
Automatic Conversion from CCM to HCM in State Transition Model

Akira Takura

Department of Career Planning and Information Studies

Jumonji University

Niiza, Japan

 e-mail: takura@jumonji-u.ac.jp

Tadashi Ohta

IEICE Fellow

Tokorozawa, Japan

 e-mail: myupapa@jcom.home.ne.jp

Abstract—As a program processing model for network

software systems, the state transition model is well known. In

the state transition model, there are two models: a central call

model and a half call model. Each model has merits and

demerits. So, if automatic conversion between the two models

can be used, it would be convenient for system developers to

design the system by adopting the appropriate model for the

purpose of the design. A method of automatically converting

from a half call model to a central call model has already been

proposed. This paper proposes a method of automatically

converting from a central call model to a half call model. The

proposed method was applied to a three-way call service and it

was confirmed that the conversion was correctly carried out.

Keywords-state transition model; central call model; half call

model; automatic conversion

I. INTRODUCTION

As a program processing model for network software
systems, the state transition model has well been used [1][2].
The state transition model contains two models. One is
called a central call model (abbreviated as CCM) where
states of all terminals receiving a service are described in one
state. The other model is called a half call model
(abbreviated as HCM) where states of different terminals are
described in different states, respectively. As states of all
terminals receiving the service are described as one state in
the CCM, service is easily understood. However, when the
number of combinations for states of each terminal increases,
the number of states in the CCM increases, resulting in
increasing the size of programs implemented based on the
CCM.

If an automatic conversion between CCM and HCM is
established, the appropriate model can be applied for the
purpose of the design. A method for automatic conversion
from HCM to CCM has been proposed in [3]. In this paper, a
method for automatically converting from CCM to HCM is
proposed. The proposed method was applied to a three-way
call service, call transfer service, call waiting service, and
VoIP service, and it was confirmed that all state transition
diagrams were correctly converted from CCM to HCM.

N. D. Grifeth proposed the method for creating a state
transition diagram based on signals input to and output from
the system whose function is unknown [4]. The created state
transition diagram is based on CCM. S. K. Chakrabarti

proposed the method for creating a state transition diagram
to analyze functions of API [5]. Shimokura proposed the
program described in a rule-based language , which is based
on state transitions, for controlling networked robots [6]. The
embedded program in AIBO, which is a robot made by Sony
and was used in Shimokura’s system, was designed based on
state transition diagrams. Other researches of using a rule-
based language are proposed by S. Sen, X. Fei, and L.
Dongliang [7-9]. M. Ohba proposed the method for creating
state transition diagrams based on CCM from programs
described in a rule-based language [10].

In Section II, formal description of states is described so
that computer processing is possible. In Section III, problems
in converting from CCM to HCM such as conversion of
states, state synchronization and reduction of states are
described. In Section IV, solutions for the problems
described in Section III are proposed. In Section V, an
example of applying the proposed method to a three-way call
service, main part, is described.

II. A FORMAL EXPRESSION OF STATE

For a computer to handle a state, the state of a state
transition diagram has to be described formally. This is how
it is done: Each state of the state transition diagram is
described as a set of state description primitives (called
primitive) which represent states of terminals which are
receiving a service at that time [11][12]. A primitive consists
of a primitive name which represents a state of a terminal
and arguments which represent the terminals related to the
primitive name. For example, when terminal A is in an idle
state, it is described as idle(A). When users of terminals A
and B are talking, it is described as talk(A,B). ‘idle’ and
‘talk’ are primitive names, and A and B are arguments,
respectively. When terminals A and B are arguments of the
same primitive, it is said that terminals A and B are
connected. If terminals A and B are connected and terminals
B and C are connected, then terminals A and C are
connected. Thus, all terminals described in the same state of
a state transition diagram are connected.

In a state transition model, where a state transition is
decided based only on a current state and an event, the
number of states becomes large. So, in the state transition
model generally used, the state transition is decided not only
on the current state and the event but also on state transition

111Copyright (c) IARIA, 2012. ISBN: 978-1-61208-186-1

ICNS 2012 : The Eighth International Conference on Networking and Services

conditions. State transition conditions are described, in the
state transition diagram, in an analysis block below the
current state. In this paper, state transition conditions are also
described as a set of primitives. A primitive which is used
only as a state transition condition and never used as an
element of any state in the state transition diagram, is called,
in this paper, a ‘condition primitive’. On the other hand, a
primitive which is used as an element of a state is called, in
this paper, a ‘state primitive’.

An example of a state transition diagram with two
analysis blocks for a call waiting service is shown in Fig. 1.
Four states and two analysis blocks are involved in Fig. 1.
States are described as ovals, each of which has a set of
primitives: dialtone(A), calling(A,B) {cw-calling(A,B),
talk(B,C)}, and busy(A), respectively. Analysis blocks are
described as triangles which have conditions: idle(B) and
{m-cw(B), talk(B,C)}, respectively. When event dial(A,B)
occurs at state dialtone(A), the next state is decided
according to condition idle(B) described in the first analysis
block. If idle(B) holds, the next state is calling(A,B). If
idle(B) does not hold, the next state is decided according to
condition {m-cw(B), talk(B,C)} described in the second
analysis block.

III. PROBLEMS IN CONVERSION FROM CCM TO HCM

A. Conversion of States

In CCM, states of all terminals receiving a service are
described in one state. But, in HCM, states of different
terminals are described in different states, respectively. So,
states in CCM should be converted so that states of different
terminals are described in different states.

B. State Synchronization

In HCM, an event occurred in the system is
independently accepted in individual state of state transition
diagram related to a terminal which creates the event. More
than one event might occur at one time. So, when the event is
accepted in the state transition diagram, there is no guarantee
that all terminals are at states which correspond to the same
state of CCM. Thus, a mechanism which guarantees that all
terminals are at states which correspond to the same state of
CCM is needed.

C. Reduction of States

There is a case where, while a state of CCM is changed
but a corresponding state of an HCM is not changed; there is
a reduction of states. For example, in a three-way call service,
when a user of terminal A, who is talking with a user of
terminal B, wants to let a user of terminal C join the
conversation, the user of terminal A pushes a flash button.
Then terminal B is in hold state and is kept in the hold state
until the three-way call is established. The state of CCM is
changed but a state of terminal B in an HCM is not changed.
Then, one state of terminal B in HCM corresponds to several
states in CCM.

 When the terminal, whose state corresponds to several
states in CCM, creates an event, in HCM for terminal B, it
has to ask all terminals which are receiving the service to
distinguish to which state of CCM the state of terminal B in
HCM corresponds.

IV. SOLUTIONS

A. Conversion of States

Each state in CCM is described as a set of primitives as
mentioned in Section II. So, to convert a state in CCM to a
corresponding state of terminal X in HCM, select primitives
which have terminal X as an argument from the state in
CCM. Thus the corresponding state of terminal X in HCM is
gained as a set of the selected primitives. Primitives, that
have more than one argument, appear in states of each
argument in HCM. See Fig. 2.

B. Synchronization of States

First, a signal sequence for asking states of each terminal
is proposed. Then, methods to synchronize states of each
terminal are proposed based on the proposed signal sequence,
in two cases; the state in the HCM where an event occurs is
decided, and the state is not decided because of state
reduction. The solution in the case that the state in HCM is
reduced is described in C.

1) Signal sequence

In an HCM where an event occurs it has to ask current

states of all terminals which are receiving the service by
sending a signal to all terminals without a repetition. But,
terminals to which the signal is sent are limited to terminals
which are described in the current state of the HCM. In other
word, the signal can be sent between terminals which are
arguments of the same primitive described in the current
state in the HCM.

First, based on a set of primitives in the current state of
CCM, make a directed graph, by drawing arrows originating

dial(A,B)

No

cw-calling(A,B)

talk(B,C)

Yes

busy(A)

calling(A,B) m-cw(B)

talk(B,C)

Yes No

dialtone(A)

idle(B)

Figure 1. An Example of Two Analysis Blocks

pi(A)

(a) State of A

pj(B,C)

(b) State of B

pj(B,C)

(c) State of C

State in CCM

pi(A),pj(B,C)

Figure 2. Converted States in HCM

112Copyright (c) IARIA, 2012. ISBN: 978-1-61208-186-1

ICNS 2012 : The Eighth International Conference on Networking and Services

from the terminal, which creates the event, to terminals
which are described as arguments in the primitives where the
originating terminal is also described as an argument [13].
As mentioned in Section II, all terminals described in the
current state of CCM are connected. So, all terminals can be
described as a node of the graph. Suppose the current state of
CCM is {p1(A,B),p2(B,C),p3(B,D),p4(C), p5(D), p6(D,C)}
and terminal A creates an event. In this case, the graph is
shown in Fig. 3. A primitive, which has one argument, is
described above or under the argument. A primitive, which
has two arguments, are described above the arrow drawn
between the two arguments.

Next, as the signal should be sent to each terminal only
once, delete unnecessary arrows from the graph. Then delete
primitives. Now, a tree which shows a signal sequence is
obtained as shown in Fig. 4.

By sending the signal from the terminal which creates an
event based on this tree, the signal can be sent to all
terminals with certainty and without repetitions.

2) State of CCM is decided
In the case that the current state of CCM is decided, the

HCM, where an event occurs, checks that all other terminals
are in the states which correspond to the decided state, and
synchronize states of all terminals. To realize the
synchronization, the HCM corresponding to the root node in
the tree shown in Fig. 4 sends an inquiring signal (REQ) to
the next node and transits to a wait state. When the node,
which receives REQ, is not in the corresponding state it
sends back a signal NG to the former node which sent REQ.
In this case, since there are no states which receive REQ, NG
is sent from state analysis program. When the node which
receives REQ is in the corresponding state and is not a leaf
node, called an inner node in the tree, it transmits REQ to the
next node and transits to a wait state to keep synchronization.
If the node which receives REQ and is in the corresponding
state is a leaf node, it sends back a signal OK to the former
node which sends REQ, and transits to a wait state to keep
synchronization.

 The node, which receives NG, sends a reset signal to all
the next nodes that have sent OK, sends NG to the former
node, and transits to the current state. The node, which
receives the reset signal and is an inner node, sends the reset

signal to all the next nodes and transits to the current state. If
the node is a leaf node, it transits to the current state.

When a node receives OK from the next node, if there is
the next node to which REQ has not been sent, the node
sends REQ to the next node. If there is not the next node to
which REQ has not been sent there are two cases: the node is
an inner node or the node is a root node. If the node is an
inner node it sends OK to the former node. When the node is
a root node, it sends a signal ST, which represents an
instruction of state transition, to all the next nodes in parallel
and transits to the next state. When an inner node receives
ST it retransmits ST to all the next nodes in parallel and
transits to the next state instructed by ST. When a leaf node
receives ST it transits to the next state instructed by ST.

Note: The signal which instructs a state transition is not
sent to the terminal which does not make a state transition
nor retransmit the signal to another terminal.

C. State in HCM is Reduced

1) Process for synchronization
Information that each state in HCM corresponds to which

state in CCM is saved in the process for converting a current
state in CCM to individual states in HCM. For all terminals
described in a current state of CCM, referring to the saved
information, make an AND set of states in CCM to which a
current state corresponds. Thus, the state in CCM, to which
each state of individual terminals corresponds, can uniquely
be decided. The signal to decide the unique state is sent
based on the tree described in B 1).

More precisely, the process is explained as follows: The
root node sends REQ, which is a set of states in CCM
corresponding to the current state of the node, to the next
node as an inner event, and transits to wait state. An inner
node which receives REQ, makes an AND set of received
REQ and a set of states in CCM corresponding to the current
state of the inner node to make a new REQ. Then, the inner
node sends the REQ to the next node as a new inner event,
and transits to wait state. If the AND set is null, a vacant set,
the inner node sends back NG to the former node and transits
to the current state. A leaf node which receives REQ, makes
an AND set in the same way as the inner node. If the AND
set is not null, the leaf node sends back the AND set as ANS
to the former node, and transits to wait state. If the AND set
is null, the leaf node sends back NG to the former node, and
transits to the current state. The process hereafter is the same
as one described in B 2) in this section under the condition of
replacing signal OK with ANS and replacing “sending REQ”
with “making new REQ and sending it”. Thus, finally the
root node can decide the corresponding state in CCM and
can send ST to all the next nodes.

2) Example of signal sequence
Concrete examples of signal sequence are explained in the
case where the current states of CCM are as follows:

S1: {p1(A,B),p2(B,C),p3(B,D),p4(C),p5(D),p6(D,C)}
S2: {p1(A,B),p2(B,C),p4(C)}
S3: {p1(A,B),p3(B,D),p5(D)}
S4: {p1(A,B),p2(B,C),p7(C)}
Terminals A, B, C and D are in states corresponding to

S1, S2, S3, or S4 in CCM. But, for certain terminals, some

A B C

D

p1(A,B) p2(B,C)

p3(B,D) p6(D,C)

p4(C)

p5(D)

Figure 3. Graph Corresponding to a CCM State

A B C

D

 Figure 4. Extracted Tree from the Graph

113Copyright (c) IARIA, 2012. ISBN: 978-1-61208-186-1

ICNS 2012 : The Eighth International Conference on Networking and Services

states in HCM might be the same state. In this case, the
terminal may not be able to decide to which state in CCM
the current state of the terminal corresponds. In this example,
terminal A is in the same state in HCM for S1, S2, S3, and
S4 in CCM. Terminal B is in the same state in HCM for S2
and S4 in CCM. Terminal C is in the same state in HCM for
S1 and S2 in CCM. So, when terminal A creates an event, in
HCM terminal A sends {S1,S2,S3,S4} to the next node
based on the tree described in B 1) in this section. Terminals
A, B and C behave as described in the second paragraph in C
1) in this section. Thus, terminal A can distinguish to which
state in CCM the current state of terminal A corresponds.

The tree expression for S1 is shown in Fig. 5. Signals are
sent based on this tree. The signal sequence is shown in Fig.
6. (a): Since terminal A is in the state which corresponds to
S1, S2, S3 and S4, terminal A sends {1,2,3,4} as REQ to
terminal B. (b): As terminal B is in the state corresponding to
S1, an AND set of REQ sent from terminal A and {1} is
made, resulting in gaining {1} as new REQ. Terminal B sent
{1} as REQ to terminal C. (c): Since terminal C is in S1, an
AND set of REQ sent from terminal B and {1} is made,
resulting in gaining {1}. As terminal C is a leaf node, it
sends {1} as ANS to terminal B. (d): Since the node of
terminal B has a branch to terminal D, terminal B sends {1}
received as ANS from terminal C to terminal D as REQ. (e):
By making an AND set of received REQ and its state which
corresponds to S1, terminal D gains {1}. Terminal D is a leaf
node, so it sends {1} as ANS to terminal B. (f): Terminal B
sends {1} received from terminal D to terminal A as ANS.
Thus, terminal A can recognize its state as S1.

Signal sequences for S2, S3 and S4 are shown in Fig. 7.
Consequently, each state can be recognized.

D. Conversion for an Analysis Block

Primitives for plural terminals can be described in the
analysis block. As far as the authors know, transition
conditions for at most one terminal, other than a terminal
which creates an event, is described in most of conventional

telephone services. So, in this paper, the way of converting
the analysis block is described in the case where transition
conditions for at most one terminal, other than a terminal
which creates an event, is described in the analysis block.
The proposed method can be easily extended to the case
where the analysis block has transition conditions for more
than two terminals.

Analysis blocks of CCM are converted after conversion
described in B and C in this section. In an analysis block
conversion, if arguments of primitives represent the terminal
where the event occurred, the analysis block is described at
just below the current state in the HCM corresponding to the
terminal. Otherwise, i.e. arguments of primitives in the
analysis block are not the terminal, the way of converting the
analysis block depends on whether primitives described in
the analysis block are state primitives or condition ones as
described below.

1) In the case of a state primitive
When the primitives described in the analysis block are

state primitives, there is an argument which appears in
arguments of the event. So, in the HCM where the event
occurs, inquiry signal, REQ, to the HCM designated by the
argument of the event is described below the event. In the
HCM where REQ is received, REQ as an input signal and
OK as a reply signal are described just below the state
containing the primitive described in the analysis block of
the CCM. And then, transition to wait state is described.
Note that NG signal is not described in the HCM. This is
because when the current state of the HCM cannot accept
REQ, NG is sent by a state analysis program as mentioned in
Section IV B 2). In the HCM which receives OK, the OK
signal is described as an input signal just below the wait state,
and an instruction of state transition to the HCM, which sent
the OK signal, is described.

Fig. 8 shows an example of converting a state transition
diagram, where a state primitive p2(B) is described in the
analysis block, from CCM to HCM by the proposed method.

A B C

D

(a) (b)

(c)
(d)

(e)

(f)

Figure 5. Tree Expression for S1

(a) REQ({1,2,3,4}) (b) REQ({1})

(c) ANS({1})

(f) ANS({1})

A B C D

(d) REQ({1})

(e) ANS({1})

Figure 6. The Signal Sequence for S1

(a) REQ({1,2,3,4}) (b) REQ({2,4})

(c) ANS({2})(f) ANS({2})

A B C

(a) REQ({1,2,3,4}) (d) REQ({3})

(e) ANS({3})(f) ANS({3})

A B D

(a) REQ{1,2,3,4}) (b) REQ({2,4})

(c) ANS({4})(f) ANS({4})

A B C

In the Case of S2

In the Case of S3

In the Case of S4

Figure 7. The Signal Sequence for S2, S3 and S4

114Copyright (c) IARIA, 2012. ISBN: 978-1-61208-186-1

ICNS 2012 : The Eighth International Conference on Networking and Services

2) In the case of a condition primitive
The analysis block is described just below the current

state in the HCM corresponding to the first argument of the
condition primitives. This current state of the HCM
corresponds to that of the CCM. When the condition
described in the analysis block is satisfied, OK is described
as a reply signal to the HCM that sent REQ. When the
condition described in the analysis block is not satisfied, the
conversion is done in the following two cases: If, in CCM,
the state of the terminal which received REQ does not
change, in HCM, a transition to the current state is described.
Otherwise, in HCM, a transition to wait state is described.

Fig. 9 shows an example of converting a state transition
diagram, where a condition primitive pc(B) is described in
the analysis block, from CCM to HCM. When terminal B is
not in the state of {p2(B)}, NG1 is sent to terminal A. But, in
HCM of terminal B, since NG1 is sent from the state
analysis program NG1 does not appear in HCM of terminal
B in Fig. 9.

3) In the case of both primitives
When both primitives, state primitives and condition

ones, are described in the analysis block, the analysis block
is converted in different ways depending on whether the both
primitives have the same argument or not. If the both
primitives do not have the same argument, the analysis block
is described in the same way as mentioned in 1) and 2) above.
If both primitives have the same argument, the conversion is
carried out in two stages. First, REQ as an input signal is
described just below the state consisting of the same state
primitives described in the analysis block. Second, the
analysis block is described just below the input signal, and
the condition primitives, which have the argument
corresponding to the HCM, are described in the analysis
block. Input and output signals are described as described in
1) and 2).

Fig. 10 shows an example of converting a state transition
diagram, where a state primitive p2(B) and a condition

(a) A State Transition Diagram in CCM

(b) State Transition Diagrams in HCM

ev(A,B)

NoYes

p1(A)

p2B)

p3(A),p4(B) p5(A)

p2(B)

p4(B)

REQ(B,A)

OK(A,B)

ev(A,B)

p1(A)

p5(A)

REQ(B,A)

OK(A,B) NG(A,B)

wait(A,B)

p3(A)

Figure 8. When a State Primitive is Described

(a) A State Transition Diagram in CCM

ev(A,B)

NoYes

p1(A),p2(B)

pc(B)

p3(A),p4(B) p5(A),p6(B)

(b) State Transition Diagrams in HCM

ev(A,B)

p1(A)

p3(A) p5(A)

REQ(B,A)

OK(A,B) NG2(A,B)

wait(A,B)

NG1(A,B)

ST1(B,A) ST2(B,A)

p2(B)

REQ(B,A)

ST1(B,A)

pc(B)

No

p4(B)

NG2(A,B)

p6(B)

Yes

wait(B,A)

ST2(B,A)

OK(A,B)

 Figure 9. When a Condition Primitive is Described

(a) A State Transition Diagram in CCM

(b) State Transition Diagrams in HCM

ev(A,B)

NoYes

p1(A)

pc(B)

p5(A),p6(B)p3(A,B),p4(B)

p2(B)

NoYes

ev(A,B)

REQ(B,A)

ST1(B,A) ST2(B,A)

p1(A)

p3(A) p5(A)

wait(A,B)

OK(A,B) NG2(A,B)

NG1A,B)

p2(B)

REQ(B,A)

OK(A,B)

pc(B)

No

p4(B)

NG2(A,B)

p6(B)

Yes

wait(B,A)

ST1(B,A) ST2(B,A)

Figure 10. When State and Condition Primitives are Described

115Copyright (c) IARIA, 2012. ISBN: 978-1-61208-186-1

ICNS 2012 : The Eighth International Conference on Networking and Services

primitive pc(B) are described in the analysis block, from
CCM to HCM. When terminal B is not in the state of
{p2(B)}, NG1 is sent to terminal A. But, in HCM of terminal
B, since NG1 is sent from the state analysis program NG1
does not appear in HCM of terminal B in Fig. 10.

Fig. 11 shows the HCMs converted from the CCM of a
call waiting service described in Fig. 1. Since, in Fig. 1, only
the state of terminal A is described in the current state of
CCM, the synchronization process described in B and C in
this section is not described. OK1 is sent to terminal A when
terminal B is in idle state. Namely this is a state transition for
POTS. So, OK1 does not appear in HCM of terminal B in
Fig. 11.

V. AN EXAMPLE OF CONVERSION OF STATE

TRANSITIONS

An example of conversion for the three-way call service
based on the method described in Section IV is shown.

A. State Transitions for Three-Way Call Service

The main part of state transitions for the three-way call
service is described. Fig. 12 shows state transitions from
two-party talk state (talk(A,B)) to three-way talk state
(twctalk(A,B,C)) in the form of text.

Condition primitive m-twc(A) represents that terminal A
subscribes to the three-way call service, flash(A) represents
that flash button is pressed, hold(A,B) represents that
terminal A holds terminal B, dialtone(A) represents that
terminal A receives dial-tone, idle(C) represents that terminal
C is in idle state, calling(A,C) represents that terminal A is
calling terminal C, not[idle(A)] represents that terminal C is

not in idle state, busy(A) represents that terminal A receives
busy tone, dial(A,C) represents that a user of terminal A dials
the number of terminal C, offhook(C) represents tresents that
a user of terminal C hangs up the receiver.

The states of CCM described in Fig. 12 are the following
six states. Note that S1 is a state of POTS (plain old
telephone service).

S1 = {talk(A,B)},
S2 = {hold(A,B),dialtone(A)},
S3 = {hold(A,B),calling(A,C)},
S4 = {hold(A,B),talk(A,C)},
S5 = {hold(A,B),busy(A)},
S6 = {twctalk(A,B,C)}.

B. Conversion of Current States in HCM

Fig. 13 shows the converted current states in the HCM
for terminal A, B and C from the current states S1 … S5
described in the CCM as mentioned in Section IV B.

C. Conversion to Tree Representation

Tree representations obtained from the current states S1
… S5 described in Section IV B are shown in Fig. 14. In the
representation, the root represents the terminal where an
event occurs. Terminal A, B, and C are represented as nodes.

D. Conversion of State Transitions

The state transition diagrams in HCM converted from the
state transition diagram in CCM described in Section V B are
shown in Fig. 15. State transitions for synchronization are
omitted.

Since there are various types of state transitions in Fig.
12, in addition to processing of conversion of states and
synchronization of states, some conversion methods
described in Section V are applied.

a) In the state transition S1 -> S2: Since a condition

primitive m-twc(A) is described in the analysis block, the

conversion method described in IV D 2) is applied.

NG(A,B)OK2(A,B)

dial(A,B)

REQ(B,A)

dialtone(A)

wait(A,B)

cw-calling(A,B)

busy(A)

ST2(B,A)

calling(A,B)

OK1(A,B)

ST1(B,A)

talk(B,C)

REQ(B,A)

m-cw(B)

cw-calling(A,B)

talk(B,C)

OK2(A,B)
Yes

NG(A,B)

wait(B)

ST2(B,A)

No

Figure 11. State Transition Diagrams in HCM (Call-Waiting Service)

S1 -> S2: {talk(A,B)} flash(A): {m-twc(A)} {hold(A,B),dialtone(A)}

S2 -> S3: {hold(A,B),dialtone(A)} dial(A,C): {idle(C)}

{hold(A,B),calling(A,C)}

S2 -> S5: {hold(A,B),dialtone(A)} dial(A,C): {not[idle(C)]}

{hold(A,B),busy(A)}
S3 -> S4: {hold(A,B),calling(A,C)} offhook(C): {} hold(A,B),talk(A,C)}

S4 -> S5: {hold(A,B),talk(A,C)} onhook(C): {} {hold(A,B),busy(A)}

S5 -> S1: {hold(A,B),busy(A)} flash(A): {} {talk(A,B)}

S4 -> S6: {hold(A,B),talk(A,C)} flash(A): {} {twctalk(A,B,C)}

Syntax: {current state} event: {analysis block} {next state}

Figure 12. State Transitions of a Three-Way Call Service in CCM

A B C

S1: talk(A,B) talk(A,B) -

S2: dialtone(A),hold(A,B) hold(A,B) -

S3: hold(A,B),calling(A,C) hold(A,B) calling(A,C)

S4: hold(A,B),talk(A,C) talk(A,C)
S5: hold(A,B),busy(A) hold(A,B) -

Figure 13. Converted States in the HCM for Terminal A, B and C

C

A Bflash(A):

BC Aonhook(C):S4:

A BS1: flash(A):

A BS2: dial(A,C):

BC AS3: offhook(C):

A BS5: flash(A):

Figure 14. Tree Representation Obtained from States S1 … S5

116Copyright (c) IARIA, 2012. ISBN: 978-1-61208-186-1

ICNS 2012 : The Eighth International Conference on Networking and Services

b) In the state transition S2 -> S3: Since a state

primitive idle(C) is described in the analysis block, the

conversion method for the signal OK described in IV D 1)

is applied.

c) In the state transition S2 -> S5: A state primitive

not[idle(C)] which means the condition idle(C) is not

satisfied is described in the analysis block. So, the

conversion method for NG described in IV D 1) is applied.

d) In the state transition S4 -> S5: A branch appears

in the tree expression for S4. So, the method of processing

signals at the branch described in IV B 2) is applied.
Each state transition in Fig. 12 is converted to state

transitions in HCM’s in Fig. 15. State transition S1 -> S2 in
Fig. 12 is converted to the state transition from talk(A,B) to
{hold(A,B), dialtone(A)} in HCM for terminal A, and the
state transition from talk(A,B) to hold(A,B) in HCM for
terminal B, respectively. Suppose terminal A is in talk(A,B)
state. At this moment, when an event flash(A) occurs and
terminal A subscribes three-way call service, m-twc(A),
signal ST1(B,A), which is an instruction to transit to
hold(A,B), is sent to HCM for terminal B. In the HCM for
terminal B, the state of terminal B transits to hold(A,B) if
and only if ST1(B,A) is received when the state of terminal
B is in at talk(A,B). Other six state transitions in Fig. 12 are
also converted to state transition diagrams described in Fig.
15.

Thus, the proposed method can convert all types of state
transitions in the three-way call service. Consequently, the
proposed methods can give a good prospect for converting
state transition diagrams of various services from CCM to
HCM.

VI. CONCLUSION AND FUTURE WORK

A conversion method from CCM to HCM was proposed,
and by applying the method to the three-way call service it
was confirmed that the proposed method can properly
convert the state transition diagrams. Consequently, the
proposed methods can give a good prospect for converting
state transition diagrams of various services from CCM to
HCM. Future work is to verify the validity of the proposed
method by applying the method to various services including
non-telephone services.

REFERENCES

[1] H. Kawashima, K. Futami, and S. Kano, “Functional

specification of call processing by state transition diagram,”
IEEE Trans. on Com., vol. COM-19, 1971.

[2] N. D. Grifeth, R. Blumenthal, J. C. Gregoire, and T. Ohta,
“Feature interaction detection contest of the fifth international
workshop on feature interactions,” Computer Networks, vol.
32, pp. 487-510, Apr. 2000.

[3] A. Nakashima and T. Ohta, “Automatic conversion from
HCM to CCM in telecommunication service simulation,”
Proc. ATS04, pp. 29-34, Apr. 2004.

[4] N. D. Griffeth, Y. Cantor, and C. Djouvas, “Testing a
Network by Inferring Representative State Machines from
Network Traces,” ICSEA2006, Nov. 2006.

[5] S. K. Chakrabarti, and Y. N. Srikant, “Specification Based
Regression Testing Using Explicit State Space Enumeration,”
ICSEA2006, Nov. 2006.

[6] M. Shimokura, S. Nakanishi and T. Ohta, “Networks for a
symbiotic Human Life with Robots,” Proc. of
ROBOCOM2007, Oct. 2007.

[7] S. Sen and R. Cardell-Oliver, “A Rule-Based Language for
Programming Wireless Sensor Actuator Networks using
Frequency and Communication,” Third Workshop on
Embedded Networked Sensors (EmNets 2006), 2006.

[8] X. Fei and E. Magill, “Rule Execution and Event Distribution
Middleware for PROSEN-WSN,” 2008 Second International
Conference on Sensor Technologies and Applications, pp.
580-585, Aug. 2008.

[9] L. Dongliang, Z. Kanyu, and L. Xiaojing, “ECA Rule-based
IO Agent Framework for Greenhouse Control System,”
ISCID, 2008 International Symposium on Computational
Intelligence and Design, vol. 1, pp. 482-485, Oct. 2008.

[10] M. Ohba, K. Matsuoka, and T. Ohta, “Eliciting State
Transition Diagrams from Programs described in a Rule-
based Language,” ISAST Transaction on Computers and
Intelligent Systems, No. 2, Vol. 1, pp. 58-66, Jan. 2009.

[11] Y. Hirakawa and T. Takenaka., “Telecommunication service
description using state transition rule,” Int. Workshop on
Software Specification and Design, Oct. 1991.

[12] T. Yoneda and T. Ohta, “The declarative language STR,”
Proc. of FIREworks workshop, pp. 197-212, May 2000.

[13] A. Takura, T. Ohta, and K. Kawata, “Process specification
generation from communications service specification,”
Automated Software Eng., No. 2, pp. 167-182,1995.

m-twc(A)

talk(A,B)

wait1(A,C)

hold(A,B)

dialtone(A)

hold(A,B)

calling(A,C)

twctalk(A,B,C)

hold(A,B)

busy(A)

flash(A)

ST1(B,A)

dial(A,C)

ST2(C,A)

NG(A,C)
OK(A,C)

ST4(A,C)

flash(A)

ST7(B,A)

ST7(C,A)

ST5(A,C)hold(A,B)

talk(A,C)

flash(A)

ST6(B,A)

to talk(A,B)

HCM for terminal A

ST6(B,A)

talk(A,B)

hold(A,B)

twctalk(A,B,C)

ST7(B,A)

ST1(B,A)

HCM for terminal B

ST2(C,A)

OK(A,C)

offhook(C)

ST5(A,C)

onhook(C)

ST4(A,C)

ST7(C,A)

idle(C)

calling(A,C)

talk(A,C)

twctalk(A,B,C)

HCM for terminal C

Figure 15. State Transition Diagrams in HCM Converted from CCM

117Copyright (c) IARIA, 2012. ISBN: 978-1-61208-186-1

ICNS 2012 : The Eighth International Conference on Networking and Services

