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Abstract—The correct and continuous operation of identity
providers and access control services is critical for new genera-
tions of networks and online systems, such as virtualized networks
and on-demand services of large-scale distributed systems. In
this paper, we propose and describe a functional architecture
and system design artifacts for prototyping fault- and intrusion-
tolerant identification and authentication services. The feasibility
and applicability of the proposed elements are evaluated by
using two distinct prototypes. Our results and analysis show
that building and deploying resilient and reliable infrastructure
services is an achievable goal through a set of system design
artifacts based on well-established concepts from security and
dependability. We also provide a performance evaluation of
our resilient RADIUS service compared with the long standing
FreeRADIUS.

Keywords—System design; fault and intrusion tolerance; iden-
tification and authentication services; network access control.

I. Introduction
The growth of Authentication and Authorization Infras-

tructure (AAI) services is motivated by the fact that users
are allowed to transparently access different services (e.g.,
Facebook, Google, Twitter, and Amazon) with a single cre-
dential or authentication session. These services rely on Iden-
tity Providers (IdPs) or Authentication, Authorization, and
Accounting (AAA) protocols to identify and authenticate the
user before granting him access to the requested resources or
services. OpenID [1] and RADIUS [2] are examples of such
services.

Despite the importance of AAIs for service infrastructures
such as clouds and virtual networks, there are still open
questions regarding their availability and reliability. This can
be supported by recent work showing that digital attacks and
data breach incidents are growing [3]. Additionally, advanced
persistent threats [4] are becoming one of the top priorities
of security specialists. Therefore, security and dependability
properties should be the top priority of future AAIs.

Most of the existing RADIUS-based services and OpenID-
based IdPs do not completely address security and dependabil-
ity properties such as confidentiality, integrity, and availability.
This can be observed on the services’ online documenta-
tion and deployment recommendations [5][6][7][8][9]. Some
implementations and deployments provide basic mechanisms
to improve the service’s reliability and robustness, such as
SSL communications and simple replication schemes to avoid
eavesdropping and tolerate stop failures, respectively. Hence,
there are opportunities for further research with the ultimate
goal of designing more resilient solutions which are able to
deal with new threats and cyber attacks.

To the best of our knowledge, this paper proposes the first

set of system design artifacts and functional architecture to
design and deploy fault- and intrusion-tolerant identification
and authentication services. Two distinct prototypes, RADIUS
and OpenID, are used as proof of concept to demonstrate
the applicability of the functional architecture and system
design artifacts. We also briefly, we briefly discuss components
and essential building blocks for implementing more robust
and secure services. We conclude with an analysis of the
approaches and requirements for deploying resilient services.

The next section introduces the motivation of our work. In
addition, the functional elements and system design artifacts
to develop robust and reliable AAI services are described in
Section IV. Thereafter, the results are analyzed and discussed
in section V. Lastly, Sections III and VI comprise of the related
work and final remarks.

II. Motivation
AAI solutions are often based on protocols like OpenID

and RADIUS. However, both of them are not designed with
features for robust security (e.g., strong confidentiality) and
dependability (e.g., high availability), being frequent targets
of attacks and data theft attempts (e.g., user credentials).

OpenID is a framework to build identity providers [1]. It is
based on open Hypertext Transfer Protocol (HTTP) standards,
which are used to describe how users can authenticate on
third party services through their own IdP. There are two main
advantages of this approach. First, it allows identification and
authentication protocols to be transported over standard Web
protocols. Second, users need only one single credential to
access different services provided that service providers accept
external IdPs.

In spite of allowing the user to have a single credential
to access multiple domains, there are different security issues
on the OpenID identification scheme and service availability.
Recent research has shown that the discovery and authentica-
tion steps are vulnerable to cross-site request forgery attacks,
phishing and man-in-the-middle [10]. Also, its availability is
vulnerable to denial of service attacks and protocol handling
parameters [11][12].

RADIUS is an AAA protocol. The authentication verifies
user’s identity prior to granting access to the network or
service. Authorization is used to determine which actions a
user can perform after a successful authentication. Accounting
provide methods for collecting data about the network or
service usage. Collected data can be used for billing, reporting
and traffic accounting. Therefore, RADIUS is commonly used
to provide AAA features for infrastructures such as corporate
networks and carrier grade provider networks.

The main security issues of RADIUS are in the protocol
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specification and poor implementations [13]. Regarding flaws
in the protocol, RADIUS does not validate the integrity of
some packages (Access-Request) and does not provides
mechanisms against reflection attacks. As well as this, existing
implementations of RADIUS are also susceptible to dictionary,
man-in-the-middle and spoofing attacks.

Fault and intrusion tolerance. We can choose two differ-
ent approaches when designing secure and resilient systems.
First, one can assume that it is possible to build robust and se-
cure enough systems. However, as it is well known, a system is
as secure as its weakest link. Moreover, it can be considered as
secure until it gets compromised. Hence, the second approach
is to assume that eventually the system will fail or be intruded.
With this in mind, one can design highly available and reliable
systems by leveraging mechanisms and techniques capable of
enabling them to operate under adversary circumstances, such
as non-intentional failures and attacks.

Our system design artifacts and functional architecture
support the second approach, i.e, we do not intend to solve all
security and dependability problems of AAI’s services. Yet,
by taking advantage of advanced techniques and resources
from different domains we can build fault- and intrusion-
tolerant systems capable of ensuring essential properties such
as integrity, confidentiality, availability and reliability.

III. RelatedWork
Despite the existence of different solutions and components

that can be used to improve the security and dependability
of AAI services, such as advanced replication techniques,
virtualization, proactive and reactive recovery techniques and
secure components, there are no methodologies, functional
architectures or a set of system design artifacts that are capable
of demonstrating how different elements can be orchestrated
to build highly available and reliable systems. Existing ap-
proaches and solutions are designed for specific scenarios
or a particular system. One example is to use TPMs to
create trustworthy identity management systems [14]. While
the solution allows one to create trustworthy mechanisms for
issuing tickets, it is not designed for high availability or fault
and intrusion tolerance. Another example is a cooperative
coordination infrastructure for Web services [15], which pro-
poses security mechanisms that allow reliable coordination
of services even in the presence of malicious components.
It works as an integration infrastructure for Web services,
being supported by a set of service gateways and one resilient
tuple space. This solution offers fault and intrusion tolerance
capabilities for the coordination infrastructure. However, it
does not represent a generic or adaptable architecture that can
be applied to improve the robustness and security of different
systems. Furthermore, it only protects the data confidentiality
of a particular service through authentication and encryption
mechanisms. Therefore, such scenarios indicate the need of
more general architectures and system design artifacts that can
be combined in a more systematic way to develop and deploy
services with higher security and dependability properties.

IV. System Design Artifacts
A. Overview of functional elements

Figure 1 shows a simplified representation of the four main
functional elements: (a) client; (b) service; (c) gateway; and

(d) Critical Infrastructure Service (CIS). This is the typical
functional architecture of computing environments where iden-
tification and authentication solutions are separated services. In
addition, the fifth element is a secure component, which can
be used in conjunction with any of the previously mentioned
elements. Its purpose is to provide additional support for en-
suring properties such as confidentiality, integrity, and timing,
when ever required.

Client! Critical 
Infrastructure 

Service !
(CIS)!

Service! Gateway!

= Trusted Component!
Authen'ca'on	  	  

and	  Authoriza'on	  
Infrastructure	  (AAI)	  

Fig. 1. Main functional elements.

A client can be a user trying to access the network or a
networking element. In other words, it represents a generic
element whose definition depends on the target scenario.

In a typical network, the service may represent elements
such as wireless routers or Ethernet access switches. For Web
applications based on OpenID, a service can be a relying party
or an access control subsystem of online shopping Web sites.

A gateway provides connection between the service and the
critical infrastructure service, a.k.a., back-end service. It has
two basic functions. First, it handles multiple protocols from
both sides, acting as a protocol gateway. The second function
of this element is to mask the replication protocols and mech-
anisms used to deploy resilient back-end services, providing
transparent backward compatibility with AAI protocols such
as RADIUS and OpenID.

The back-end service is the critical element of the infras-
tructure, which is assumed to require higher levels of security
and dependability assurances. A CIS can be part of the local
domain or provided by third parties as an on-demand service,
for instance. It is assumed that these services must tolerate
different types of faults such as those caused by unexpected
behavior or attacks, and work correctly in case of intrusions.
OpenID providers and RADIUS services are examples of
critical AAI systems for networked infrastructures and online
services. Therefore, failures on these services can potentially
impact a corporation’s systems and business.

Lastly, secure components can help to ensure properties
such as data confidentiality, integrity checks, and timing as-
surances to specific parts of the system. As an example,
user keys can be stored on a smart card. Similarly, server
keys and authentication tokens can also be securely stored
in secure components. Furthermore, all critical cryptographic
operations can be safely executed by these trusted components,
without compromising sensitive data in the case of intrusions.
Currently, server and self-signed Certificate Authority (CA)
keys are stored in the server’s file systems. Hence, any system
administrator has easy access to them, representing potential
security threats.

B. Design artifacts for resiliency
Figure 2 illustrates architectural elements with added sys-

tem design artifacts for augmented security and dependability
properties. The architecture allows different fault thresholds or
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replication techniques in a per element basis. For instance, the
service, gateway and CIS elements can have distinct charac-
teristics when ever they need to ensure specific reliability and
availability requirements, such as crash faults, arbitrary faults,
or resist to resource depletion attacks.

Client! CIS (mfB +1)!Service (fS + 1)! Gateway (fG + 1)!

Fig. 2. Architectural components overview.

We assume that the service and gateway elements are
designed to tolerate crash faults and detect some specific
problems such as message integrity or authenticity violations
while tolerating up to fS and fG simultaneous failures, re-
spectively. Secure components can be used to verity message
integrity and authenticity if sensitive data and procedures are
required to accomplish the task. Otherwise, simple software-
based verification methods can be sufficient to do the job.

Clients connect to any service replica, while a service can
connect to any gateway. The connection to the replicas can be
controlled using simple lists, which happens in AAA protocols,
or round-robin for load balancing, for instance. However, in
functional architecture there is no strict need for load balancing
since the main goal is to provide fault tolerance. Hence, it is
reasonable to assume that components are configured with at
least a simple circular list of replicas.

On the other hand, the CIS does not support distinct
methods to choose which replica to connect to. Gateways have
to know all replicas required to support the number of faults
assumed in the system. Using as an example a system that
requires 2 f + 1 replicas to tolerate f faults, gateways need to
known at least 2 f + 1 replicas to ensure that arbitrary failures
on the CIS are going to be masked as long as f + 1 replicas
are correct.

As a fault- and intrusion-tolerant infrastructure, the CIS
is implemented with protocols to tolerate arbitrary faults.
Gateways receive the responses from all (or at least enough
to ensure a safe voting) back-end replicas and decide which
one is the correct response that should be forwarded to the
service or client. To achieve this goal the back-end service
requires m f + 1 replicas, where m refers to the specific BFT
algorithm [16] in use (e.g., m = 2, m = 3).

C. Essential building blocks
The main building blocks are technologies and components

that make it possible to conceive resilient and more secure
services based on the proposed functional architecture.

Virtual machines provide flexibility and agility to deploy
systems and services. In highly resilient systems, mechanisms
like proactive-reactive recovery and diversity can leverage
functionalities provided by hypervisors, such as fast start, stop,
suspend, resume and migration of virtual machines.

Replication protocols represent one of the major building
blocks of resilient services. State machine replication and

quorum protocols are common approaches to mask arbitrary
faults on dependable systems. Replicas allow the system to
tolerate up to f simultaneous faults without compromising its
operation. Additionally, complementary ingredients for high
availability and robustness are proactive and reactive recovery
mechanisms and techniques to increase the diversity of the
system [17].

Secure components are small and reliable pieces of soft-
ware, and/or hardware, capable of ensuring critical properties
or functions of the system, such as integrity control, timing
and data confidentiality. They can be used in different parts of
the functional architecture. For instance, in an OpenID-based
authentication solution both end user and the server can trust
their sensitive data (e.g., certificate, keys) and crypto functions
to a trusted component. Hence, a compromised server will not
leak confidential data like private keys or user’s tokens.

Secure end-to-end communication. It is necessary to
achieve confidentiality and privacy of user data. Protocols such
as Transport Layer Security (TLS) and Tunneled Transport
Layer Security (TTLS) can be leveraged to provide reliable
channels, mutual authentication and server authenticity veri-
fication. These functions can be helpful to avoid attacks like
man-in-the-middle and eavesdropping.

D. Requirements and components
Table I shows the properties and requirements for design-

ing and deploying services with different levels of resiliency
and trustworthiness. We use the notion of trust to indicate
whether the system is capable of ensuring data confidentiality
of sensitive data such as private keys. Most of the existing
identification and authentication services belong to the first
three classifications, where “−−” means only primary-backup
replication to tolerate crashes of the master server. In other
words, those services are less secure and not highly resilient.
For instance, an attacker can sequentially compromise all
servers since there are no advanced recovery mechanisms
in place, such as proactive recovery, to ensure the system’s
liveness and reliability.

TABLE I
Service properties and requirements/components.

Properties Secure
comp.

Replication
protocol

Recovery
mechanism

Wormhole
model

Intrusion-
tolerant

1. Untrusted no no no no no

2. Trusted but not resilient yes no no no no

3. Resilient (−−) but not trusted no yes no no no

4. Resilient but not trusted no yes yes no no

5. Resilient but not trusted no yes yes yes no

6. Resilient and trusted yes yes yes yes yes

7. Resilient and trusted (++) yes++ yes yes yes yes

Our system design artifacts and functional architecture are
expected to contribute to the development of services with
properties of classes 4 to 7, where “++” indicates multiple
verification points (e.g., the correctness and authenticity of a
message could be verified within any element of the functional
architecture, potentially reducing the request-response time by
taking further actions as soon as possible). Property 4 does
not use the wormhole model [18], while 5 does. This model
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proposed hybrid distributed systems comprised of two parts:
the payload (main parts and functions of the system) and a
tiny subsystem with stronger properties for ensuring minimal
timing requirements of the system, such the synchrony those
needed to ensure the finalization of consensus protocols. It
means that the former can not support an asynchronous system
since there is no way to assure that consensus protocols, which
are one of the basic building blocks of replication protocols,
will finish their execution.

A system of class 5 is not intrusion-tolerant because it
does not use secure elements to ensure data confidentiality.
This is precisely one of the state machine replication and BFT
limitations. These protocols are designed to ensure integrity
and availability, but not data confidentiality. Therefore, addi-
tional mechanisms, such as secure components, are required to
ensure the system’s sensitive data confidentiality. Furthermore,
the worm hole model is required to ensure minimal synchrony
requirements of consensus protocols if the system if assumed
to be asynchronous.

Lastly, systems of type 6 and 7 need a wormhole to rely on
specially designed trusted components to ensure the minimal
and critical system properties, which are required if the system
is assumed to be asynchronous. However, if the system is
synchronous or partially synchronous, then a wormhole is not
required for timing purposes, for instance.

Another difference between systems of type 6 and 7 lies in
the more extensive use of secure components. While in type
6, trusted components are used only in the client and back-end
service, a system of type 7 requires secure components in other
elements as well, such as gateways and services. One use of
these additional secure components, on different architectural
elements, is to safely earlier detect corrupted messages.

E. Deployment scenarios
Figure 3 shows the main trade-offs of service deployments.

Despite the performance gains when using shared memory
replication solutions such as Intrusion Tolerance based on
Virtual Machines (ITVM), which uses a single physical ma-
chine and shared memory for communication purposes be-
tween virtual machines [19], these services can suffer from
resource depletion attacks and be affected by infrastructure
incidents [17]. Nevertheless, depending on the needs and
requirements of the target environment, an ITVM-based system
can be the most adequate solution. On the other hand, resilient
systems using techniques provided by replication frameworks,
such as BFT-SMaRt [20], allows us to create more robust
services which are capable of achieving higher degrees of
availability through multiple physical machines and/or multiple
domains. A physically distributed system can leverage the
resources and defense mechanisms of multiple domains, but
with the burden of lower overall performance. Therefore, one
can conclude that there is no unique solution to all problems.
The mechanisms and protocols to be employed have to be
analyzed and chosen based on requirements and guarantees
needed by the target environment. Only with these inputs can
one decide which are the best system artifacts for building a
particular solution.

Resilient services using distributed machines across mul-
tiple domains (e.g., distinct clouds) are capable of tolerating

physical hazards of machines and domains (e.g., network con-
nection problems, energy outages and disk failures) as well as
logical problems (e.g., misconfigurations of systems/networks
and resource depletion attacks) by leveraging the support
offered by each infrastructure. In practical terms, it has already
been shown that cloud providers can tolerate DDoS attacks
of big proportions without incurring losses for customers
[21]. One of the resources against this kind of attack are
the geographically distributed data centers, which together can
form a robust and diversified infrastructure.
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Fig. 3. Service deployment configurations.

V. Results and Discussion
A. RADIUS and OpenID prototypes

To evaluate the functional architecture and system design
artifacts, two fault- and intrusion-tolerant prototypes were
developed, one an OpenID provider and another, a RADIUS
server. Our prototypes use the BFT-SMaRt [20], an open
source and free Java-based library that provides high perfor-
mance Byzantine Fault-Tolerant (BFT).

BFT-SMaRt can be leveraged to deliver a resilient service
architecture that requires higher levels of availability and a
lower probability of faults due to depletion attacks (e.g.,
performance or functionality degradation caused by a resource
consumption racing or exhaustion). In addition, the state
machine replication framework allows us to deploy replicas
in a single physical machine, in multiple physical machines,
or in multiple physical machines spread throughout different
domains (e.g., multiple clouds). Consequently, replicas need
to send and receive data over reliable and authentication
channels, as is the case in BFT-SMaRt, to avoid attacks such
as eavesdropping and man-in-the-middle.

The two prototypes follow the current standards of OpenID
and RADIUS protocols, respectively. This means that any ap-
plication based on these protocols will work with the resilient
and more secure version of the service without requiring any
modification. Hence, OpenID providers can offer to their users
more reliable and secure services, which are able to support
faults and intrusions in a smooth and transparent way. Due to
space constraints, we only briefly introduce the OpenID BFT
prototype in the following section. It is worth mentioning that
most of the system design and implementation aspects apply
to both RADIUS BFT and OpenID BFT.

B. OpenID BFT implementation
Figure 4 gives an overview of the OpenID BFT, which

is based on the proposed functional architecture and system
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design artifacts. Dashed lines indicate alternative paths used in
case of failures of the default paths (solid lines). The timeouts
are used to detect faults. While timeouts A and B and default
properties of the functional architecture, timeout C is a specific
requirement of OpenID.

User!
Browser / 
Smartcard!

IdP Service 
(back-end) !

(mf + 1)!

Web Service / 
Relying Party!

(fR + 1)!

IdP Gateway / 
replication proxy !

(fG + 1)!

Timeout A! Timeout B!

Timeout C!

Fig. 4. Overview of the OpenID-BFT functional architecture.

In the OpenID BFT architecture, a client uses a Web service
(relying party) that redirects him to his respective OpenID
provider (IdP gateway). The user’s credentials are required in
the identification process, done by the IdP service replicas.

We have implemented the OpenID prototype with the
openid4java library [22] (version 0.9.8), which supports
OpenID 1.0 and 2.0. Our implementation defines OpenID 2.0
as the default authentication scheme. It is a fully fledged
identity provider which is capable of tolerating up to f
arbitrary replica failures. Moreover, secure elements are em-
ployed on the client side and authentication server to ensure
the confidentiality of sensitive data such as user and server
keys, self-signed CA’s private key and session tokens. More
information regarding the system’s building blocks, design and
implementation choices (e.g., state machine replication and
secure elements) can be found in [17].

C. Fault thresholds and detection mechanisms
RADIUS BFT and OpenID BFT use the BFT-SMaRt

framework, requiring 3 f + 1 replicas in the CIS to tolerate
up to f faults or intrusion. We have introduced a third, yet
fictitious, prototype called SM Service, where SM stands for
shared memory. Its purpose is to describe the requirements of
an ITVM like solution, which uses virtual machines and shared
memory to tolerate faults and intrusions [17]. SM Service
requires 2 f + 1 replicas to tolerate up to f arbitrary faults.
However, it works with the best case, i.e., only 1 f + 1 active
replicas. When ever the consensus protocol cannot finish due
to differences in replicas’ responses, the remaining replicas
( f ) are awakened and used to reach an agreement. One of
the main disadvantages of this approach is the fact that it runs
only on a single machine, i.e., its availability and operation can
be affected by resource exhaustion attacks and infrastructure
breakdowns. When high availability is required, or the system
is subject to depletion attacks, solutions such as OpenID BFT
and RADIUS BFT are needed to address those challenges.

Table II summarizes the fault model and fault threshold
of the main component of the architecture. It also identifies
example of components in real environments, such as AAA
and OpenID infrastructures. As can be observed, it is assumed
that services and gateways have a fail-stop (crash) behavior.
Nevertheless, they can also detect some arbitrary behavior,

such as malformed packets and corrupted messages, as is
the case of the gateway element of our resilient RADIUS
service. Another interesting potential use case are software
defined networks, which still lack security and dependability
mechanisms and protocols [24].

Services and gateways support fail-stop and a sub-set of
arbitrary faults. Figure 5 shows the fault detection mechanisms.
Only abnormal behavior like message corruption or forgering
can be detected by clients and services. Yet, gateways are
capable of detecting and masking arbitrary faults of the CIS
element. Lastly, the CIS tolerates intrusions in up to f replicas
once those events can be treated as arbitrary faults.
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Fig. 5. Fault detection mechanisms.

D. A secure TLS component
Table III summarizes the methods required to implement

a secure TLS component. To ensure mutual end-to-end au-
thentication in RADIUS and OpenID, secure components
can be used both at the client and server side [25]. These
components are key design pieces to ensure properties such
as confidentiality, storing sensitive data (e.g., secret key and
attributes) and executing critical operations on it in a safe way.

TABLE III
Secure TLS component interface.

Method Input Output
generate-
Random

Random number size
(in bytes).

Random number with a specific
size.

extract-
PreMaster

Client’s premaster
secret.

True if premaster is correctly
deciphered, false otherwise.

generate-
Master

Random numbers from
client and server.

True if the master secret was
generated, false otherwise.

getServer-
FinishMsg

Hash of the record
stream.

Finalization message of the
server.

A secure TLS component needs to be designed to provide
the required methods to execute a TLS handshake, in case,
four methods are needed to accomplish this task. Any outside
software component can invoke those methods to execute a
handshake between a client and the authentication server. No
sensitive data leaves the secure TLS component. For instance,
the server’s private key, which is required to decipher the
premaster key sent by the client and to generate a master key,
can only be used inside the secure component. Therefore, an
intruder cannot compromise the confidentiality of the server.

We implemented a secure TLS component based on the
methods specified in Table III. It is used by RADIUS BFT’s
CIS to ensure a secure and reliable mutual EAP-TLS authen-
tication between the user (using a certificate) and the AAA
authentication server. In the case of OpenID BFT, the secure
element ensures the confidentiality of user credentials and
server keys and session tokens.
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TABLE II
Fault model, fault threshold and example of components.

Component Fault model Replicas Faults Example of real use case components
Client — — — End user, network device

Service Crash fS + 1 fS WiFi router, network management services, OpenFlow switch

Gateway Crash fG + 1 fG New element interfacing with the target service and CIS

CIS Byzantine m fB + 1 fB RADIUS AAA server, OpenID server, NIB of an OpenFlow controller [23]

Secure component Crash 1 0 TLS keys and cryptographic methods

E. Properties, characteristics and performance
In Table IV, we sum up the main properties and character-

istics of our prototypes. As can be observed, they are similar
for OpenID BFT and RADIUS BFT because both of them
leverage the same kind of architectural elements, replication
mechanisms and secure components. Again, we have the SM
Service for simple comparison purposes.

TABLE IV
Prototypes’ properties and characteristics.

Property/support OpenID
BFT

RADIUS
BFT

SM
Service

1. Multiple physical machines yes yes no

2. Trusted components yes yes yes

3. Hypervisor is trusted and secure no no yes

4. Depletion attacks susceptibility low low moderate

5. Performance (operations/s) moderate moderate high

6. Availability guarantees high high moderate

7. Arbitrary faults tolerance yes yes yes

8. Intrusion tolerance yes yes yes

Susceptibility to depletion attacks is intrinsically related to
virtual machines using the same hypervisor. It is moderate to
high on solutions based on a single hypervisor because a deple-
tion attack can compromise the performance of non-malicious
virtual machines in more than 50% of cases, depending on the
specific attack. Examples of such resource exhaustion attacks
and their impact on virtual machines of the Xen hypervisor
can be found in [17].

Virtual machines on a single hardware platform can use
shared memory spaces to execute protocols such as con-
sensus [19], while frameworks such as BFT-SMaRt rely on
message communication systems, whose performance depends
on the specific algorithms being used and the corresponding
implementation details. In OpenID BFT and RADIUS BFT,
we use the BFT-SMaRt framework, which implements a set
of optimization for state machine replication [16]. Therefore,
we can consider its performance as moderate when compared
to an ITVM-based solution, which is the best known perfor-
mance setup for executing a state machine replication protocol.
Moreover, other state machine replication implementations
using non-optimized protocols would lead the system to lower
performance measurements when compared to BFT-SMaRt.

It is well known that fault- and intrusion-tolerant mech-
anisms introduce some overhead in the system. To give an
idea of the overhead, we measured our RADIUS BFT im-

plementation and compared it with FreeRADIUS, which is a
well-known and widely deployed implementation of RADIUS.
The authentication latency increases by approximately an order
of magnitude. Even though, it keeps below 200ms, which
is an acceptable (non-perceptible by normal users) value for
an authentication system. We also observed a drop in the
throughput, i.e., number of authentications per second. In this
case the difference narrows down to an overhead of about
5% to 40%, depending on the system’s specific configurations
and optimization. One of the reasons for the lower impact on
the system’s throughput is regarding the fact that BFT-SMaRt
has a highly optimized batching subsystem for state machine
replication, which is able to process a high volume of requests
without impairing the system latency.

In summary, system design and development decisions
should take into consideration the specific requirements of the
target environment. While a solution like SM Service would be
more suitable when depletion attacks are unlikely to happen,
the hypervisor can be considered a trustworthy element and
where high availability (e.g., support operation even under
network disruption or other infrastructure disasters) is not a
requirement. Yet, services such as OpenID BFT and RADIUS
BFT are more indicated when high availability is required,
performance is not the most critical issue, the hypervisor
cannot be trusted, or when resource exhaustion attacks can
happen. These sorts of solutions can resist to different kinds
of threats or infrastructure incidents once replicas can be
deployed in different physical machines and domains.

Resilient RADIUS versus FreeRADIUS
The throughput of the resilient RADIUS service and the

FreeRADIUS server was measured using 2 to 20 simultaneous
supplicants. Each client was configured to execute 10.000
sequential authentications using the same credentials. Fur-
thermore, each authentication requires exactly ten packets,
which needs to be considered when calculating the number of
authentications per seconds. Therefore, we used a C program
to measure the number of packets cached by tcpdump.

As shown in Figure 6, the throughput of the resilient RA-
DIUS remains almost stable, while it varies for FreeRADIUS.
This variation is due to the dynamic pool of threads, which
automatically increases the number of working threads based
on the number of authentication requests. Thus, it causes a
slightly decrease in performance from 4 to 10 simultaneous
clients. Afterwards, by activating new threads, the system’s
performance goes up again. The FreeRADIUS was configured
with a minimum of 3 active threads and a maximum of 30
threads.
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Fig. 6. Resilient RADIUS and FreeRADIUS throughput.

The stable throughput of the replicated RADIUS can be
attributed to the gateway’s throughput and the AAA replica-
tion. It sequentializes the network access servers’ requests,
sends each request to the replicas and clocks waiting for
an answer. A thread pool, similarly to FreeRADIUS, could
be used to increase the gateway’s throughput. Moreover, the
replicated RADIUS server also poses some limits to the system
performance since requests must be acknowledged and ordered
among all replicas. Nevertheless, the BFT-SMaRt system has
a highly optimized batching and parallelization sub-system
capable of sustaining high throughputs with higher number
of clients (e.g., thousands) [20].

On the other hand, the latency almost doubles, going
from nearly 100ms for FreeRADIUS to almost 200ms for
the resilient RADIUS. The main problem of the latency lies
on the gateway and the trusted component, due to their
implementations. Both sub-systems could be re-designed to
better explore concurrency and/or parallelism.

VI. Conclusion
This paper presented the first functional architecture and

system design artifacts for designing and deploying more ro-
bust and reliable identification and authentication services such
as OpenID and RADIUS. We believe that this is an important
step for developing more systemic countermeasures against
new security threats. Our results and evaluations indicate that
we are able to build resilient and more secure identification and
authentication infrastructures by combining important mecha-
nisms and techniques from security and dependability.

We discussed how a functional architecture can be com-
bined with system design artifacts to build different fault-
and intrusion-tolerant services. The same components were
successfully applied to build two distinct prototypes.

Interestingly, we believe that the proposed functional ar-
chitecture and system design artifacts can be also extended to
different scenarios. Based on our previous work and observa-
tions [17], we could apply the same concepts and components
to create secure and dependable control platforms of software
defined networks [24], where the CIS is a consistent and fault
tolerant distributed data store [23], and resilient event brokers
for monitoring cloud infrastructures [26], for instance.
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