a service-oriented architecture gets close to the
principle of the “write-once run-anywhere” paradigm, but
still permits providing the best possible user experience.
This is through striking a balance between shared code on
the server and specialist code on the client. The client code
could be native and could exploit native device capabilities.

This paper reviewed service-oriented architectures in the
context of mobile and Internet applications with a particular
emphasis on performance and security. Following is the
summary of the key points.

• RESTful service-oriented architecture is seen to out-
perform SOAP-based service-oriented architecture in
terms of simplicity and efficiency.

• When choosing the serialization format for custom ob-
jects, we must consider the times taken to (1) serialize
the data, (2) transfer the serialized data, and (3) de-
serialize the received serialized data.

• HTTP caching can increase the performance of ser-
vices, and caching naturally lends itself to RESTful
services. Both server side and client side caching are
possible and are highly recommended to reduce (1)
network latency, (2) use of bandwidth, and (3) server
load.

• Setting a cache validator (e.g., HTTP ETag) can in-
crease the effectiveness of caching.

• All data transfers, including response and request, will
benefit from compression. While responses can be com-
pressed out-of-the-box, request compression will need
custom handling. However, a well-designed service will
predominantly use HTTP GET and thus may not always
require request compression.

• User access control can be achieved using HTTP basic
access authentication (with HTTPS) or using HTTP

105Copyright (c) IARIA, 2014. ISBN: 978-1-61208-330-8

ICNS 2014 : The Tenth International Conference on Networking and Services

digest access authentication. Both of these are light-
weight protocols. In addition, IP-based access control
can also be employed.

• Data can be secured from eavesdroppers using HTTPS.
The paper presented a case study of an application con-

forming to service-oriented architecture, and illustrated some
of these key points using the case study.

REFERENCES

[1] Z. Mednieks, L. Dornin, G. B. Meike, and M. Nakamura,
Programming Android. O’Reilly Media, 2011.

[2] M. Neuburg, Programming iOS 7, 4th ed. O’Reilly Media,
2013.

[3] J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley, The
Java Language Specification. Oracle, 2013.

[4] A. Hejlsberg, M. Torgersen, S. Wiltamuth, and P. Golde,
The C# Programming Language, 4th ed. Addison-Wesley
Professional, 2010.

[5] S. G. Kochan, Programming in Objective-C, 6th ed. Pearson
Education, 2013.

[6] N. M. Josuttis, SOA in Practice: The Art of Distributed System
Design. O’Reilly, 2007.

[7] H. Haas and A. Brown, Web Services Glossary, February
2004, W3C recommendation.

[8] D. Sprott and L. Wilkes, “Understanding service-oriented
architecture,” The Architecture Journal, pp. 10–17, January
2004.

[9] M. Gudgin et al., SOAP Version 1.2 Part 1: Messaging
Framework, 2nd ed., April 2007, W3C recommendation.

[10] S. Josefsson, “The base16, base32, and base64 data encod-
ings,” The Internet Eng. Task Force RFC 4648, October 2006.

[11] R. T. Fielding, “Architectural styles and the design of
network-based software architectures,” Ph.D. dissertation,
University of California, Irvine, 2000.

[12] J. Webber, REST in Practice: Hypermedia and Systems Ar-
chitecture. O’Reilly, 2010.

[13] L. Richardson and S. Ruby, RESTful web services. O’Reilly,
2007.

[14] T. Erl, B. Carlyle, C. Pautasso, and R. Balasubramanian, SOA
with REST: Principles, Patterns &Constraints for Building
Enterprise Solutions with REST, 1st ed. Upper Saddle River,
NJ, USA: Prentice Hall Press, 2012.

[15] D. Wessels, Web Caching. O’Reilly & Associates, Inc., 2001.

[16] R. Fielding et al., “Hypertext transfer protocol – HTTP/1.1,”
The Internet Eng. Task Force RFC 2616, June 1999.

[17] R. Franks et al., “HTTP authentication: Basic and digest
access authentication,” The Internet Eng. Task Force RFC
2617, June 1999.

[18] U. of Auckland, “Department of computer science,”
http://www.cs.auckland.ac.nz/. Last Visited February 2014.

[19] S. Perreault, “vCard format specification,” The Internet Eng.
Task Force RFC 6350, October 2006.

106Copyright (c) IARIA, 2014. ISBN: 978-1-61208-330-8

ICNS 2014 : The Tenth International Conference on Networking and Services

