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Abstract — Flow-level measurement applications and 
analysis in IP networks are inevitably gaining popularity, due 
to the unstoppable increase in the amount of transmitted data 
on the Internet. It is not reasonable or even possible to examine 
each and every packet traversing through a network. Our 
research focuses on passive flow level data classification and 
characteristic identification. To be more exact, our goal is to 
design a framework for extracting certain classes, feature(s) 
and behavior from IP flow data. One of the goals is to achieve 
this without examining the payload of any of the IP packets 
and without compromising the anonymity of the flow 
counterparts. Traditionally, Deep Packet Inspection or port 
mapping techniques have been applied for this purpose. In this 
paper, we present an alternative framework for classifying the 
IP traffic, which we aim to utilize in the future for separating 
classes from the IP traffic for information security purposes.  

Keywords-Flow; IP; IPFIX; KNN; Classification 

 

I.  INTRODUCTION 
In this paper, we study the possibility of identifying 

traffic characteristics from IP traffic, and more precisely 
from the IP/TCP/UDP/ICMP header data. We utilize the 
KNN Classifier method (K Nearest Neighbors) through 
passive data analysis on IPFIX [1] [2] flow data. The 
motivation for our research comes from the area of 
information security. We are keen on finding methods for 
separating classes from the data in order to be able to 
identify a measurable unit (IPFIX flow in this case) for 
example as normal or malicious in future analysis work. In 
this paper, we present a framework, which can be utilized for 
that purpose. Our research relies on total anonymity. The IP-
addresses are either anonymized or cut off prior to analysis 
execution. The payload of each IP packet is cut off in the 
data capture phase, so all the details compromising the user 
privacy of the connection counterparts are discarded.  

The KNN Classifier method determines the class of a 
new data point based on its K-nearest neighbors in a selected 
feature space. The class that exists the most among the K-
nearest  neighbors  is  given  to  the  test  data  point.  The  KNN 
Classifier is based simply on the distance metric of data 
points. The Euclidean distance metric is the most common 
one, while also other metric methods are available. This 
obviously means that a variety of different KNN 
implementations have been introduced. 

Our data for the analysis was captured from a large-scale 
local area network. The selected network is known to have a 
large amount of hosts and good set of services active. It is 
also known that the information security policy doesn’t 
restrict the usage of any service in the network. This is a 
clear advantage from the analysis point of view, because the 
captured data is as pure as it can be without any restrictions 
or filtering in any way at any point. 

The data was captured from the network and stored to 
disk in IPFIX format. In the analysis phase the data was first 
divided into two classes. We use a class distribution of 
WWW-type traffic versus other traffic in this paper. WWW 
as a service provides interesting viewpoints for future 
analysis, as it is commonly used, uses standard port numbers, 
and therefore also has a lot of information security aspects. 
The following step was to select the parameters for the 
classification execution. K-fold cross-validation was used as 
the classification framework to determine the best value for 
the constant ‘K’ in KNN-Classifier. Another important factor 
was to select suitable input parameters (features) for the 
classification. We came up with a set of three parameters. 
Once the parameters were selected, the actual classification 
was executed. As a result, the details were obtained about 
how the classification succeeded. The results were studied 
and written down, along with conclusions and observations 
about the functionality of the analysis framework and the 
methods used. Based on the analysis, we present our 
framework for classifying IP Flow data. In addition, some 
thoughts on how the results could be utilized in practice are 
provided.   

This paper consists of seven sections. In the next section, 
the related work in the field of IP-traffic data classification is 
presented and analyzed briefly. In Section three, the data is 
presented in terms of how the data is obtained, how it is pre-
processed, what is the total amount of data and how it is 
connected to real life time-wise. The theory behind the 
analysis is presented in Section four. Section five presents 
the analysis framework and the execution of each step during 
the analysis. The observations and results of the analysis are 
presented in Section six. Finally, conclusions and future 
plans are given in Section seven. 

 

II. RELATED WORK 
The quest for finding solutions for extracting IP-traffic 

characteristics from IP traffic has been a challenge for 
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researchers since the early years of the Internet. Words like 
generic, dynamic, effective, intelligent and self-learning are 
all features of a desirable solution. DPI (Deep Packet 
Inspection) techniques have been found effective to a certain 
degree by several studies. The drawback of DPI techniques 
is that you have to examine the payload of each and every IP 
packet, which is very expensive from the resource usage 
point of view in large-scale IP networks. Payload inspection 
might also compromise the anonymity of the connection 
counterparts, which might be unacceptable in some cases. 
Bendrath has examined the effects of DPI from the Internet 
governance point of view very carefully in his research [3]. 
Along with DPI techniques a variety of transport port-based 
methods have been introduced. These methods rely on a 
static port number mapping, where a certain port number is 
linked to a certain service in the network. Direct mapping is 
obviously effective but somewhat unreliable due to the 
possibility of port number faking or misuse. For example, 
Karagiannis et al. have made similar observations in their 
research work [4].  

Various classification and clustering methods for 
grouping IP traffic have been introduced over the years. The 
focus is typically similar to this paper. By defining an 
analysis framework and utilizing a chosen method, a solution 
to a given problem is presented.  Kumpulainen et al. have 
successfully utilized multi-level K-means clustering for 
separating traffic classes and behavioral patterns from IP-
traffic [5]. Karagiannis et al. have used their own approach 
by classifying IP traffic in a three-layer classification setup. 
Their framework classifies the data in social, functional and 
application levels [4]. 

Moore et al. have successfully utilized a Naïve-Bayes 
classifier for identifying application details from network 
traffic. They achieved a significant improvement to the 
classification result by training the classifier with several 
simple operations [6]. 

In their paper, Yarifard et al. study unsupervised learning 
methods for identifying application specific behavior 
patterns from IPFIX flow data. They studied three different 
clustering algorithms and got good results from K-means and 
SNN-clustering [7].  

Nguyen et al. examined a vast variety of machine 
learning techniques for classifying internet traffic in their 
paper [8]. This is an informational study rather than a survey 
focusing on mining the data with different methods. It 
provides a good overview of the methods studied and their 
benefits and drawbacks.   

Countless studies with different goals and problem 
settings are available. Anyhow, there are not many papers 
focusing on IPFIX flow data classification. Furthermore, the 
use of K-Nearest-Neighbor Classification algorithm is rare in 
the area of IPFIX flow data classification. Based on the work 
of other researchers, and by our previous experience on IP 
traffic analysis, we decided to present our framework for IP 
traffic classification purposes.   

 

III. THE DATA 
The analyzed dataset was generated from a three-day 

trace taken in April 2011. The tracing was executed over a 
period of three weekdays from Tuesday to Thursday. The 
monitored network can be considered as a Wide Area 
Network (WAN) or a large-scale local area network. We use 
the latter term in this paper. The target network is ideal for 
capturing IP traffic for analysis purposes, because the 
information security policy of the administrating 
organization allows the use of any service as long as it is not 
illegal, does not violate the user privacy or disturb other 
users of the network.  

The IPFIX format was used for the flow data. The IPFIX 
format was selected because it is the leading flow standard at 
the moment in terms of the level of standardization. IPFIX is 
based on Netflow [9], a trademark of Cisco Company. The 
IPFIX flow data was generated with the Maji program, 
provided by the WAND research team from the University 
of Waikato in New Zealand [10]. Maji relies heavily on the 
libtrace data capture library [11], which clearly also played a 
very important role during the data capture phase. Libtrace 
was also provided by the WAND -research team. Maji 
supports a variety of IPFIX-compliant parameters. From 
these parameters, we gathered a compact set of variables 
suitable for our purposes in order to avoid unnecessary load 
during the capture phase and in order to optimize the usage 
of storage space. The IPFIX flow data was first stored to 
hard disk in SQLite database format [12], from which we 
were able to post-process the data to CSV format for the 
analysis execution. 

We further reduced the dataset to include only needed 
parameters. The dataset ended up holding in a 123 million 
rows, i.e., IPFIX flow records. For each flow record there is 
a set of parameters as follows: 

 
1. Feature identifier (WWW-type or Other) 
2. Source Transport Port 
3. Destination Transport Port 
4. Number of transmitted packets within the flow 
5. Number of transmitted octets within the flow 
6. Maximum Time To Live value within the flow 

 
Parameters one, two, and three are related to the class 

definition. We separated the traffic that looks WWW-related 
from the rest of the data. We call this phase the basic 
profiling phase. The purpose of basic profiling is to highlight 
the desired feature or traffic class. After basic profiling we 
should be able to trust that the profiled traffic is what it looks 
like with acceptable probability.  Parameters four, five and 
six were chosen as input parameters for the actual 
classification phase. They were selected after some 
preliminary testing and visual data mining of the flow 
parameters. As a guideline for parameter selection, we used 
the characteristics of the KNN Classifier, meaning that we 
tried to find parameters whose value distribution was 
somehow clustered or packed into clear groups within the 
value range. The better these conditions are met, the better is 
the probability of finding the correct class for a test 
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observation. The parameter selection also involved a 
behavioral factor. We went through the flow parameters and 
wrote down characteristics typical for traffic that looks like 
WWW traffic and then used those facts in the selection.  

 

IV. THE THEORY 
KNN classification belongs to the supervised learning 

methods in the field of machine learning techniques. 
Furthermore, KNN classification is a non-parametric 
learning method, meaning that it does not assume any known 
prior distribution. Naïve-Bayes for example assumes that the 
data follows normal distribution. Non-parametric methods 
are sometimes referred to as instance-based or memory-
based methods.  

KNN-Classifier is a simple, yet computationally 
expensive classification method. It is based on the distance 
metric of the classification features. The classifier algorithm 
is given a feature vector as an input and it places it in the 
feature space of the training dataset for comparison. Based 
on the constant ‘K’ and the selected distance metric, the 
algorithm computes the class for the new data point based on 
which class exists the most within the  K nearest neighbors 
of the test feature vector.  

KNN requires the whole training dataset to be available 
whenever a new test data point is set under classification. 
The classifier computes the distance of each test data point to 
each and every data point in the training dataset. This limits 
the use of KNN Classifier to being suitable mainly for 
passive data analysis rather than real-time applications.  

The mathematics behind KNN Classifier is very simple. 
We have to compute each feature vector in the test data in 
order to define its location in the test feature space. Then 
each feature vector in the training data space is computed to 
define its location. Only after theses operations can we 
compare the locations of the test feature vector against the 
feature vectors inside the K neighbors in the training feature 
space. On the basis of that comparison we obtain the class 
for the test feature vector. Details about the mathematics are 
available in references [13] and [14]. 

There are four major questions one must ask 
himself/herself when designing a KNN-Classifier: 

 
1. What is the characteristic in our dataset that defines 

the class distribution, and how should it be obtained, 
if not natively present? 

2. What is the optimal value for the neighbor constant 
‘K’, and how should it be obtained? 

3. What distance metric should we use with this 
particular dataset? 

4. What are the features in our dataset we need in order 
to be able to classify each test sample with the best 
possible accuracy and without redundancy? 

 
Once these questions are answered, the rest is a 

straightforward matter of executing of the classification. Our 
framework binds together the workflow from the data 
capture and pre-processing to the result analysis. 
 

V. THE EXECUTION 
The execution stage defines the analysis framework and 

the workflow of the analysis process. The framework 
consists of six phases.  

First, the data is captured from the target network. We 
are focusing mainly on the analysis methods, so this phase is 
not described in detail here.  

The second phase involves parameter reduction, which 
means the removal of unnecessary flow parameters from the 
data. Parameters such as IP-addresses (anonymized) and 
timestamps are not needed in the classification phase, but are 
essential when the flow record is generated in the capture 
phase.  

In third phase, the desired class distribution for the 
dataset is generated, if not natively present in the data. This 
phase is called the basic profiling phase. The purpose of this 
step is to ensure that each flow record belongs explicitly to 
one and only one class. We generated two classes: ‘WWW-
type’ and ‘Other’ by using the known transport port numbers 
80, 8000 and 8080.  

The fourth phase deals with the classifier training, i.e., 
configuring the classifier. The first step of the classifier 
training consists of selecting the classification features. In 
the second step of training the distance metric for the 
classification was selected. We decided to use the Euclidean 
distance metric as it is by far the most common metric 
method used in data analysis in general. As the third step of 
the training, the KNN algorithm requires the neighbor 
constant ‘K’. To determine the best value for ‘K’ we 
executed KNN Classifier with K-values 1-10 in a 10-fold 
cross-validation setup. We took a sample data of IPFIX flow 
data and divided it into 10 subsets of equal size. Each subset 
in turn acts as a test data and the other 9 subsets are 
combined to act as training data. All in all 100 separate 
classification executions are obtained, one for each 
combination of tested values of ‘K’ versus each possible 
cross-validation setup. The K-value with the best average 
classification success ratio should be selected for the actual 
analysis phase. 

 The fifth phase is the execution of the actual 
classification with the full dataset, and the final phase of the 
analysis is to analyze the results and make observations and 
conclusions. The analysis framework and workflow is 
described in Figure 1. 
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Figure 1: Analysis framework & workflow 
 

In the actual classification phase, the three-day dataset 
was split into three separate datasets, as presented in Figure 
2.  

As we knew the week-day of each sample, we decided to 
split the dataset day-wise (N=3) instead of splitting the 
dataset into subsets of equal size. This meant that we could 
compare possible similarities and differences in the 
classification ratio between the days. A test data to Training 
data ratio of 1 to 9 (n=10) was used in each execution. 

Figure 2: Test Data vs. Training Data setup 
 

The arrangement in Figure 2 was used for two major 
reasons: the dataset size and to minimize the possible 
behavioral factor related to a certain day in the dataset. The 
total average classification ratio over the three-day daytime 

datasets was calculated in order to lighten the load and 
resource consumption of the classification execution. The 
behavioral-based division of the data derives from the fact 
that the amount of traffic and variety of services used in the 
network might be dependent on the day of the week.  

KNN Classification was executed using the Euclidean 
distance metric. It is a straightforward and fair method for 
ranking observations. Moreover, the data in hand does not 
have any special characteristics that would require the use of 
more complex distance metrics. Distance-based weighting 
was not applied in this paper as a classifier training method. 
 

VI. THE RESULTS 
The results are handled in four parts. First we discuss the 

pre-processing of the dataset and the results obtained from 
the basic profiling phase. Then we handle the classification 
input parameter selection process. Subsequently, we go 
through the results of the actual classification. Finally, we 
discuss the functionality of the framework as a whole. In 
conclusion, we should have a view of how the applied 
classification mechanism and the framework in general suit 
the classifying of IPFIX flow data and distinguishing the 
feature vs. parameter relations in IPFIX flow data. 

The basic profiling phase gave us a dataset with a class 
distribution of two classes: WWW-type and Other. We have 
not used the class name WWW, because we believe we can 
never achieve 100% success ratio in the basic profiling 
phase. There is always a room for error, such as 
measurement errors for example. However, in the case of 
behavior like WWW type behavior, we can be sure with an 
acceptable probability that the majority of the traffic 
traversing through ports 80, 8000 and 8080 is WWW-
related. For comparison we could take DNS traffic for 
example. DNS is a service, which is tightly associated with 
port number 53. Furthermore the DNS query is static in 
terms of packet and flow record structure. These types of 
services are easier to identify in basic profiling and also 
easier to classify with the aid of flow features because the 
basis for class distribution is sufficiently solid. In this paper, 
the data to be classified was distributed to the 
aforementioned classes as follows: 

TABLE I.  DAILY FLOW COUNT AND CLASS DISTRIBUTION DETAILS 

 Day 1 Day 2 Day 3 
Flow count 41 751 116 40 350 846 40 946 094 
WWW-type 12.01 % 12.27 % 11.39 % 

Other 88.99 % 87.73 % 88.61 % 
 

The data distribution was surprisingly even between the 
daily datasets. The traffic profile of the monitored network is 
very constant, at least where WWW-type traffic is 
concerned. The amount of WWW-type traffic was around 
12% over the whole three-day dataset. 

Classification input parameter selection was done by 
executing the classifier under several different setups and 
within several iterations. The goal was to train the 
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framework to be as generally applicable as possible for the 
analysis of IPFIX flow data. 

In the selection of classification features, we aimed to 
find flow parameters that were descriptive from the client-
server type of services aspect such as WWW. Another aim 
was to restrict the number of parameters. Our goal was to 
have 2 or 3 parameters to continue with. It is a clear benefit 
if the classification feature space has no more than three 
dimensions. For example, illustrating the feature space and 
the classification results is much easier that way. The third 
objective is a general goal for the classification parameter 
selection. The parameters should have as little redundancy as 
possible. Redundant parameters do not bring any 
distinguishable or useful information to the feature space. It 
is not sensible to use for example three redundant parameters 
if one parameter provides the same information for the 
classification execution. We observed that the data profiled 
as WWW-type consisted either of flows with a very small 
amount of transmitted packets or flows with a large amount 
of sent packets. It seemed to be a typical behavioral pattern 
for this type of traffic, so we decided to select the count of 
sent packets in the flow as one parameter. One would assume 
that the amount of sent packets within a flow would follow 
the same pattern, but in this case it did not. We decided to 
add it to our classification feature space as another parameter 
characterizing the flow without redundancy. The maximum 
TTL parameter was selected because it seemed to have a 
clear distribution into separate groups within its value range 
and because it was not redundant regarding the other two 
selected parameters. 

The distance metric selection did not involve any data 
mining or any other characteristic examination of the data. 
No weighting algorithms were used either when determining 
the distances of the data points. The eEclidean distance 
metric is a clear and simple method for calculating distances 
between data points. Furthermore, it adds extra value to the 
illustration of the data since the data points can be presented 
and compared as a vector in a three-dimensional space. 

The cross validation for examining the best value for the 
’K’ gave us surprisingly good results with all the tested K-
values. The average classification success ratio was over 97 
% and within 0.5 percent with K-values of 3-10. As a 
guideline, low odd values should be preferred. The best 
classification success ratio was achieved with a K-value of 9, 
both in scaled and unscaled feature space. As the difference 
in success ratio was very small we faced the problem of 
whether to go on with value 9 or to select a smaller odd 
value like 3 or 5 for the actual classification, which had also 
had a very good classification ratio throughout the cross-
validation execution. Higher K-values lead to a more noise-
tolerant system, but on the other hand it makes the class 
distribution less distinct within the k data points. Figure 3 
illustrates the average classification success ratio both in un-
scaled and logarithmic-scaled feature space with K-values 
from 1 to 10. The effect of scaling on the classification 
success ratio was very low. On average the success ratio 
increased by only about 0.2 % compared to the unscaled 
feature space. Our interpretation of this phenomena is that 
although the value ranges of Packet Count and Byte Count 

features are higher compared to the Maximum TTL feature, 
most of their data is located in the lower part of the value 
range, as are the values of Maximum TTL values. Therefore 
the effect of the logarithmic scaling has only a minor effect 
on the classification results. 
 

 
Figure 3: Average classification ratio values from the Cross-Validation, 
Logarithmic scaling versus unscaled feature space, K = [1,10] 
 

We decided to use the K-value 5 for the actual 
classification. None of the tested K-values in the cross-
validation provided significantly better results than the 
others, and low odd values are typically recommended. 

Several interesting pieces of information were obtained 
from the actual classification phase: 
 

1. The average classification success ratio over the 
three classifications executed for the daily subsets. 

2. The classification success ratio from each of the 
daily classification executions 

3. The ratio of unsuccessful classifications per 
original class, i.e., how many ‘WWW-type’ flows 
were classified as ‘Other’ and vice versa. 

 
The average classification ratio tells us the overall 

performance of the classification framework. The average 
classification ratio was 93,02 %, as shown in Table 2. This 
result is very good and the daily classification ratios are also 
very close to each other. This means that the similarity level 
of the daily subsets is high and the level of activity and 
WWW-type traffic behavior in this particular network is 
close  to  the  same  on  different  days  of  the  week.  Here  we  
have one example of how this framework can be utilized, as 
a method for finding out the overall behavior of the dataset.  

TABLE II.  DAILY AND AVERAGE CLASSIFICATION SUCCES RATIOS 

 Success ratio 
Day 1 92.91 % 
Day 2 91.76 % 
Day 3 94.39 % 

Average 93.02 % 
 

The characteristics of the unsuccessfully classified flows 
were examined. The unsuccessfully classified flows are 

96.80
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interesting because they somehow differ from the typical 
behavior of the root class. We back-traced the unsuccessfully 
classified flow records back to the original data. The results 
were once again surprising. A clear majority of the 
unsuccessfully classified flows belonged to the WWW-type 
traffic profile.  

TABLE III.  COUNT AND DISTRIBUTION OF UNSUCCESSFULLY 
CLASSIFED FLOW RECORDS       

 Day 1 Day 2 Day 3 
Flow count 295884 332649 229839 

Original Class WWW 90.86 % 80.16 % 90.33 % 
Original Class Other 9.14 % 19.84 % 9.67 % 

 
This might mean that these flows belong to some WWW-

based service, which is clearly different from the mass, or 
even more interestingly, they might be somehow malicious. 
A clear benefit is also the fact that the amount of data for 
further analysis is significantly smaller than the amount we 
started with. It has come down from over 40 million flows to 
a few hundred thousand rows of interesting data. Clearly, the 
successfully classified data cannot be totally ignored in the 
belief that it does not hold in any false positives. However, 
the first step is to try to identify the true negatives or false 
negatives from the unsuccessfully classified data. Table 3 
illustrates the total number of unsuccessfully classified rows 
per daily datasets, together with the proportions of the class 
in the original data. 

As a whole the framework performed very well, and 
therefore can be recommended for feature identification and 
characteristics examination purposes of IPFIX flow data. 
The main benefit of the framework in general is that it 
provides a solid and defined workflow for classification 
analysis. In many cases the actual workflow is lost behind 
the results, and the repeatability of the results is therefore 
compromised. We designed the framework to be solid, yet 
flexible enough so it wouldn’t cause too many restrictions to 
the analysis work. The framework does not restrict the 
classification algorithm selection in any way. If some other 
classifier is used, the top-level framework is applicable as it 
is. The classification algorithm selection affects to training 
and classification execution phases. The cornerstones of the 
framework are the basic profiling phase and the classification 
training phase. These are clearly also the places for fine-
tuning the framework. 
 

VII. CONCLUSION AND THE FUTURE 
The goal was to define a framework for classifying 

IPFIX flow data with KNN Classifier and prove its 
functionality. The overall classification success ratios were at 
a very good and promising level throughout the research. 
Over 90% classification accuracy with a considerably large 
amount of flow data is an indication of a very good 
performance. We used cross-validation in the classifier 
training phase and a three-way classification setup in the 
actual classification phase in order to prove the classification 
framework to be solid and robust. In conclusion, we can state 

that the framework performed well and the results were very 
promising. They have certainly given us a boost to continue 
our research. 

There are several interesting starting points for the further 
analysis. Our research is related to information security and 
the analysis of the WWW-type traffic has many interesting 
information security aspects, as it is a commonly used and 
therefore misused service. It utilizes mainly standard port 
numbering, which means that those ports are typically left 
open in firewall configurations, thus leaving some space in 
which the misusers and attackers can operate. In future 
research we aim to detect the misuse inside WWW-type 
traffic by trying to point out what is normal and what is not. 
We aim to do this with total anonymity so that misuse 
identification and the results analysis is not illegal or harmful 
to anyone.  

Our intention is also to examine the limits of the KNN 
classifier by further training the classifier. Utilizing the 
framework with other types of classification methods is also 
in the scope of interest in the future research. There are 
public datasets available that can be used as reference 
datasets and for further validation of the framework. 
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