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Abstract—Two dominant trends of the Internet are the increasing
importance of multimedia traffic, not only in the form of
streaming videos but also for interactive communications, and
the use of cloud technology to deploy services. In this paper, we
look at the intersection of these trends and expose a number
of considerations to help with the deployment of multimedia
functions for interactive, mobile-adaptive and time-constrained
applications in the cloud. We show how virtual servers can be
CPU or bandwidth constrained and how to use them effectively.
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I. INTRODUCTION

Deployments of multimedia functions in a cloud are of
interest for a number of reasons. First, it is a way to optimize
services offered by operators, through economies of scale.
Second, for many applications, it is a way to avoid end-to-
end connectivity issues posed by middleboxes (e.g., network
address translation boxes). More generally, it is a way to
leverage third party service offerings, through outsourcing.

On the other hand, there are multiple ways to implement
and exploit cloud technology, designated through different
variants of platform, software or infrastructure as a service
(PaaS, SaaS, IaaS, resp.), and we can wonder what is the
best way to do such deployments to take full advantage of
the scalability and flexibility offered by the cloud.

In this paper, we look at media from the perspective of
a service infrastructure such as the IP Multimedia Subsystem
(IMS), that is, a mobile-supporting media environment where
control and processing are split, and control will be related
to some signalling infrastructure. In the IMS world, one talks
of a media controller and a media processor [1], [2], but we
must point out that, although we adopt this decomposition
and terminology, this work is in no way specifically tied to
IMS. Doing such a split is interesting for a number of reasons
but scalability comes naturally to mind, as the demands of
media processing, especially video, will dwarf those of control
processing.

The main challenge for the cloud deployment problem
of a media function then becomes the dual issue of server
placement, so as to avoid problems related with latency and
general control of quality of service (QoS), especially in the
presence of mobility, and of spreading the processing load
across a number of processors, which is essentially a schedul-
ing problem. This must be repeated for multiple instances of
controllers, possibly for different customers, each requiring
the services of multiple processors. However, before we can
address the design of such a scheduler, we need to study the
requirements of the processors themselves. Such a problem has

been widely investigated in the community, but not in such a
case as propose here.

In this paper, we study the performance constraints of a
number of video codecs used for interactive communications
(e.g., video conference), a particularly demanding application,
and present a control architecture to support their efficient
operations in an Edge cloud environment. Our focus on video
processing is meant to expose the needs of the most demanding
services, but our long term goal is to support a general set of
media types, including voice and audio.

This paper is structured as follows: Section II sets the back-
ground on this work. Section III describes the experimental
context and Section IV presents the results of our evaluation
of the performance constraints. In Section V, we present a
sketch for a scheduling function for media operations within
the cloud. Section VI has a discussion of our work and we
conclude in Section VII.

II. BACKGROUND

Moving a service to a cloud presents a number of benefits,
including lower infrastructure costs and scalability of offer
through on-demand activation of servers. Indeed, adapting to
demand has been an important sales point for cloud-based
services. Offers have typically been confined to computation
and storage, and media restricted to streaming.

Much has been written on the various guises of cloud
infrastructures and service offerings [3]. More recently, there
has been a specific interest in the use of clouds for multimedia
services [4], [5], typically Video on Demand (VoD), a grow-
ing commercial segment with commercial offerings such as
Netflix, which incidentally largely relies on a combination of
Amazon’s Elastic Compute Cloud (EC2) service and Content
Delivery Networks (CDN) providers such as Akamai for
content delivery. Companies with large cloud infrastructures,
such as Google, Apple, and Amazon itself, offer competing
services. Gaming has been another topic of interest.

Media streaming, such as VoD, has to be responsive but is
non-interactive and supports a large amount of buffering. The
constraints on the server side are of a storage and bandwidth
nature: deliver content from storage—or memory caches if
the content is in high demand—through a network interface.
Furthermore, CDNs can be used in conjunction with cloud
storage to scale delivery to a large number of customers.

Media services expand beyond VoD, however, and many
are interactive, which implies reaction times in the couple of
hundreds of milliseconds in the worst case, and very little
margin for buffering. Streaming of real time programmes (i.e.,
live TV) is another example. There have been several studies of
the use of cloud to support mobile services, also in the context
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of IMS [6], [7], which presents a clear distinction between
control and processing supporting distribution, including our
own work on the Edge Cloud [8].

IMS also illustrates the need for different varieties of media
processing. Beyond the streaming services already described,
we find services strongly related to telephony, such as DMTF
(tone) decoding, voice mail or also interactive voice response
(IVR), but also more generic services such as transcoding or
conference bridges. Beyond IMS, IP/TV is another example
of media processing, especially in contexts, such as mobility,
where a uniform multicast model can be difficult to deploy at
the network level and needs to be provided as an adaptive ap-
plication. There have been so far little effort reported to study
the effects of the deployment of interactive media services in
the cloud. We can note that some commercial offerings, in the
form of virtual media servers, are required to be run alone on a
hardware platform and have strong limitations (e.g., Microsoft
Media Platform).

Unlike streaming services, which can be accessed and
controlled from a web page, interactive services tend to be
related to a signalling protocol, typically SIP. Also, for scala-
bility reasons, the media function is separated into control and
processing. From this perspective, we argue that it makes sense
to study how the media processing function can be deployed
in the cloud, to take advantage of the latter’s flexibility and
scalability. In the following sections, we study first the cost of
hosting a media function in the cloud and second, how can it
be properly orchestrated.

III. MEDIA FUNCTION PERFORMANCE
CHARACTERIZATION

We look here at the characterization of the performance
cost of running a media processing function on a generic
processor. We have created a simple testbed to isolate the
contribution of video flows on computer resources along three
parameters: CPU, memory and bandwidth consumption; we
have also measured latency. The purpose of the characteriza-
tion is to identify the key parameters to be used by a scheduling
function, which we will explore in the next section.

The goal, quite straightforward, is to study how it is
possible to multiplex different functions onto single processors.
To illustrate our purpose we consider only one example–
transcoding–a function that is however quite certainly CPU
demanding and subject to latency.

Video processing: Our experimental environment is based
on the use of the GStreamer framework. Such a framework,
extensible through plugins and composition is an ideal vehicle
for custom tests. It is also quite efficient, in spite of its flexibil-
ity, as has been demonstrated in performance evaluations [9].

A GStreamer application is a pipeline of different modules
which contribute one specific element of the audio/video
transmission and processing chain, including coding/decoding,
mixing, filtering, scaling, effects, etc.

To illustrate how processing pipelines can be specified in
succinct term, we present in Fig. 1 an example of a simple
GStreamer pipeline, and the matching code is presented below.
The pipeline starts with a live video capture from a camera
(Microsoft LifeCam Studio, 1080p), although a network or

Figure 1: Simple GStreamer Pipeline

disk stream is also a possibility. This stream is scaled to a
smaller video size, coded, transmitted, received, decoded and
presented on a screen.

Latency measures: We use GStreamer extensively to gen-
erate our media streams, with different codecs. But also quite
important for our study is the possibility of using it to insert
data in a media stream, which can be identified at the receiver
and used for latency measurements. For this purpose, we use
the Zbar module, a generic part of the GStreamer framework,
which allows the detection of the presence of a barcode in a
picture. The Zbar module reads frames from a video stream,
detects barcodes and sends them as element messages to
the GStreamer bus, from where we can retrieve the detected
barcode data and the timestamp of the frame that triggered the
message.

The use of the Zbar module is key to measuring latency. A
barcode picture is integrated in the stream and marked with a
timestamp as part of normal processing for transmission with
RTP transport. The module detects that barcode at the receiving
end and retrieves the corresponding timestamp. The latency
is the difference between the timestamps retrieved from the
stream and the current time at the receiver. We note also that
this technique is robust in the presence of video transcoding.

For such a measure to be useful, the time on both machines
must be synchronized. In our studies, all computers run the
NTP protocol with a server polling interval of 10 seconds.
The latency reported is the average of 10 samples.

Codecs: We have used three codecs suitable for use for
video conferencing over the Internet. They were meant to be
representative of the most popular techniques, but not neces-
sarily to present an exhaustive choice of possibilities. Most
specifically, we have used motion JPEG (MJPEG), MPEG2,
et MPEG4-AVC (H.264), all available within the GStreamer
framework. The key rate was fixed at a standard 25fps, and
the video format was 480p, which, with the arrival of a
new generation of mobile terminals, is slowly becoming the
standard low end of video resolution. In the case of H.264,
we have configured the implementation we used (x264) for
an interactive application and not for its default streaming
operation, which uses a large amount of buffering to achieve
high video compression rates.

IV. EXPERIMENTAL RESULTS

All tests were performed on a computer with an AMD
Phenom(tm) II processor at 2.7 GHz, with 16 GiB of memory,
running a XEN-enabled bare-bone Debian linux distribution.
All media processing instances were running single-threaded,
to avoid conflicts between different levels of scheduling, in
separate processes but without virtual machines. The com-
munication link speed was limited to 100 Mbps, a realistic
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perspective if we consider that this machine would be part of a
cloud and have many siblings performing the same operations.

We begin with the performance limits imposed by the
computing platform itself, and then consider the impact on
latency.

Physical setup: The end-to-end view of our basic system
is presented in Fig. 2. More specifically, it shows the sender
side, relay and receivers side. On the sender side, a GStreamer
pipeline encodes the video stream and transmits it over UDP.
The streams received at the relay are transcoded and retrans-
mitted to the receivers. Each receiver decodes and renders the
stream to the screen.

The number of receivers is limited by the number of
instances executed in the relay. Once the sender transmits the
stream, on the relay side, we continue adding instances, all the
while measuring the resource consumed, until we reach the
point where the relay has exhausted its capacity to do further
useful work. After the generation of each instance we wait
10 seconds before making a measurement to avoid transient
effects. Indeed, during the evaluation of the CPU metric we
found that, after the generation of an instance, the results
were not correlated until the processor had stabilized, which
required 5 seconds on the average. Also, to reduce interference,
all background tasks were disabled during measurements.

On the relay side, the CPU and memory utilization were
measured based on the standard process statistics report that
contain information related to overall system status. We have
used the libpcap library to capture the network traffic into a file,
which was later analysed using the Wireshark graphic analysis
tool to extract the bandwidth information. This analysis was
performed offline to avoid interfering with the experiments.
The latency between the sender and the receiver side was
measured by the barcodes frames as explained before.

Platform limits: Fig. 3 presents the results of our per-
formance tests for two types of videos: a talking head-type
video stream, typical of video-conference applications, and an
action video stream with many changes of background. For all
figures, the x-axis presents the number of instances of a video
operation and the y-axis the percentage of a CPU or the amount
of bandwidth used for each type of video (memory is not
presented because of space considerations). We are considering
only homogeneous instances: only one type of video for all
instances. The results are presented for three codecs denoted
as jpeg (MJEPG), Mpeg2 (MPEG2, which gives equivalent
results as H.263 and MPEG4-part 2) and x264 (H.264).

Figure 2: Experimental setup

We see that, as could be predicted, H.264 coding is the
most demanding in terms of CPU, with the best compression
results for dynamic video content. At the other extreme,
MJPEG is low in CPU demand, while requiring higher band-
width. Mpeg2 trails x264 closely and presents little noticeable
advantage over it. In the case of x264, the limiting factor will
be the CPU consumed—between 25 and 30 instances—while
for jpeg, it is the bandwidth—about 18 for a 100 Mbps link.

These results clearly establish the soundness of using a
standard computational platform to perform video processing,
as the number of simultaneous instances that can be supported
is rather large and lends itself to a mix of operations.

Latency: We next consider the impact of running multiple
instances on latency. As explained above, these measures were
done by the insertion of barcodes with a timestamp in the video
stream and their extraction at the reception. A null operation
was performed to eliminate the delay due to this technique and
we consider only the increase in latency in our results.

Fig. 4 again shows the results for two different kinds of
content, static and dynamic. At first glance we see that we do
not have the linear behaviour that we had observed with the
performance indicators. At about 10 instances, in both cases
and for two codecs, we see that we lose the linear behaviour,
and latency increases dramatically for the MJPEG codec. A
correlation with the use of bandwidth points to a likely answer
for this behaviour, which would denote a greater level of
contention at the network interface. The x264 module, on the
other hand, behaves rather linearly, with similar results for both
types of video. Furthermore, the results are quite acceptable
for interactive communications, remaining inferior to 100 ms.

Other factors: We have also analysed jitter and video
quality degradation. Jitter does increase with the number of
instances but we could not measure it with sufficient precision
to have statistically significant results. Similarly, no statistically
significant degradation has been observed in the video content,
on the basis of a PSNR-based comparison of original vs.
received content.

V. EDGE CLOUD DEPLOYMENT

Through the assessment of the performance of a media
function, our experiments have established that it is possible to
run several instances of demanding media functions on a single
computer. We now analyse how such a deployment could be
orchestrated under the supervision of cloud management, and
on demand by a control function.

Edge Cloud: First, we consider that processing is deployed
on Edge Clouds, that is, broadly speaking, a Cloud within
an access provider’s domain, close to users. There are several
benefits to this model as it provides more flexibility to integrate
user feedback based on the nature of the access link, be it for
cellular phone services or over-the-top services. It also sup-
ports scalability through the availability of such infrastructures
across many sites. While not acknowledged as such, the Edge
Cloud is a reality as most ISPs have taken to deploy cloud
infrastructures of their own, to take advantage of this booming
market. Furthermore, it can be closely related to the way CDN
is deployed, although CDN is not meant to deliver computing
power and is traditionally quite limited in that respect, and
typically restricted to the support of dynamic web content.
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(a) Talking Head Bandwidth (b) Dynamic Content Bandwidth

(c) Talking Head Memory (d) Dynamic Content Memory

Figure 3: Performance of static and dynamic video content

(a) Talking Head (b) Dynamic Content

Figure 4: Latency

Media Processing: As we have already said, we postulate
that media control can be done remotely while processing will

be closer to the access network–what we call the network
edge. We have already discussed that we consider media
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functions with tight time constraints. This includes media
relay (to bypass firewalls or middleboxes), transcoding, live
broadcasting, IVR interactions, etc.

In the line of the experiment described above, we also
characterize each form of processing in terms of the resources
it requires (CPU, Memory, Bandwidth, Storage).

Computing structure: Remember that virtualization is the
tool of choice for deployment in the cloud, from small,
language-specific virtual machines (e.g., Python, Java) to a
full virtualized computer. This is however not necessary in
our case: we only need minimal support from a generic OS
to be able to run multiple instances of GStreamer pipelines,
encapsulated in their own process, and virtualization is irrele-
vant. Of course the observation we make about these pipelines
generalizes to other implementations of media processes.

We propose then that media processing be organized along
the lines of a grid; that is, a pool of machines dedicated
to media processing, running on a software-tuned platform.
To harmonize with normal cloud operations, this software
platform could run on top of the hypervisor used for PaaS
operations. This also implies that the size of the pool could
be elastic, with more machines assigned to its operations as
required. Each software platform has a control module to
accept new instances of media processes.

Monitoring is organized in similar fashion, keeping in mind
that the ratio of monitoring to media functions can be quite
small. Monitoring is in turn connected with media control,
which can run on a different cloud and be more centralized.

Scheduling: Scheduling, in this environment, takes several
dimensions:

• static adjustment of the vocation of machines in the
pool based on the number of control functions acti-
vated;

• dynamic dispatching of activation of a media proces-
sor;

• meta management of elastic behaviour (size of the
pool) based on runtime demands.

We concern ourselves only briefly with meta management
here, and do not discuss the static dimension, as they largely
depend on contractual terms balanced with a history of the
behaviour and consequent demand prediction model [10], [11].
Still, the adjustment of the size of the pool requires some
degree of concern to make sure that the resources we need
are available when we need them, but are also not kept around
beyond the time they are required. Dynamic scheduling, on
the other hand, is directly relevant to our study as we must
make sure that machines running media functions are well
used. In that spirit, observe that, unlike streaming content, we
do not know a priori what the duration of the service will be,
especially for communications where transcoding/conferencing
is involved. Under such conditions, it is difficult to hope to find
an optimal scheduler.

Remember that we characterize the different media pro-
cesses in terms of their CPU, memory and bandwidth needs.
Since we have seen CPU load is the dominant factor for
video processing, we propose, as a first approximation, a

straightforward scheduler where machines are sorted from least
loaded to most heavily loaded and a suitable machine is chosen
based on that order, in a greedy fashion, also matching the
latency constraint of the application. For meta-management,
When the least loaded machine’s load increases beyond a high
water mark, the active pool size is increased; similarly, when
the most heavily loaded machine’s load falls below a low water
mark, the active pool size is decreased. The high/low water
marks would be adjusted with the rate of subscription and
departure of media functions, to give enough reaction time to
allocate resources. Such considerations, however would depend
on the nature of the service(s) offered in practice.

Orchestration: The connection between monitoring and
processing is easily achieved through a management function.
The control requests a processing resource for a specific oper-
ation; the management function will schedule the activity on a
suitable machine, and return to the control the characteristics
required to integrate it in an end-to-end media flow, e.g., IP
address and port numbers.

The operation would have to be pre-registered with the
management function, in the form of an execution script to
establish its performance characteristic, to be used by the
scheduler, with a test and calibration protocol. This model
provides strict resource confinement and acts as a contract for
the execution of a specific function, valid over all its instances.

The control also notifies the management of the end of the
execution of a function, so that the resource can be terminated
and recycled.

A variant: To illustrate the flexibility of our architecture
and its scheduling model, we present here another context,
which is suitable for videoconference, where quality can be
degraded within reason if resources are saturated. We have
imagined four quality scenarios, characterized by the profiles
presented in Table I.

TABLE I: DIFFERENT SERVICE PROFILES

Profile Best Default Fast Ultrafast
CPU(%) 13 7.2 5.4 3.6
PSNR 40.52 38.22 37.00 35.28
MOS Excellent Excellent Good Good

The idea, in this case, it to work with a fixed pool of
resources, but to degrade the quality of the communication,
within the confines of quality constraints characterized by a
satisfactory MOS. As the load increases beyond a limit set
a percentage of CPU load, the quality of the flows will be
lowered, and similarly increased, with suitable hysteresis to
avoid oscillations, when the load decreases. Fig. 5 shows the
behaviour of the load as the number of instances increases
beyond the best quality and flow quality is slowly downgraded;
the algorithm itself is based on thresholds and straightforward.
The threshold maximum load is set at 75 % to allow temporary
overruns. Note that GStreamer allows a transition between
quality profiles without interruption of the video transmission.

VI. DISCUSSION AND RELATED WORK

Complementarity between grid and cloud has been dis-
cussed by Foster in [12], and [13]. Taking a subset of a cloud
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Figure 5: CPU Load

and using it as a computational grid, as we describe here,
is not a new concept. It is also consistent with the use of a
cloud as a streaming farm, which has itself been the focus of
some research [5]. Our work differs in its concentration on
interactive media processing.

It also complements the large body of work on the man-
agement of QoS in clouds and the establishment of SLAs
[14], [15], as it is meant to provide a predictable model of
performance requirements for management. Our approach is
simpler as we show that we do not have to worry about the
effects of virtualisation, which is unnecessary for our purposes.
We also differ from streaming applications since we do not
have to worry about load balancing or disk access, which can
lead to other scheduling issues.

Most important, media distribution is closely related to
the research done on gaming clouds [16]. The similarities in
time constraints and computing load between both types of
problem are clear although some elements are clearly different.
Taking into consideration single user or group video games
only, they will be implemented in a single server, with no need
for transcoding. Furthermore, specialized hardware, typically
GPUs, will be used to achieve better performance results.
Finally, some latency in game set-up is acceptable, which leads
to more flexibility in scheduling. Nevertheless, it is clear that
the same infrastructure can benefit both types of application
and such convergence will be the focus of future work.

VII. CONCLUSION

We have presented a performance analysis for a media
function and shown how these results can be used for their
scheduling in a grid environment. We have chosen this de-
manding function to assess the practical limits and the results
show that it is quite reasonable to not only mix such functions
on the same processor with a simple containment, but to also
mix them with other functions, also interactive, but possibly
less demanding.

This work overall establishes the suitability of the edge
cloud, as opposed to dedicated hardware or boxes, as a host
and support for media processing. The latency of the operations
is quite acceptable for such applications as IMS provided the

cloud be deployed closer to the edge, e.g., for mobile service
providers.

In future work we plan to develop and refine our manage-
ment function and design a scheduling toolbox to support a
variety of operations along the line of those we have presented.
More specifically, we plan to integrate learning mechanisms to
assess the nature of the processing.
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