

Provisioning Service Differentiation for Virtualized Network Devices

Suk Kyu Lee, Hwangnam Kim, Jun-gyu Ahn, Kwang Jae Sung, and Jinwoo Park
School of Electrical Engineering

Korea University, Seoul, Republic of Korea
Email: {sklee25, hnkim, dubhe, kjsung80, jwpark}@korea.ac.kr

Abstract— In order to efficiently utilize the network bandwidth
and flexibly enable one or more networks to be combined or
subdivided into virtual networks, it is essential to virtualize
network devices and then to provide service differentiation for
the virtualized network devices. In this paper, we propose a
virtualizing method for network devices based on the virtual
machine and offers a differentiated scheduling scheme to satisfy
QoS requirements that are imposed on virtualized devices. We
have built the network virtualization framework combining the
Virtual Box, time-slot-based time-sharing scheme, and leaky-
bucket controller, and then we have conducted a performance
evaluation study with real testbed. The empirical study indicates
that the service differentiation for virtualized network devices is
successfully supported by the proposed framework.

Keywords - Network Virtualization, Scheduling Policy, Virtual
Box, Virtual Machine

I. INTRODUCTION
There has been a large improvement in the field of

virtualization in the past decade. As noted by Goldberg [7],
the idea of the virtual machine emerged around 1970s, but,
due to the lack of computing power, the field of virtualization
has arisen in the early 2000s. The hardware virtualization
allows many users and corporations to reduce the expenditure
of buying multiple physical machines to support various
applications since it runs those applications with multiple
virtual machines in a physical machine. Additionally, the
virtualization motivates us to provide an efficient way to run
multiple networks, each combined with many networks and/or
parts of networks into a virtual network or each isolated with a
suite of applications in an independent execution environment
with a pseudo network interface. The network virtualization
gives the network service providers economic benefits since it
decouples network infrastructure installment from network
service deployment by running multiple virtual networks over
a physical network. Also, the network virtualization benefits
consumers with customized programmable network services
by encapsulating one or more services into a single virtual
machine and activating one or more of them according to
customer’s demand. One of key components for realizing the
network virtualization is to isolate one set of network services
from another and to control and manage their access to
network resources according to QoS specifications. Therefore,
the scheduler among virtualized network devices should be
implemented with priority. The works such as the Xen [1] and
VMWare [16] have mainly dealt with how to distribute the
CPU usage fairly amongst the virtual machines (VMs).
Moreover, the work such as the Denali [19] has been focused
on scheduling I/O fairly amongst the VMs. MultiNet [3] has
devised a framework that virtualizes the IEEE 802.11 wireless
LAN card, and has proposed a fair scheduling algorithm
among virtualized network interface cards. As we can see with

the existing works (that are described in Section II), many of
the virtualization techniques have been focused on the fairness
among virtual machines’ CPU and I/O.

Figure 1. Comparison of network resource usage between two virtual

machines without any scheduling scheme.

However, there has not been much research conducting on
how to provide service differentiation for the network
resources. Specifically, the network service provider or
customer may want to allocate a different amount of network
resources, e.g. network bandwidth, to each virtualized network
device according to QoS specification. Thus, depending on the
QoS specification, the network resource should be distributed
differently to each VM. On the other hand, with current
existing technology, if n VMs exist, then each VM should
have 1/n rate of the work. However, such the fair allocation
cannot be always guaranteed. A unfair resource allocation is
presented in Figure 1, where the network bandwidth usage is
compared when two virtual machines compete for the network
device. We can observe from the figure that the result of
current scheduling scheme for virtual machines is not effective
in perspective of service differentiation over the virtualized
network devices.

Based on this motivation, we propose an internal network
virtualization framework to virtualize network devices, which
is based on virtual machine, and also, we present a
differentiated scheduling scheme to support service
differentiation that is imposed on the virtualized devices. We
implemented the service differentiation by juxtaposing the
leaky-bucket controller [11] and the time slot-based resource
allocator [12]. Conclusively, the major contributions are three-
fold:
1. To provide service differentiation for internal network

virtualization for the first time;
2. To build up the leaky bucket controller and time slot-

based resource allocator for virtualized network device;
3. To carry out performance evaluation study in real testbed

in terms of (a) network performance and (b) inter-packet
delays to evaluate the service differentiation for

152

ICNS 2011 : The Seventh International Conference on Networking and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-133-5

virtualized network devices.
To the best of knowledge, this is the first trial of provisioning
the service differentiation for the virtualized network devices.
The rest of the paper is organized as follows. In Section II,
we summarize related work in the area of scheduling methods
for virtual machines. Then we describe both the specific
design and the architecture for implementing the internal
network virtualization framework for service differentiation
in Section III. With a real testbed, we discuss about the
performance and feasibility of the proposed service
differentiation framework in Section IV. Finally, we conclude
the paper with Section V.

II. PRELIMINARY
In this section, we briefly summarize previous work

focused on scheduling methods in virtual machines, and then
we explain the specific motivations.

A. Related Work
Many approaches are available to address the scheduling

problem within the virtualization. However, there has not been
any paper related with provisioning service differentiation for
the virtualized network resources. We thus simply explain
existing scheduling methods for virtualization according to
two categories: I/O based and CPU based.

The CPU based fair scheduling approach focuses entirely
on the virtual CPU in order to distribute the host machine’s
CPU fairly amongst the virtual machines. Govindan et al. [8]
proposed to use credit-based scheduling algorithm to distribute
the CPU resource fairly amongst the VMs by devising a credit
scheduler to assign and monitor the credits for each VM.
Gulati et al. [9] studied on how to proportionally schedule the
virtual CPU amongst the VMs in order to improve the CPU
fairness by using the Adaptive DRR. Scheduling I/O based
fair scheduling approaches extended the mechanism on top of
the credit scheduler [8] by adding the BOOST state on the
credit scheduler. Instead of only using the Under and Over
state, Ongaro et al. [14] implemented the BOOST state where
it prioritizes the I/O scheduled VM. With this implementation,
it provides better chance for I/O-bounded work to control the
CPU of the host machine.

Note that all the previous approaches aim at encouraging
fair scheduling for CPU or I/O based, extensively relied on the
Xen [1] hypervisor. On the contrary, our proposed work aims
at how to support service differentiation among multiple VMs
without modifying the guest OS. By providing service
differentiation method for virtualized network devices, we can
dynamically control the network usage for each VM, based on
the type of work or a given QoS specification.

B. Motivation: Limitation in Existing Scheduling Schemes
The scheduler in a virtual machine is responsible for

assigning computing resources to each virtual machine. It
usually exists at the virtual machine monitor (VMM), which is
a software layer where it virtualizes many of the resources of
the physical host machine. In order for the VMM to handle the
task, the resources such as the CPU, network device, I/O
devices, and physical memory need to be virtualized.
Additionally, there are still many challenges in order to fairly

schedule these devices. For example, Virtual Box [18]’s VM
scheduling algorithm basically depends on the host machine’s
thread scheduling mechanism, where it gives the impression of
distributing the resource fairly to the VM until the VM is dead.
However, with some portion of accuracy, it is not quite true.
On the other hand, the scheduling algorithms, such as Xen’s
Credit Scheduler [8] and Ongaro et al. [14], have been taken
to distribute the resources fairly to the CPU and the I/O
devices. These works focused on how to schedule the resource
in order to distribute the resource into n number of VMs. The
advantage of these algorithms is that it can almost distribute
and share the physical resource of the host machine almost
equally amongst the virtual machines. However, the question
of how to provide a service differentiation according to a QoS
specification is still unclear.
The main objective of this work is to implement a scheduling
algorithm in order to realize service differentiation by
coordinating the progress of multiple VMs according to a
given QoS specification. For example, if VM1 has been
assigned to work for 30% of CPU usage then it is mandatorily
use 30% CPU usage as well as the other VM use the rest of
the CPU usage, 70%.

III. DESIGN AND IMPLEMENTATION
In this section, we describe the internal network

virtualization framework for virtualizing network devices, and
the scheduling scheme of providing the service differentiation.

A. Architecture
In order to virtualize network devices, we chose a virtual

machine (VM) approach based on the Virtual Box OSE 3.16
SDK[17]. The Virtual Box OSE is a open source software
developed by Oracle. Each VM is considered as an EMT,
Emulation thread, when the host machine schedules the
threads. Unlike the Xen’s Credit Scheduler [8], Virtual Box
does not have a customary scheduler where it schedules
effectively amongst the VMs. However, since the Virtual Box
SDK 3.16 [17] provides interfaces to interact with the VMM
and virtual device to control the VMs that run concurrently,
we implement a scheduling scheme for implementing service
differentiation. Figure 2 presents the architecture for the
proposed network virtualization framework with the
differentiated scheduling scheme.

B. Scheduling Scheme for Service Differentiation
In order to realize the service differentiation in scheduling

scheme for the virtualized network devices, we chose two
basic building blocks. The first one is the leaky bucket
controller, which has been used in packet switched networks
and the telecommunications networks in order to regulate the
data transmission with the credit-generating rate 1 and the
burstiness[11]. In our proposed scheduling scheme, the
controller generates the credits according to the QoS
specification. The other one is time-slot based resource
allocator, with which we can decide the basic time allocation
unit instead of using infinitesimal time unit. With these two
schemes, we designed a scheduling scheme for providing

1 We adopted the concept of credit to assign CPU resource to each VM.

153

ICNS 2011 : The Seventh International Conference on Networking and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-133-5

service differentiation for virtualized network devices. The
scheduler is presented in Figure 3.

Figure 2.The architecture for the proposed network virtualization.

Once the system starts, the scheduler is periodically
executed to produce credits via the leaky-bucket controller and
assign the credits to each VM. For example, if there are two
VMs and the ratio of CPU usage is given with 65:35 as the
QoS specification for two VMs, VM1 should be assigned with
use the resource usage of 65% and VM2 should acquire 35%
of resource usage. Based on this ratio, the scheduler assigns
the credits to each designated VM. Once every VM acquires
its own credits, the scheduler assigns the time slot to it. In
order to distribute the time slot to the VMs, we used the
following equation:

 (1)

#

i
i n

i i

VM CreditVM TimeSlot
VM Credit

ofTimeSlot

=
æ öå
ç ÷
è ø

Each VM is basically inserted into a scheduling queue, and
then it is scheduled in a round robin way. If the credits
allocated to a VM are used up, then the VM should wait till
the scheduler assigns additional credits to it. Otherwise, the
VM runs during the time slot, and then, it is reinserted to the
queue after the time slot is expired.

procedure scheduler()

assign workload () according to a QoS;
struct cpu_reservation_schedule q;

while(system is running) {
compute all of the credits for all ; for i=0 to all VM
 compute the schedule for with (1);

insert to q(ω);
update time();
for ω =0 to sizeof(q)

if q (ω)= .
run for one time slot
pause rest of the VM within the q(ω)

 else
decrement credit of the rest of

the VM within the q(ω);
update time();

}
Figure 3. The deterministic scheduling algorithm.

Figure 4. The testbed for performance evaluation study.

IV. PERFORMANCE EVALUATION
In this section, we present the results of performance

evaluation, which has been done with some application level
benchmarks in the real testbed, in order to investigate the
performance of the proposed network virtualization
framework for providing service differentiation for virtualized
network devices

All the empirical experiment have been conducted on a
3.06GHz Intel Core2 Duo with 3MB of L2 cache, 4GB of
RAM, and 10/100/1000BASE-T Gigabit Ethernet card. The
operating system is Ubuntu 10.04 and the guest OS for the
VMs are Ubuntu 9.10. As aforementioned, the Virtual Box
OSE 3.16 is employed as the VMM. To generate the UDP and
the TCP traffic, we employed the iperf [10] utility, which is
supposed to constantly generate packets from the VM to the
server, and we also used ping flood to generate ICMP traffic.
The testbed for this study is in Figure 4, where three VMs are
resident at one physical machine and each VM communicates
with its corresponding real server over the network.

As for the schedulable resource, we used the CPU usage
under the assumption that the time amount of using network
devices is proportional to that amount of using CPU. As for
the performance metrics, we use three metrics, the network
bandwidth (transmission rate), inter-packet delay and CPU
usage to verify if the proposed scheduling scheme can achieve
the service differentiation according to the QoS specification.
Note that we selectively present the empirical results in terms
of network bandwidth and inter-packet delay due to the space
limit. Finally, we have conducted two empirical evaluation
study sets: the one is when we activated two virtual machines,
and the other is when we used three virtual machines.

A. With Two Virtual Machines
Firstly, we conducted an empirical study with two virtual
machines, and we employed UDP, TCP, ICMP traffic to
verify if the differentiation is achieved.

In the case of UDP traffic: We have tested in two scenarios:
the ratio of CPU usage between VM1 and VM2 is 50:50 (%),
and the ratio is 60:40. Figure 5 shows the result of the first
case, whereas Figure 6 shows the other case.

As for the results in Figure 5, the average bandwidth of
each VM was very similar to each other and it is consistent
over time. In specific, the average bandwidth of VM1 is 46.90
Mbits/sec whereas the average of VM2 is 46.95 Mbits/sec. As

154

ICNS 2011 : The Seventh International Conference on Networking and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-133-5

for the results in Figure 6, we can observe that the average
bandwidth of VM1 is 55.41 Mbits/sec and average bandwidth
of VM2 is 38.29 Mbits/sec, which indicates that VM1 used
about 60% of total network bandwidth whereas the VM2 used
nearly 40% of the bandwidth.

Additionally, we investigate the impact of the
differentiated scheduling on the inter-packet delay. Figure 7
presents the fluctuation of inter-packet delays that we
observed from the original Virtual Box system (without any
change). Specifically, the average delay is 0.303ms and its
standard deviation is 0.0539ms for VM1, and those values for
VM2 are 0.327ms and 0.0593ms, respectively. However, when
we used the proposed differentiated scheduling scheme with
ratio of 50:50, we could observe stable and fair dynamics of
inter-packet delays which is presented in Figure 8. In
particular, as for VM1, the average delay and standard
deviation are 0.132ms and 0.0159ms, respectively, and, as for
VM2, those values are 0.131ms and 0.0167ms.

Figure 5. Comparison of network bandwidth when the ratio of using network
bandwidth between VM1 and VM2 is 50: 50 and UDP traffic is employed.

Figure 6. Comparison of network bandwidth when the ratio of using network
bandwidth between VM1 and VM2 is 60: 40 and UDP traffic is employed.

Figure 7. The fluctuation of inter-packet delays that are measured with the
original Virtual Box when two VM are activated and UDP traffic is used.

In the case of TCP traffic: When we used TCP traffic, we
made a similar observation. Figure 9 compares two network
bandwidths when the ratio of network bandwidth usage
between two VMs is 60:40. From the figure, we observed that
the required differentiation is successfully achieved;
specifically, the average of VM1 is 52.85 Mbits/sec and VM2
is 33.72 Mbits/sec.

In the case of ping (ICMP) traffic: We have used the ping
flood to verify if the proposed service differentiation is still
effective in ICMP traffic. The ratio between VM1 and VM2
for the QoS specification is set to 50:50. Figure 10 compares
two network throughputs each of which is used by VM1 and
VM2, respectively. The reported average bandwidth of VM1
is 20.05 Mbits/sec, and that of VM2 is 20.26 Mbits/sec.

Figure 8. The stable fluctuation of inter-packet delays that are measured under
the proposed differentiated scheduling scheme when the ratio of network
bandwidth usage between VM1 and VM2 is 50:50 and UDP traffic is used.

Figure 9. Comparison of network bandwidth when the ratio of using network
resources between VM1 and VM2 is 60:40 and TCP traffic is employed.

Figure 10. Comparison of network bandwidth when the ratio of using network
resources between VM1 and VM2 is 50: 50 and ICMP traffic (generated by
ping traffic) is employed.

155

ICNS 2011 : The Seventh International Conference on Networking and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-133-5

Figure 11. Comparison of three network bandwidths when the ratio among
VM1, VM2 and VM3 is 50:30:20 and UDP traffic is employed.

Figure 12. Comparison of two network bandwidth when the ratio between
VM1 and VM2 is changed from 50:50 to 60:40 and TCP traffic is employed.

B. With Three Virtual Machines
As the second empirical study, we used three VMs in order to
check whether or not the differentiated scheduling scheme is
immune to the number of VMs. Figure 11 compares three
network bandwidth usages when we use UDP traffic and the
ratio for the VMs is set to 50:30:20. We made similar
observations to previous empirical studies: the service
differentiation is successfully achieved among VMs.

C. Dynamic Service Differentiation
As the last empirical study, we used a dynamic QoS scenario
where the ratio betwen two VMs is changed from 50:50 to
40:60. The results are presented in Figure 12. Even though the
ratio is changed, the service differentiation that is supported
by the proposed scheduling scheme for the virtualized network
devices is not affected by the change.

V. CONCLUSION
In this paper, we proposed an internal network

virtualization framework based on Virtual Box, and also we
built up a scheduling scheme for providing service
differentiation among VMs. We specifically presented the
proposed architecture for virtualizing network devices and
scheduling those devices according to QoS specifications.
Then we have demonstrated that the service differentiation can
be successfully achieved through both the proposed
virtualization framework and the differentiated scheduling
scheme, regardless of network traffic, the number of VMs, or
dynamic change of QoS specification. Note that the proposed
scheduling scheme can cooperate with any framework that
supports Virtual Box without the modification.

In the future work, we would like to devise various
scheduling resources that can be used elaborately to schedule
the virtualized network devices in the proposed framework.
We also plan to examine the effect of the proposed scheduling
scheme on real multimedia traffic. The study corroborates the
effectiveness of the proposed virtualization framework for
network devices.

ACKNOWLEDGEMENT
This work was supported in part by the IT R&D program of MKE/KEIT
[KI001822, Research on Ubiquitous Mobility Management Methods for
Higher Service Availability], and in part by the National Research
Foundation of Korea (NRF) grant funded by the Korea government
(MEST) (No. 2010-0014060)

REFERENCES
[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.

Neugebauer, I. Pratt, and A. Warfield. Xen and the Art of Virtualization.
In Proc. 19th SOSP, Lake George, NY, Oct 2003.

[2] E. Bugnion, S. Devine, and M. Rosenblum. Disco: Running Commodity
Operating Systems on Scalable Multiprocessors. In Sixteenth ACM
Symposium on Operating System Principles, October 1997.

[3] R. Chandra, V. Bahl, and P. Bahl. MultiNet: Connecting to multiple
IEEE 802.11 networks using a single wireless card. In INFOCOM, 2004.

[4] G. W. Dunlap, S. T. King, S. Cinar, M. Basrai, and P. M. Chen. ReVirt:
Enabling Intrusion Analysis through Virtual-Machine Logging and
Replay. In Proceedings of the 5th Symposium on Operating Systems
Design and Implementation (OSDI 2002), ACM Operating Systems
Review, Winter 2002 Special Issue, pages 211.224, Boston, MA, USA,
Dec. 2002

[5] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, and M.
Williamson. Safe hardware access with the Xen virtual machine monitor.
In Proceedings of the Workshop on Operating System and Architectural
Support for the On Demand IT InfraStructure (OASIS), Oct. 2004.

[6] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh, “Terra: A
Virtual Machine-Based Platform for Trusted Computing,” in Proc. 9th
ACM Symposium on Operating Systems Principles, 2003, pp. 193–206.

[7] R. Goldberg. Architectural Principles for Virtual Computer Systems.
PhD thesis, Harvard University, 1972.

[8] S. Govindan, A. R. Nath, A. Das, B. Urgaonkar, and A.
Sivasubramaniam. Xen and co.: communication-aware cpu scheduling
for consolidated xen-based hosting platforms. In VEE ’07: Proceedings
of the 3rd international conference on Virtual execution environments,
pages 126–136, New York, NY, USA, 2007. ACM Press.

[9] A. Gulati, A. Merchant, M. Uysal, and P. Varman, Efficient and
adaptive proportional share I/O scheduling, Technical Report HPL-
2007-186, HP Labs, November, 2007.

[10] Iperf, http://sourceforge.net/projects/iperf
[11] J. Kurose and K. Ross, Computer Networking: A Top-Down Approach

4th Edition, page 675-678, Boston, MA, 2008, Pearson Education
International

[12] J. Kurose and K. Ross, Computer Networking: A Top-Down Approach
4th Edition, page 477, Boston, MA, 2008, Pearson Education
International

[13] G. Neiger, A. Santoni, F. Leung, D. Rodgers, and R. Uhlig. Intel
virtualization technology: Hardware support for efficient processor
virtualization. Intel Technology Journal 10, 3 (2006).

[14] D. Ongaro, A. Cox, and S. Rixner. Scheduling I/O in virtual machine
monitors. In Fourth ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments, pages 1-10, ACM, 2008

[15] P. Pancha and M. El Zarki. Leaky bucket-access control for VBR MPEG
video. In Proceedings of the IEEE INFOCOM’95, Boston, April 1995

[16] J. Sugerman, G. Venkitachalam, and B. Lim. Virtualizing I/O devices on
VMware workstation’s hosted virtual machine monitor. In Proc. 2001
Ann. USENIX Tech. Conf., Boston, MA, USA, June 2001.

[17] Sun Virtual Box Programming Guide and Reference 3.1.6,
http://www.virtualbox.org

[18] Virtual Box, http://www.virtualbox.org
[19] A. Whitaker, M. Shaw, and S. D. Gribble. Denali: Lightweight Virtual

Machines for Distributed and Networked Applications. Technical Report
02-02-01, University of Washington, 2002.

156

ICNS 2011 : The Seventh International Conference on Networking and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-133-5

