
Analysis of Scheduling Algorithms with Migration Strategies in Distributed Systems

Francisca Aparecida P. Pinto∗, Chesley B. Chaves†, Lucas G. Leite‡, Francisco Herbert L. Vasconcelos§ and
Giovanni C. Barroso¶

Federal University of Ceará (UFC)
Department of Teleinformatics Engineering ∗§¶, Department of Computer Science‡ and UFC Virtual Institute†§, Ceará, Brazil

{aparecida.prado, herbert}@virtual.ufc.br, chesleybraga@gmail.com, lucasgml@alu.ufc.br, gcb@fisica.ufc.br

Abstract—Task scheduling is a problem which seeks to allocate,
over time, various tasks from different resources. In this paper,
we consider group task scheduling upon a heterogeneous multi-
cluster system. Two types of job tasking are considered, parallel
and sequential. In order to reduce fragmentation caused by
the scheduler group, migration mechanisms were implemented.
Moreover, the dispatchers global and local use distribution of
jobs in order to minimize delays in the task queues, as well as in
response time. To analyze the different situations, performance
metrics were applied, aiming to compare schedulers in different
situations.

Keywords-parallel job; scheduling; distributed Systems;

I. INTRODUCTION

Traditionally, the main focus of the industry has been
to improve the performance of computing systems through
more efficient projects, hereby increasing the density of its
components. Associated with the exponential growth of data
size in simulation/scientific instrumentation, storage and inter-
net publications, the increased computational power of such
systems boosted investment by big providers, government
research laboratories and computing environments, thus en-
hancing robustness in order to host applications ranging from
social networks to scientific workflows [1].

In this context, distributed systems emerge as an interesting
solution for the provision of physical resources upon demand,
as they allow additional computational power of several nodes
interconnected by a computer network, in order to perform
tasks. Distributed computing systems have been used due to
their important attributes, such as: cost efficiency, scalability,
performance and reliability. In grid computing, there are three
important aspects that must be treated: task management, task
scheduling and resource management [2]. In particular, Grid
Task Scheduling (GTS) plays an important role in the system
as a whole, and its algorithms have a direct effect on the
grid system. Task scheduling in a heterogeneous computing
environment proved to be a NP-complete problem [3].

To solve this problem, various scheduling algorithms have
been proposed for distributed environments, whereby they
have been classified in several different ways. For example,
as shown in [4], we propose a hierarchical tree classification
which splits at the highest hierarchy level into the local and
global algorithms. With reference to [5], the authors classify
the algorithms according to the types of applications found

in the grids: meta-task and Directed Acyclic Graph (DAG)
algorithms. Actions can be executed simultaneously and in-
dependently through meta-task algorithms, whereas the type
DAG algorithm contains precedence constraints. Moreover,
they are classified into traditional algorithms, deterministic
and heuristic intelligence, for the use of different optimization
technologies.

Existing scheduling techniques, highlight scheduling
groups or co-schedulers [6], are considered efficient algorithms
for the purpose of scheduling parallel jobs that consist of tasks
that must be allocated and executed simultaneously on different
processors [7]. These types of scheduling algorithms provide
interactive response times for tasks with low execution time
by means of preemption, with the disadvantage of causing
fragmentation and reducing system performance [8]. The frag-
mentation of resources has been a common subject of research
in the last two decades [16]. Various approaches to the frag-
mentation of resources have been developed, whereby better
fit and task migration are the two most common approaches.

Based upon the above, this paper aims to reduce the
fragmentation caused by the scheduler group and response
time. Therefore, the main contributions of this work are: i)
application of a migration mechanism task schedulers group,
in order to minimize the fragmentation and response time.
ii) implementation of strategies inside dispatcher managers,
aiming the distribution of tasks to the clusters, to avoid
unnecessary migrations, improving system efficiency; and iii)
implementation of a heterogeneous multi-cluster system with
the objective of analyzing the performance of schedulers in
different situations, as well as the system behaviour in different
contexts.

This paper is organized as follows: Section II presents
related work; Section III presents the model of the proposed
system; Section IV describes the operation of the system;
Section V illustrates the group schedulers and mechanisms
of migration; Section VI presents the performance metrics;
Section VII presents the results of simulations, and finally,
Section VIII covers the completion of the work, along with
the prospects for future development.

II. RELATED WORK

The group schedulers, Adapted First Come First Served
(AFCFS) and Largest Gang First Served (LGFS), used in

12Copyright (c) IARIA, 2014. ISBN: 978-1-61208-330-8

ICNS 2014 : The Tenth International Conference on Networking and Services

this work, have been studied in a distributed environment,
[7][9][10][11]. The aim of this study is to make them more
efficient in scheduling of parallel tasks, since these algorithms
cause fragmentation in the system. In [7][10][11][12], there
are proposed migration mechanisms, which are utilized in
order to minimize the fragmentation caused by the schedulers
group in the distributed environments. In this study, besides the
technical migration, other strategies are used (Section V-A), in
order to avoid unnecessary migrations, as well as overloading
of the system. In [13][14], the authors propose a two levels
system model within a grid environment. In the first level,
containing the global scheduler, there is an overview of the
application of the job task, and subsequently, the second level
scheduler has knowledge of all resource details. Moreover,
they consider load balancing through the global manager
scheduler only. In our proposal, we implemented a model
that uses heterogeneous multi-cluster system managers, Grid
Dispatcher (GD) and Local Dispatcher (LD), for the purpose
of allocating jobs on resources. Therefore, unlike the authors
mentioned above, we introduce the GD before sending jobs to
clusters, which is information feedback regarding the load of
the clusters, so that a more efficient load balance is achieved.
Moreover, the distribution of tasks for the processor queue, the
LD, requests information regarding the load of each processor,
namely the number of running tasks in a long processor queue.
Such information is required in order to reduce the time in the
task queue and the response time of a job.

In some work studies concerning the group schedulers
above, migration mechanisms are used to reduce the fragmen-
tation of the system, whereby a metric used to evaluate the
scheduler in relation to fragmentation is not applied. Therefore,
in this paper, in order to analyze the different applied situations
in addition to other metrics, we use the Loss of Capacity (LoC)
function, so that we are able to analyze the performance of
schedulers in different situations, as well as the behaviour of
the system in different contexts. The metric LoC is relevant
to measure both the use of the system as the fragmentation
[15][16][17]. These authors applied the metric in different
contexts.

III. ENVIRONMENT DESCRIPTION

The simulation environment consists of a grid multi-cluster
system which uses the hierarchical structure of two layers.
Such an environment was developed by the Research Group
in Applied Computational Modeling of the UFC, in Java. This
system is composed of managers, Grid Dispatcher (GD) and
Local Dispatcher (LD).

The GD is responsible for the sending of jobs, both parallel
and non-parallel for clusters, and LD is responsible for sending
the task to the jobs belonging to the ranks of processors based
on the algorithm Join The Shortest Queue (JSQ). Each cluster
is comprised of a LD and a set of processors. The system
is heterogeneous in terms of clock rate r and the number
of processors p per cluster. The clock on machines can vary
between 1500 ≤ r ≤ 3000 (megahertz), which is randomly
generated upon creation of the resources in the simulation
environment. More importantly, the larger the value of r,
the time between each processing cycle will be shorter and
therefore tasks are executed in less time. In the implemented
system, the distribution processor p is made in two clusters

of 32 and 64 processors respectively, whereby each processor
has its own queue. The model system is illustrated in Fig. 1.

GD LD

LD

LD n

....... P1

....... P2

P3

P32

P1

P2

P3

P64

.

.

.

.

.

.

.......

.......

.......

.......

.......

.

.

.

.......

.......

.......

.

.

.

.

.

.......

.......

Cluster 1

Cluster 2

Cluster n

f = non-parallel job

j = parallel job

GD = Grid Dispatcher
LD = Local Dispatcher

Figure 1. Multi-cluster system based on queues

In this environment, we assume that the two clusters belong
to the administrative domain, such that they can communicate
with GD. Moreover, communication between processors is
contention free. Thus, we consider the communication laten-
cies are implicitly included on the service time of the job.
The workload applied in this system was extracted from a
real distributed environment [18]. This workload is composed
of two different kinds of jobs that are competing for the same
resources: non-parallel job f and parallel job j. In the workload,
each job is described by a tuple (id, at, sj , pt): identification of
job id, arrival time at where at > 0; sj size of a job, in which
1 ≤ sj ≤ 64, and the processing time pt, whereby pt > 0.

In this paper, we assume that the value of a job pt workload
will be applied in a machine, whereby r .

= 2000 megahertz, as
it currently has a median frequency processor. Otherwise, the
pt undergoes change and may vary proportionally according to
the clock of the machine, that is, when the value of r 6= 2000
megahertz (standard). Therefore, the calculation of the new
processing time Pt is defined by (1).

Pt = pt× Cd

Cm
(1)

whereby pt is the processing time of the job on the work-
load, Cd is the standard clock where Cd

.
= 2000 (megahertz),

and Cm represents the value of the r of the machine, which
relates to 1500 ≤ r ≤ 3000.

A job, f, consists of a single task, whose execution begins
immediately upon its arrival on the grid. The system is not
capable of responding to more than 64 jobs f per time unit.
At present, a job j consists of tj tasks, where 1 < tj ≤ 64,
hence, the number of tasks in a job j cannot exceed the number
of processors in a cluster. Thus, the risk that a job may never
be answered is null. Moreover, mapping between tasks and
processors must be one to one. Thus, tasks from the same
job cannot be attributed to the same processor queue. A job
f is a high priority task, requiring only a processor p for its
execution. Therefore, a processor that receives a priority task
must immediately stop the execution of any other task type

13Copyright (c) IARIA, 2014. ISBN: 978-1-61208-330-8

ICNS 2014 : The Tenth International Conference on Networking and Services

j, in order to serve the task type f. If a job j has one of its
tasks interrupted by a job f, then each sibling task of j has to
stop its execution, and then be rescheduled. Stopping the task
tj that belongs to a job j, can affect even more response time
of j. As soon as f ends its execution, interrupted tasks can
begin their execution again, as well as the entire process. It
is noteworthy that disruption only occurs when all processors
are busy. Moreover, jobs f can not interrupt one another.

IV. OPERATION OF SYSTEM MANAGERS

This section will describe in detail, the operation of system
managers, in other words, the Grid and Local Dispatchers, as
illustrated in Fig. 1.

A. Grid Dispatcher

As stated earlier, the GD is responsible for sending jobs to
the clusters. This submission is made based upon feedback
information concerning the total load of each cluster, i.e.,
the total number of jobs in the queues, plus the number of
tasks that are running on the processors. This cluster load
information will be sent only at the request of GD, since
excessive feedbacks may cause overload on the system. The
average load between clusters is very important for more
efficient load balancing. If the clusters are randomly balanced,
then dispatch occurs. The calculation of the total load of the
cluster is defined by (2).

Ci =
1

n
×

n∑
p=1

[t(p) + ts(p)] (2)

whereby Ci is the total load per cluster, n is the total number
of processors per cluster, t(p) is the total number of tasks in the
queue of each processor p, and ts(p) represents the existence
or non existence of a task running on processor p, ts(p) = 1,
if there is a running task, otherwise ts(p)

.
= 0.

B. Local Dispatcher

After the parallel job j has been sent to a cluster c,
according to the load of c, LD assigns the tasks to the available
queues based on algorithm JSQ. JSQ is responsible for sending
the tasks that belong to a job queue for processors that have
fewer tasks in their own queues. It is important to emphasize
that when a job f arrives at LD, it is forwarded to the cluster
by JSQ.

In this work, an adaptation has been implemented in LD
as a new criterion in the selection of the processor. This
adaptation works as follows: LD receives information about
the cluster load of each processor, i.e., the number of tasks in
the processor queue plus the running task ts. The information
feedback only occurs when LD asks, thus avoiding system
overload. The knowledge of the load of each processor is to
minimize the delay of tasks to the processor queues and the
response time of the job. The calculation of the adaptive LD,
the adaptive Local Dispatcher (aLD) is defined by (3).

Nt(q) = nt + ts (3)

whereby Nt(q) is the total number of jobs per queue, q
is the size of the processor queue, nt represents the number
of jobs in the queue and ts represents the existence or non

existence of a task running on processor, ts
.
= 1 if there are

any tasks running on the processor, otherwise, ts
.
= 0.

With the aLD, JSQ sends tasks to the processors more
efficiently, since this algorithm now has information of the
effective value of the load of each processor. In Section VII,
we present the impact that the adaption on LD causes on the
results of the response time of the jobs. For this analysis, the
LD will be applied with and without the adaptation in both
group scheduling algorithms. In the next section, we present
the group schedulers that were used for scheduling jobs in the
queues of the processors.

V. GROUP SCHEDULERS

In the simulation model, the following policies have been
applied to the analysis of queues: AFCFS and LGFS [7][9]
[10][11]. These schedulers were modified and implemented in
each cluster, separately.

The algorithm AFCFS tends to favour jobs that consist of
a number of smaller tasks, so that jobs that require a smaller
number of processors, result in an increased response time for
larger jobs. But the LGFS tends to favour the performance
of bigger jobs instead of the smaller ones, i.e., bigger jobs
have their jobs put on queues of processors before any others
belonging to a job with a smaller size, resulting in an increase
of response time of smaller jobs. In addition, LGFS involves
a considerable amount of overhead in the system. Therefore,
such scheduling algorithms cause fragmentation in the system,
which happens in two stages: i) the schedulers cannot always
meet the requirements of a job j, since the latter requires a
number of available processors equal to the number of tasks,
in order to execute; and ii) when there are idle nodes and
tasks waiting in the queue to be executed, they are not able to
schedule these tasks.

A. Migration

Assuming that the group scheduling causes fragmentation
in the environment, we look at the use of migration to reduce
fragmentation. In this work, we have studied different migra-
tion schemes for heterogeneous systems, in order to minimize
such problems. Therefore, we assume two types of migration:
local migration ml and external migration me.

The difference between migration ml and me is that
the latter causes a higher overhead on the system, since it
involves the transfer of tasks from one cluster to another.
Therefore, the following strategies have been proposed in order
to reduce fragmentation, as well as unnecessary migration, and
consequent overloading of the the system:

1) checks all clusters that have processors available;
2) analyzes which jobs has its tasks at the beginning of

the queue of idle processors;
3) based upon the above analysis, it checks which of the

jobs has the least or equal number of tasks to that of
the idle processors;

4) and finally transfers the tasks of the job that has fewer
number of tasks to migrate.

During the migration tasks, the destination nodes are reserved,
in order to prevent other tasks using them. When the target

14Copyright (c) IARIA, 2014. ISBN: 978-1-61208-330-8

ICNS 2014 : The Tenth International Conference on Networking and Services

processor is reserved, we ensure the immediate start up of
their performances after the migration of the tasks are chosen.
The only way you can prevent the execution of these migrated
tasks, is the arrival of a job f. If this problem occurs, migrated
tasks are reserved, and when job f liberates the processor, they
return and begin execution immediately. The reserved node can
only be occupied by another job if it is of type f.

The reservation mechanism prevents elected tasks returning
to the queue, because the scheduler AFCFS or LGFS would
not be able to schedule such tasks. These schedulers are not
suitable for parallel scheduling of tasks in different clusters.
Eventually, the me was applied in an attempt to use more
resources as to avoid resources remaining idle. In addition,
we have the use of aging, in order to regulate the number of
migrations that occur in the system, as well as reducing the
starvation of tasks that came before.

The migration strategies were employed in the algorithms
of AFCFS schedules and LGFS (Section V), which were used
in each cluster separately. Therefore, these algorithms with
migration are defined as AFCFSm and LGFSm, respectively.
First, the scheduling hierarchy requires to run the scheduling
algorithms AFCFS and LGFS, and then the migration ml tries
to schedule the jobs that were not able to be allocated by
the scheduling algorithm. The migration me can only be used
in an attempt to make use of more resources. The reason
for this hierarchy is the overhead imposed by each of these
steps. Unlike migration techniques, the schedulers (AFCFS
and LGFS) without migration does not cause any additional
overhead.

In the next section, we will describe the performance
metrics applied to analyze the system model behaviour in
different situations.

VI. PERFORMANCE METRICS

In this work, we applied the following performance met-
rics: Average Response Time (ART), Utilization (U) and Loss
of Capacity (LoC), which constitutes everything required in
order to analyze the performance of schedulers in different
situations, and the system behaviour in different contexts.

A. Average Response Time

The metric response time rt (in time units) measures the
time interval between the arrival of the job in the system until
the end of its execution [17], thus, the average response time
or ART is given by (4).

ART =
1

m
×

m∑
j=1

rt(j) (4)

whereby ART is the average response time of jobs, rt(j)
represents the response time of a job, and m is the total number
of jobs executed.

B. Utilization

In simulation studies, the metric used is simply an indirect
measure of makespan [20], with the workload constant for all
schedulers. The calculation of the metric used is given by (5):

U =

∑m
j=1 pj × tej

makespan×N
(5)

whereby U is utilization of the clusters, pj represents
the number of processors that each job needs for its imple-
mentation, tej represents the execution time of each job, N
represents the size of the system and m is the total number of
jobs executed.

C. Loss of Capacity

This metric is important for measuring both uses of the
system as fragmentation. In a system, fragmentation occurs
when: (i) there are tasks waiting in the queue to run; and ii),
there are idle nodes, but still unable to run the waiting tasks.
LoC reflects the costs of fragmentation. These metrics have
been used in some of the works as detailed in [15][17][19],
respectively. To use the LoC, we assume two factors: 1) the
number of tasks of a job, j, can not exceed the number of
processors in the system, avoiding the starvation, in other
words, the job would never be serviced; 2) the variable δ
(delta), (6), represents the state of the processors and jobs in the
system. For example, δ = 1 indicates the existence of enough
available processors to perform at least one job in the queue at
the moment a new job is scaled. Likewise, when δ = 0, if the
queues are empty or do not exist in the same job size less than
or equal to the number of idle processors. The metric LoC is
calculated as follows:

LoC =

∑q−1
j=1 ni(ti+1 − ti)δ
N(tq − t1)

(6)

whereby q represents the number of jobs in the staggered
moment when a new job is scheduled or when a job terminates
execution. This is indicated by the time ti, for i = 1 · · · q and
ni represents the number of idle nodes between i and i+ 1.

VII. ANALYSIS OF RESULTS

A. Input Parameters

The simulations were performed using a simulation ap-
plication implemented in Java, which was developed by the
Research Group in Applied Computational Modeling, allowing
the simulation of entities in systems of parallel and dis-
tributed computing. Therefore, this application was developed
for the following purposes: analysis of the mechanisms used
in dispatchers, responsibility for the distribution of jobs in
the clusters, and evaluation of different scheduling algorithms
covered in this work.

In this environment, we assume that two clusters (32 and
64 processors) belong to the administrative domain, so that
they are able to communicate with the GD. For analysis of
the environment, we use various traces extracted from a real
distributed environment. However, the workload used for the
experiment consists of 1,500 jobs in total and 24,152 tasks,
which are described by the tuple (id, at, sj , pt), Section III.
Furthermore, the workload used in the simulation of job,
j, has different characteristics, such as size of each job,
processing time, among others. The mapping between tasks
and processors is one to one, with a total of 96 processors in the
system. For the simulation, we proposed three scenarios: i) in
the S1, the schedulers AFCFS and LGFS (without migration)
were used; ii) in the S2, the schedulers AFCFS and LGFS with
migration mechanisms (AFCFSm) and (LGFSm) were applied;
iii) and in the S3, the schedulers AFCFSm and LGFSm with

15Copyright (c) IARIA, 2014. ISBN: 978-1-61208-330-8

ICNS 2014 : The Tenth International Conference on Networking and Services

the adaptation strategy on the Local Dispatcher (aLD) were
used.

It is noteworthy that in all three scenarios, we applied
the strategy of GD as decision making in the distribution of
jobs among clusters. For each scenario, ten simulations were
performed, from which we calculated the average values of
waiting times, response times and LoC, with a confidence
interval of 95%. In the next section, we present the results
of simulations performed, using the metrics as described in
Section VI.

B. Simulation Results

The results that follow describe the impact on system
performance mentioned above in relation to migration in the
applied schedulers group AFCFS and LGFS. Furthermore, the
impact of adaptive place order is examined.

- Average response time versus number of jobs executed

In Fig. 2, the ART is illustrated in three scheduler sce-
narios, AFCFS and LGFS without migration (S1), AFCFSm
and LGFSm with migration (S2), and AFCFSm and LGFSm
with migration and aLD (S3), respectively, where the x-axis
represents the number of jobs executed. Note that we take
into account the response time increase of jobs rescheduled.

Figure 2. ART versus No. of executed Jobs - S1, S2 and S3

In the three scenarios, as illustrated in Fig. 2, it can be
seen that the AFCFS had the lowest ART of all amounts of
jobs performed with respect to LGFS. Furthermore, the ART
showed an increase that conformed to the number of jobs
carried out. This is justified for two reasons: firstly, an increase
of executed jobs, j and f, and secondly, the processing time of
the jobs are different. The scenario S2 shows a fairly significant
reduction in the ART in relation to the scenario S1. This shows
that the use of migration causes great impact on reducing
the response time. Therefore, the suggested method could use
the available processors more efficiently, thus reducing the
fragmentation, and subsequently, the response time.

At the S3 stage (with the migration and aLD), Fig. 2, the
ART was reduced in comparison to the S1 and S2 scenarios.
This occurred for three reasons: firstly, the use of the migration
strategy was implemented, which presented satisfactory impact
on the results, as mentioned above; secondly, the migration
with aLD, the JSQ algorithm distributes the tasks in the queue
more fairly; and thirdly, the aLD acts before the schedulers
begin to queue, thus minimizing the limitations of these at the
time of allocation of tasks to resources. Furthermore, it can

be seen that the scheduler LGFS in the scenario S3 (ART =
1.076e+006) showed a small reduction in the average response
time with respect to S2 (ART = 1.063e + 006). The case
scheduler AFCFS now visibly presented the best result in the
three scenarios. The information concerning the total task, i.e.,
the number of jobs in the queue over existence or non existence
of a running task on the processor, implies a reduction of task
waiting time and response time. Furthermore, we observed a
reduction in the number of migrations, causing direct impact
on improvement of the system.

- Utilization of clusters

In this section, the performance analysis based on the use of
resources using the three scenarios S1, S2 and S3 is presented.
Fig. 3 illustrates the percentage utilization of the clusters in
each scenario based on the number of interactions. In Fig. 3
(S1), on the intervals 400 − 2600 (aFCFS) and 400 − 2700
(LGFS), the average utilization of clusters is 50% and 42, 5%,
respectively. The LGFS (S1) showed an increase in the range
from 1600− 2400. This happens because this algorithm takes
care of larger jobs. Therefore, LGFS tend to offer greater
fragmentation in the system.

Figure 3. Utilization (%) versus number of interactions - S1, S2 and S3

In Fig. 3 AFCFSm and LGFSm (S2), the average utilization
of the clusters is 60% and 50%, respectively. These results
show an increase compared to the results of the scenario (S1),
even with the arrival of high priority tasks in the environment.
Furthermore, it can be seen that algorithms with the migration
strategy could more efficiently use the resources. The results
in Fig. 3 algorithms AFCFSm and LGFSm aLD (S3) show
an increase of 10% over S2. That is, the average resource
utilization is 75%. The scenario S3 distributes the tasks in
the fairest way to the processors, causing direct impact on
improving resource utilization.

- LoC versus Scenarios

Fig. 4 illustrates the loss of system capacity by fragmenta-
tion in three scenarios S1, S2 and S3. In the scenario S1, the
scheduling policy AFCFS presents the lowest of LoC (30, 4%)
compared to LGFS (LoC = 31, 1%). This result confirms that
the LGFS tends to offer greater fragmentation in the system,
since this algorithm favours regarding jobs with a larger
number of tasks. The scenario S2 shows a considerable de-
crease in fragmentation compared to S1, confirming once again
that the migration minimizes fragmentation in the system.
Furthermore, it can be seen that the AFCFS presents a lower
percentage relative to LGFS. This implies that the AFCFS
with migration is able to schedule jobs more effectively and

16Copyright (c) IARIA, 2014. ISBN: 978-1-61208-330-8

ICNS 2014 : The Tenth International Conference on Networking and Services

subsequently reduces fragmentation. The S3 scenario shows
the best results compared to the others. Therefore, the strategy
implemented in LD offers an efficient scheduler.

Figure 4. LoC (in %) - Fragmentation in three scenarios

VIII. CONCLUSION AND FUTURE WORK

In this work, experiments were carried out using a hetero-
geneous environment based multi-cluster, a structure of two
layers which were applied to different scenarios. For analysis
of these experiments, we used performance metrics to evaluate
the performance of schedulers in different situations.

The ART analysis results indicated a reduction of re-
sponse times by implementing the migration mechanism,
(Section V-A), in the schedulers (AFCFS and LGFS). This
implied that the suggested method of migration could use
the idle processors more efficiently and therefore reducing
the fragmentation. Comparing results of the scenarios S2 and
S3, we conclude that the strategy implemented in LD has a
better response time. This shows that the adaptive in order
site (aLD), the algorithm distributes JSQ queues of tasks more
efficiently by minimizing the waiting time of the task, as
well as response time. From the results of the simulations,
one can observe the reduction of migration, causing a direct
impact on efficiency. The algorithm AFCFS in ART metric
shows the best results when compared with LGFS in the
three scenarios. Regarding the utilization of metrics clusters,
it was confirmed that the migration technique minimizes idle
processors in the system, as well as fragmentation, with the
most significant results obtained with the further scenario (S3).
The latter was even more efficient, reducing the overhead on
the system caused by excessive migration. The LoC metric
measures the impact that the schedulers bring to the system
in relation to fragmentation. The results obtained in Fig. 4,
AFCFS without migration algorithm (30,4%), were achieved
through less fragmentation with respect to LGFS (31, 1%).
With the suggested method of migration, fragmentation was
considerably reduced in AFCFS (7, 08%) and LGFS (24, 3%),
and with the implementation aLD, the results were more
than satisfactory. This still showed that AFCFSm caused less
fragmentation with the aLD system in relation to schedulers
(LGFSm with migration and LGFSm with aLD). From the
results, we aim to reduce the fragmentation through the con-
trolled use of task migration between the rows of multi-cluster
processors in a heterogeneous environment, as well as better
use of them, implying a reduction in operating costs by the
service providers in QoS expectations of the users.

As a future perspective, we must examine the proposal in
other heuristic algorithms, comparing it with them schedulers

used in the different approaches of this work. Furthermore,
there is a proposal to implement the proposal in a real
environment.

REFERENCES

[1] J. M. U. de Alencar, R. Andrade, W. Viana and B. Schulze, P2P
scheme: a P2P scheduling mechanism for workflows in grid computing,
Concurrency and computation: Practice and experience, John Wiley Sons,
Ltd, 2011.

[2] H. Luo, D. Mu, Z. Deng and X. Wang, A review of job scheduling for
grid computing, Research of computer, vol. 22, 2005, pp. 16-19.

[3] H. Topcuoglu, S. Hariri and M. S. Wu, Performance-effective and
low complexity task scheduling for heterogeneous computing, IEEE
Transactions parallel distributed systems, vol. 13, 2002, pp. 260-274.

[4] T. L. Casavant and J. G. Kuhl, A taxonomy of scheduling in general-
purpose distributed computing systems, Transactions on software engi-
neering, vol. 14, Feb. 1988, pp. 141-154.

[5] T. Ma, Q. Yian, W. Lu, D. Guan and S. Lee, Grid Task Scheduling:
Algorithm review, IETE Technical, vol. 28, Apr. 2012, pp. 158-167.

[6] J. Ousterhout, Scheduling techniques for concurrent systems, Proc. of
the 3rd ed. Intl. Conference on distributed computing systems, 1982, pp.
22-30.

[7] Z. Papazachos and H. D. Karatza, Performance evaluation of bag of gangs
scheduling in a heterogeneous distributed system, Journal of systems and
software, vol. 83, Jan. 2010, pp. 1346-1354.

[8] X. Wang, Z. Zhu, Z. Du and S. Li, Multi-cluster load balancing based on
process migration, Lecture notes in computer science, Springer, Berlin,
vol. 4847, 2007, pp. 100-110.

[9] H. D. Karatza, Performance of gang scheduling strategies in a parallel
system, Simulation modeling practice and theory, Elsevier, vol. 17, Feb.
2009, pp. 430-441.

[10] Z. Papazachos and H. D. Karatza, Gang scheduling in multi-core
clusters implementing migrations, Future generation computer systems,
vol. 27, Feb. 2011, pp. 1153-1165.

[11] I. Moschakis and H. D. Karatza, Evaluation of gang scheduling
performance and cost in a cloud computing system, The journal of
supercomputing, vol. 59, Feb. 2012, pp. 975-992.

[12] Z. Papazachos and H. D. Karatza, Gang Scheduling in a two-cluster
system implementing migrations and periodic feedback, Transactions of
the society of modeling and simulation international, vol. 87, Dec. 2011,
pp. 1021-1031.

[13] S. K. Garg, S. Venugopal, J. Broberg and R. Buyya, Double auction-
inspired meta-scheduling of parallel applications on global grids, Journal
parallel distrib. Comput, vol. 73, Apr. 2013, pp. 450-464.

[14] Z. K. Gkoutioudi and H. D. Karatza, Multi-criteria job scheduling in
grid using an accelerated genetic algorithm, Journal grid computing, vol.
10, Mar. 2012, pp. 311-323.

[15] V. J. Leung, G. Sabin and P. Sadayappan, Parallel job scheduling
policies to improve fairness: A case study, ICPP Workshops, 2010, pp.
346-353.

[16] W. Tang, Z. Lan, N. Desai, D. Buettner and Y. Yu, Reducing frag-
mentation on torus-connected supercomputers, Parallel & distributed
processing symposium, 2011, pp. 107-115.

[17] W. Tang, D. Ren, Z. Lan and N. Desai, Adaptive metric-aware job
scheduling for production supercomputers, 41st International conference
on parallel processing workshops, 2012, pp. 107-115.

[18] D. Feitelson (2014, Mar.) The Standard Workload Format. [Online].
Available:http://www.cs.huji.ac.il/labs/parallel/workload/swf.html

[19] Y. Zhang, H. Franke, J. Moreira and A. Sivasubramaniam, The impact of
migration on parallel job scheduling for distributed systems, Proceedings
of europar, 2000, pp. 242-251.

[20] A. Burkimsher, I. Bate and L. S. Indrusiak, Survey of scheduling
metrics and an improved ordering policy for list schedulers operating on
workloads with dependencies and a wide variation in execution times,
Future Generation Computer Systems, vol. 29, Oct. 2012, pp. 2009-2025.

17Copyright (c) IARIA, 2014. ISBN: 978-1-61208-330-8

ICNS 2014 : The Tenth International Conference on Networking and Services

