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Abstract— In order to efficiently utilize the network bandwidth 
and flexibly enable one or more networks to be combined or 
subdivided into virtual networks, it is essential to virtualize 
network devices and then to provide service differentiation for 
the virtualized network devices. In this paper, we propose a 
virtualizing method for network devices based on the virtual 
machine and offers a differentiated scheduling scheme to satisfy 
QoS requirements that are imposed on virtualized devices. We 
have built the network virtualization framework combining the 
Virtual Box, time-slot-based time-sharing scheme, and leaky-
bucket controller, and then we have conducted a performance 
evaluation study with real testbed. The empirical study indicates 
that the service differentiation for virtualized network devices is 
successfully supported by the proposed framework. 
 

Keywords - Network Virtualization, Scheduling Policy, Virtual 
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I. INTRODUCTION 
There has been a large improvement in the field of 

virtualization in the past decade. As noted by Goldberg [7], 
the idea of the virtual machine emerged around 1970s, but, 
due to the lack of computing power, the field of virtualization 
has arisen in the early 2000s. The hardware virtualization 
allows many users and corporations to reduce the expenditure 
of buying multiple physical machines to support various 
applications since it runs those applications with multiple 
virtual machines in a physical machine. Additionally, the 
virtualization motivates us to provide an efficient way to run 
multiple networks, each combined with many networks and/or 
parts of networks into a virtual network or each isolated with a 
suite of applications in an independent execution environment 
with a pseudo network interface. The network virtualization 
gives the network service providers economic benefits since it 
decouples network infrastructure installment from network 
service deployment by running multiple virtual networks over 
a physical network. Also, the network virtualization benefits 
consumers with customized programmable network services 
by encapsulating one or more services into a single virtual 
machine and activating one or more of them according to 
customer’s demand. One of key components for realizing the 
network virtualization is to isolate one set of network services 
from another and to control and manage their access to 
network resources according to QoS specifications. Therefore, 
the scheduler among virtualized network devices should be 
implemented with priority. The works such as the Xen [1] and 
VMWare [16] have mainly dealt with how to distribute the 
CPU usage fairly amongst the virtual machines (VMs). 
Moreover, the work such as the Denali [19] has been focused 
on scheduling I/O fairly amongst the VMs. MultiNet [3] has 
devised a framework that virtualizes the IEEE 802.11 wireless 
LAN card, and has proposed a fair scheduling algorithm 
among virtualized network interface cards. As we can see with 

the existing works (that are described in Section II), many of 
the virtualization techniques have been focused on the fairness 
among virtual machines’ CPU and I/O. 

 
Figure 1. Comparison of network resource usage between two virtual 

machines without any scheduling scheme. 

However, there has not been much research conducting on 
how to provide service differentiation for the network 
resources. Specifically, the network service provider or 
customer may want to allocate a different amount of network 
resources, e.g. network bandwidth, to each virtualized network 
device according to QoS specification. Thus, depending on the 
QoS specification, the network resource should be distributed 
differently to each VM. On the other hand, with current 
existing technology, if n VMs exist, then each VM should 
have 1/n rate of the work. However, such the fair allocation 
cannot be always guaranteed. A unfair resource allocation is 
presented in Figure 1, where the network bandwidth usage is 
compared when two virtual machines compete for the network 
device. We can observe from the figure that the result of 
current scheduling scheme for virtual machines is not effective 
in perspective of service differentiation over the virtualized 
network devices. 

Based on this motivation, we propose an internal network 
virtualization framework to virtualize network devices, which 
is based on virtual machine, and also, we present a 
differentiated scheduling scheme to support service 
differentiation that is imposed on the virtualized devices. We 
implemented the service differentiation by juxtaposing the 
leaky-bucket controller [11] and the time slot-based resource 
allocator [12]. Conclusively, the major contributions are three-
fold: 
1. To provide service differentiation for internal network 

virtualization for the first time; 
2. To build up the leaky bucket controller and time slot-

based resource allocator for virtualized network device; 
3. To carry out performance evaluation study in real testbed 

in terms of (a) network performance and (b) inter-packet 
delays to evaluate the service differentiation for 
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virtualized network devices. 
To the best of knowledge, this is the first trial of provisioning 
the service differentiation for the virtualized network devices.   
The rest of the paper is organized as follows. In Section II, 
we summarize related work in the area of scheduling methods 
for virtual machines. Then we describe both the specific 
design and the architecture for implementing the internal 
network virtualization framework for service differentiation 
in Section III. With a real testbed, we discuss about the 
performance and feasibility of the proposed service 
differentiation framework in Section IV. Finally, we conclude 
the paper with Section V. 

II. PRELIMINARY 
In this section, we briefly summarize previous work 

focused on scheduling methods in virtual machines, and then 
we explain the specific motivations. 

A. Related Work 
Many approaches are available to address the scheduling 

problem within the virtualization. However, there has not been 
any paper related with provisioning service differentiation for 
the virtualized network resources. We thus simply explain 
existing scheduling methods for virtualization according to 
two categories: I/O based and CPU based. 

The CPU based fair scheduling approach focuses entirely 
on the virtual CPU in order to distribute the host machine’s 
CPU fairly amongst the virtual machines. Govindan et al. [8] 
proposed to use credit-based scheduling algorithm to distribute 
the CPU resource fairly amongst the VMs by devising a credit 
scheduler to assign and monitor the credits for each VM. 
Gulati et al. [9] studied on how to proportionally schedule the 
virtual CPU amongst the VMs in order to improve the CPU 
fairness by using the Adaptive DRR. Scheduling I/O based 
fair scheduling approaches extended the mechanism on top of 
the credit scheduler [8] by adding the BOOST state on the 
credit scheduler. Instead of only using the Under and Over 
state, Ongaro et al. [14] implemented the BOOST state where 
it prioritizes the I/O scheduled VM. With this implementation, 
it provides better chance for I/O-bounded work to control the 
CPU of the host machine.  

Note that all the previous approaches aim at encouraging 
fair scheduling for CPU or I/O based, extensively relied on the 
Xen [1] hypervisor. On the contrary, our proposed work aims 
at how to support service differentiation among multiple VMs 
without modifying the guest OS. By providing service 
differentiation method for virtualized network devices, we can 
dynamically control the network usage for each VM, based on 
the type of work or a given QoS specification.  

B. Motivation: Limitation in Existing Scheduling Schemes 
The scheduler in a virtual machine is responsible for 

assigning computing resources to each virtual machine. It 
usually exists at the virtual machine monitor (VMM), which is 
a software layer where it virtualizes many of the resources of 
the physical host machine. In order for the VMM to handle the 
task, the resources such as the CPU, network device, I/O 
devices, and physical memory need to be virtualized. 
Additionally, there are still many challenges in order to fairly 

schedule these devices. For example, Virtual Box [18]’s VM 
scheduling algorithm basically depends on the host machine’s 
thread scheduling mechanism, where it gives the impression of 
distributing the resource fairly to the VM until the VM is dead. 
However, with some portion of accuracy, it is not quite true. 
On the other hand, the scheduling algorithms, such as Xen’s 
Credit Scheduler [8] and Ongaro et al. [14], have been taken 
to distribute the resources fairly to the CPU and the I/O 
devices. These works focused on how to schedule the resource 
in order to distribute the resource into n number of VMs. The 
advantage of these algorithms is that it can almost distribute 
and share the physical resource of the host machine almost 
equally amongst the virtual machines. However, the question 
of how to provide a service differentiation according to a QoS 
specification is still unclear.  
The main objective of this work is to implement a scheduling 
algorithm in order to realize service differentiation by 
coordinating the progress of multiple VMs according to a 
given QoS specification. For example, if VM1 has been 
assigned to work for 30% of CPU usage then it is mandatorily 
use 30% CPU usage as well as the other VM use the rest of 
the CPU usage, 70%. 

III. DESIGN AND IMPLEMENTATION 
In this section, we describe the internal network 

virtualization framework for virtualizing network devices, and 
the scheduling scheme of providing the service differentiation. 

A. Architecture 
In order to virtualize network devices, we chose a virtual 

machine (VM) approach based on the Virtual Box OSE 3.16 
SDK[17]. The Virtual Box OSE is a open source software 
developed by Oracle. Each VM is considered as an EMT, 
Emulation thread, when the host machine schedules the 
threads. Unlike the Xen’s Credit Scheduler [8], Virtual Box 
does not have a customary scheduler where it schedules 
effectively amongst the VMs. However, since the Virtual Box 
SDK 3.16 [17] provides interfaces to interact with the VMM 
and virtual device to control the VMs that run concurrently, 
we implement a scheduling scheme for implementing service 
differentiation. Figure 2 presents the architecture for the 
proposed network virtualization framework with the 
differentiated scheduling scheme. 

B. Scheduling Scheme for Service Differentiation 
In order to realize the service differentiation in scheduling 

scheme for the virtualized network devices, we chose two 
basic building blocks. The first one is the leaky bucket 
controller, which has been used in packet switched networks 
and the telecommunications networks in order to regulate the 
data transmission with the credit-generating rate 1  and the 
burstiness[11]. In our proposed scheduling scheme, the 
controller generates the credits according to the QoS 
specification. The other one is time-slot based resource 
allocator, with which we can decide the basic time allocation 
unit instead of using infinitesimal time unit. With these two 
schemes, we designed a scheduling scheme for providing 

                                                           
1 We adopted the concept of credit to assign CPU resource to each VM. 
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service differentiation for virtualized network devices. The 
scheduler is presented in Figure 3. 

 
Figure 2.The architecture for the proposed network virtualization. 

Once the system starts, the scheduler is periodically 
executed to produce credits via the leaky-bucket controller and 
assign the credits to each VM. For example, if there are two 
VMs and the ratio of CPU usage is given with 65:35 as the 
QoS specification for two VMs, VM1 should be assigned with 
use the resource usage of 65% and VM2 should acquire 35% 
of resource usage. Based on this ratio, the scheduler assigns 
the credits to each designated VM. Once every VM acquires 
its own credits, the scheduler assigns the time slot to it. In 
order to distribute the time slot to the VMs, we used the 
following equation: 

                                  (1)
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Each VM is basically inserted into a scheduling queue, and 
then it is scheduled in a round robin way. If the credits 
allocated to a VM are used up, then the VM should wait till 
the scheduler assigns additional credits to it. Otherwise, the 
VM runs during the time slot, and then, it is reinserted to the 
queue after the time slot is expired.  

procedure scheduler() 
 
assign workload () according to a QoS; 
struct cpu_reservation_schedule q; 
 
while(system is running) { 
compute all of the credits for all ; for i=0 to all VM 
 compute the schedule for  with (1); 

insert  to q(ω); 
update time(); 
for ω =0 to sizeof(q) 

if q (ω)= .   
run  for one time slot 
pause rest of the VM within the q(ω) 

 else 
decrement credit of the rest of  

the VM within the q(ω); 
update time(); 

} 
Figure 3. The deterministic scheduling algorithm. 

 
Figure 4. The testbed for performance evaluation study. 

IV. PERFORMANCE EVALUATION 
In this section, we present the results of performance 

evaluation, which has been done with some application level 
benchmarks in the real testbed, in order to investigate the 
performance of the proposed network virtualization 
framework for providing service differentiation for virtualized 
network devices 

All the empirical experiment have been conducted on a 
3.06GHz Intel Core2 Duo with 3MB of L2 cache, 4GB of 
RAM, and 10/100/1000BASE-T Gigabit Ethernet card. The 
operating system is Ubuntu 10.04 and the guest OS for the 
VMs are Ubuntu 9.10. As aforementioned, the Virtual Box 
OSE 3.16 is employed as the VMM. To generate the UDP and 
the TCP traffic, we employed the iperf [10] utility, which is 
supposed to constantly generate packets from the VM to the 
server, and we also used ping flood to generate ICMP traffic. 
The testbed for this study is in Figure 4, where three VMs are 
resident at one physical machine and each VM communicates 
with its corresponding real server over the network. 

As for the schedulable resource, we used the CPU usage 
under the assumption that the time amount of using network 
devices is proportional to that amount of using CPU. As for 
the performance metrics, we use three metrics, the network 
bandwidth (transmission rate), inter-packet delay and CPU 
usage to verify if the proposed scheduling scheme can achieve 
the service differentiation according to the QoS specification. 
Note that we selectively present the empirical results in terms 
of network bandwidth and inter-packet delay due to the space 
limit. Finally, we have conducted two empirical evaluation 
study sets: the one is when we activated two virtual machines, 
and the other is when we used three virtual machines.  

A. With Two Virtual Machines 
Firstly, we conducted an empirical study with two virtual 
machines, and we employed UDP, TCP, ICMP traffic to 
verify if the differentiation is achieved. 

In the case of UDP traffic: We have tested in two scenarios: 
the ratio of CPU usage between VM1 and VM2 is 50:50 (%), 
and the ratio is 60:40. Figure 5 shows the result of the first 
case, whereas Figure 6 shows the other case.  

As for the results in Figure 5, the average bandwidth of 
each VM was very similar to each other and it is consistent 
over time. In specific, the average bandwidth of VM1 is 46.90 
Mbits/sec whereas the average of VM2 is 46.95 Mbits/sec. As 
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for the results in Figure 6, we can observe that the average 
bandwidth of VM1 is 55.41 Mbits/sec and average bandwidth 
of VM2 is 38.29 Mbits/sec, which indicates that VM1 used 
about 60% of total network bandwidth whereas the VM2 used 
nearly 40% of the bandwidth.  

Additionally, we investigate the impact of the 
differentiated scheduling on the inter-packet delay. Figure 7 
presents the fluctuation of inter-packet delays that we 
observed from the original Virtual Box system (without any 
change). Specifically, the average delay is 0.303ms and its 
standard deviation is 0.0539ms for VM1, and those values for 
VM2 are 0.327ms and 0.0593ms, respectively. However, when 
we used the proposed differentiated scheduling scheme with 
ratio of 50:50, we could observe stable and fair dynamics of 
inter-packet delays which is presented in Figure 8. In 
particular, as for VM1, the average delay and standard 
deviation are 0.132ms and 0.0159ms, respectively, and, as for 
VM2, those values are 0.131ms and 0.0167ms. 

 
Figure 5. Comparison of network bandwidth when the ratio of using network 
bandwidth between VM1 and VM2 is 50: 50 and UDP traffic is employed. 

 
Figure 6. Comparison of network bandwidth when the ratio of using network 
bandwidth between VM1 and VM2 is 60: 40 and UDP traffic is employed. 

 
Figure 7. The fluctuation of inter-packet delays that are measured with the 
original Virtual Box when two VM are activated and UDP traffic is used. 

In the case of TCP traffic: When we used TCP traffic, we 
made a similar observation. Figure 9 compares two network 
bandwidths when the ratio of network bandwidth usage 
between two VMs is 60:40. From the figure, we observed that 
the required differentiation is successfully achieved; 
specifically, the average of VM1 is 52.85 Mbits/sec and VM2 
is 33.72 Mbits/sec. 

In the case of ping (ICMP) traffic: We have used the ping 
flood to verify if the proposed service differentiation is still 
effective in ICMP traffic. The ratio between VM1 and VM2 
for the QoS specification is set to 50:50. Figure 10 compares 
two network throughputs each of which is used by VM1 and 
VM2, respectively. The reported average bandwidth of VM1 
is 20.05 Mbits/sec, and that of VM2 is 20.26 Mbits/sec. 

 
Figure 8. The stable fluctuation of inter-packet delays that are measured under 
the proposed differentiated scheduling scheme when the ratio of network 
bandwidth usage between VM1 and VM2 is 50:50 and UDP traffic is used.  

 
Figure 9. Comparison of network bandwidth when the ratio of using network 
resources between VM1 and VM2 is 60:40 and TCP traffic is employed. 

 
Figure 10. Comparison of network bandwidth when the ratio of using network 
resources between VM1 and VM2 is 50: 50 and ICMP traffic (generated by 
ping traffic) is employed. 
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Figure 11. Comparison of three network bandwidths when the ratio among 
VM1, VM2 and VM3 is 50:30:20 and UDP traffic is employed. 

 
Figure 12. Comparison of two network bandwidth when the ratio between 
VM1 and VM2 is changed from 50:50 to 60:40 and TCP traffic is employed. 

B. With Three Virtual Machines 
As the second empirical study, we used three VMs in order to 
check whether or not the differentiated scheduling scheme is 
immune to the number of VMs. Figure 11 compares three 
network bandwidth usages when we use UDP traffic and the 
ratio for the VMs is set to 50:30:20. We made similar 
observations to previous empirical studies: the service 
differentiation is successfully achieved among VMs. 

C. Dynamic Service Differentiation 
As the last empirical study, we used a dynamic QoS scenario 
where the ratio betwen two VMs is changed from 50:50 to 
40:60. The results are presented in Figure 12. Even though the 
ratio is changed, the service differentiation that is supported 
by the proposed scheduling scheme for the virtualized network 
devices is not affected by the change. 

V. CONCLUSION 
In this paper, we proposed an internal network 

virtualization framework based on Virtual Box, and also we 
built up a scheduling scheme for providing service 
differentiation among VMs. We specifically presented the 
proposed architecture for virtualizing network devices and 
scheduling those devices according to QoS specifications. 
Then we have demonstrated that the service differentiation can 
be successfully achieved through both the proposed 
virtualization framework and the differentiated scheduling 
scheme, regardless of network traffic, the number of VMs, or 
dynamic change of QoS specification. Note that the proposed 
scheduling scheme can cooperate with any framework that 
supports Virtual Box without the modification. 

In the future work, we would like to devise various 
scheduling resources that can be used elaborately to schedule 
the virtualized network devices in the proposed framework. 
We also plan to examine the effect of the proposed scheduling 
scheme on real multimedia traffic. The study corroborates the 
effectiveness of the proposed virtualization framework for 
network devices. 
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