
A Way of Eliminating Errors When Using Bloom Filters

for Routing in Computer Networks

Gökçe Çaylak Kayaturan ∗, Alexei Vernitski †

Department of Mathematical Sciences,
University of Essex

Colchester, UK
Email: ∗gcayla@essex.ac.uk, †asvern@essex.ac.uk

Abstract—A Bloom filter is a data type for storing sets. It
can be considered as a data compression technique, but its more
important feature is an extremely fast access to stored data. This
is why it can be useful when calculation needs to be performed
very quickly, for example, in an application to routing messages
in a computer network. A well-known shortcoming of a Bloom
filter are errors in the stored data. We present a way of labelling
links in a computer network which prevents errors in Bloom
filters in some routing scenarios and, therefore, results in a more
efficient use of network resources.

Keywords—Bloom filter; computer network; routing.

I. INTRODUCTION

A Bloom filter is a data type for storing sets. Its great
advantages are space efficiency (that is, the space used is
very small) and time efficiency (that is, accessing the stored
data is extremely fast). This is why using Bloom filters
has been suggested for a number of applications. A Bloom
filter is probabilistic in the sense that it involves the use of
pseudorandom hashes and, therefore, comes with a non-zero
probability of errors called false positives [1]. This is why a
general theme in the studies of Bloom filters is reducing the
number of false positives.

Some applications of Bloom filters [2][3][4][5] to network
problems, especially data mining, reducing data traffic and
security of data transmission between parties, motivate us
to introduce a new kind of encoding method for the items
of the set represented by a Bloom filter. A wide range of
research of network applications of Bloom filters was also
presented in [6] and [7]. The study [8] proposes a Bloom filter
protocol to minimize the memory for the storage of summary
caches in order to reduce the web traffic. One variant of a
Bloom filter called compressed Bloom filter [9] also focuses
on decreasing the size of the network messages transmitted.
For less computational requirements a path architecture has
been established in [10] to increase the security of network
traffic flow via Bloom filter. Secure transmission of messages
is addressed in the studies of cryptographic Bloom filters [11]
introducing a coding method for transmitting large data using
Bloom filters. Sharing information between parties via grid
models was proposed by [12] and [13].

The model we consider is a rectangular-grid computer
network with messages forwarded between computers within
it. Similar models were considered in [12][14]. We remove
randomness from Bloom filters by constructing an explicit

method of encoding links in the network. Our approach makes
the use of Bloom filters more secure as well as optimizes the
size of data to reduce the network traffic. The main advantage
of our coding system is that it we encode sets using Bloom
filters without introducing any errors at all.

This paper is organised with seven sections in total. In
Section 2 the general definition of a standard Bloom filter
is given, and optimal parameters are defined. In Section
3 we introduce a new encoding technique for edges in a
rectangular grid network. In Section 4 we explain how our
encoding method restricts and controls the number of 1s of
Bloom filter. In Section 5 we prove that there are no false
positives. In Section 6 we compare our encoding system with
the performance of the standard Bloom filter. Section 7 is the
conclusion.

II. STANDARD BLOOM FILTERS

A set S with n elements is represented by a binary array
of m bits. In order to make this possible, each item which
potentially can be an element of S is represented by an m
bit array in which k bits are set to 1. The positions of these
bits are chosen using pseudorandom hashes. All other bits are
set to zero. We shall refer to these arrays as Bloom filters
of the items. The Bloom filter of a set S is constructed by
applying the bitwise OR operation to all the Bloom filters
of the elements of S. Note that binary OR operation takes
two bits as inputs and produces a bit 1 if at least one of the
inputs is 1, or produces a bit 0 when all inputs are 0. This
compression of the data of a set shows that the Bloom filter
has space efficiency. After the Bloom filter of a set S has
been constructed, one can query whether an item x belongs
to the set S or not by comparing the Bloom filter of the
set with the Bloom filter of x in all bit positions. If at one
of these positions the Bloom filter of x is greater than the
corresponding positions of the Bloom filter of S, then we
conclude that the tested item is definitely not in the set S.
However, when the tested item is less than or equal to the
Bloom filter in all bit positions, then this item probably is in
the set S. Some of these items, called ‘false positives’, are
seemingly in the set S but are not really in the set. Namely,
there is a probability that an item x 6∈ S might be recognised
by the Bloom filter to be in the set S, and then it is called
‘false positive’. Even though some errors in the set occur,
presence of any element in the set is checked very quickly.
Hence comes the time efficiency of the Bloom filter.

52Copyright (c) IARIA, 2016. ISBN: 978-1-61208-450-3

ICN 2016 : The Fifteenth International Conference on Networks (includes SOFTNETWORKING 2016)

An approximate value of the probability of false positives
in a Bloom filter is usually expressed is a function which
depends on three parameters k,m, n that are the number of
1s of items of the set S, length of these items and number of
items of the set, respectively. The study of Bloom [1] shows
that the probability of an item being a false positive is as given
in the approximate formula (1), which is obtained by a simple
probability argument.(

1− (1− 1

m
)kn

)k

≈
(
1− e

−kn
m

)k

(1)

The probability of being a false positive was expressed in
other ways by [6][8][9][15]. The smallest probability of a false
positive is reached when k = ln 2 × m

n , as can be seen by
taking the derivative of (1). In theory, the smallest probability
may be obtained when k is exactly ln 2 × m

n , but in practice
k must be an integer.

III. ENCODING PATHS IN A RECTANGULAR GRID

The model we are considering is a computer network having
a shape of a rectangular grid of size M × N , that is, M
links horizontally in each row and N links vertically in each
column. We assume that there is a computer at each node of
the grid. We assume that from time to time a computer in the
network may need to send a message to another computer in
the network; then the sender computer encloses a header with
the message, which describes exactly what path the message
must follow. For this purpose, each edge is allocated its own
Bloom filter in advance, and the path is represented as the set
of its edges, that is, the Bloom filter of the path is the bitwise
OR of the Bloom filters of the edges constitution the path. We
assume that only shortest paths in the grid are used to deliver
messages between the computers.
Lemma 1. A directed shorthest path between two distinct
vertices in a rectangular grid consists of directed edges with
at most two different directions.

Proof: Consider an imaginary straight line between two
distinct vertices in a rectangular grid. According to Euclid
geometry this straight line is the shortest distance between
two given vertices. But the path consists of the edges between
the vertices. This imaginary line can be best approximated by
directed edges pointing in only two different directions, and
hence the shortest path includes only such edges.

We introduce two systems of coordinates for the grid: the
one starting from the bottom-left corner and the second starting
from the top-left corner of the grid. Accordingly, we introduce
two notations for each vertex, with the letter u in the former
system of coordinates and with the letter v in the latter.

Each edge is represented by a Bloom filter with the length
m = 4 × (M + N) bits. The Bloom filter consists of two
equal length parts, which correspond to the two systems of
coordinates. The vertex at the bottom left corner of the grid
is denoted by u(0,0) and is the origin of the x/y coordinate
system, with the coordinates of the vertices increasing in the
direction of north-east. The point v(0,0), the origin of the other
x/y coordinate system, is the vertex at the top left corner of the
grid, and the coordinates of vertices increase in the direction

1000

0100

0010 0001

Figure 1. The allocation of the first halves of the Bloom filters of the edges
in each cell.

of south-east.
Encoding an edge is based on the coordinates of the edges

incidental with it and on the horizontal or vertical orientation
of the edge in the grid. That is, when an edge is horizontal, the
first and the second halves of the Bloom filter of the edge will
be based on the vertex u(i,j), otherwise known as v(i,N−j),
that is the left endpoint of the encoded edge.

However, if an edge is vertical, the vertices to encode it
will be u(i,j), which is on bottom endpoint of the edge,
and v(i,N−j−1), which is top endpoint of the same edge.
Predictably, the first half of the Bloom filter of a vertical edge
will be specified with the vertex u(i,j) and the second half will
be constructed with v(i,N−j−1).

It is useful to imagine each half of the Bloom filter encoding
an edge as a sequence of two-bit long blocks. There are 2(M+
N) two-bit blocks in total in the Bloom filter, since each half
of the encoded edges has (M +N) blocks. Exactly one block
of each half contains 1, and it is either 01 or 10 (as described
further). All other blocks are 00. To encode a vertical edge, the
bit 1 will be placed in the first positions of both (i+ j +1)th
and (M + N + i + N − j − 1 + 1)th blocks in the first and
the second half of the Bloom filter of the edge, respectively.
To encode a horizontal edge, the bit 1 is placed in the second
position in (i + j + 1)th and (M + N + i + N − j + 1)th
blocks in the first and the second halves of Bloom filter of
edge, respectively.

Let us look at an example. The first halves of the Bloom
filters of the edges of a 2× 2 grid are presented in Figure 1,
and the second halves of their Bloom filters are presented in
Figure 2. Consider every cell of both Figure 1 and Figure 2 as
a rectangular grid with size 1× 1. A horizontal edge of a cell
is represented with the points u(0,0) and v(0,1), which are the
left endpoint of the edge, in a rectangular grid with size 1×1.
Then the block 01 will be placed in the 0 + 0 + 1 = 1st and
1 + 1 + 0 + 1 + 1 = 4th block positions among 2(1 + 1) = 4
blocks. Note that the length of the Bloom filters of edges is
4(1 + 1) = 8 bits. So the Bloom filter of this horizontal edge
will look like 01000001. Besides, a vertical edge is represented
with the points u(0,0) and v(0,0), which are the bottom and top
endpoints of the vertical edge, respectively, in the grid with
size 1×1. The block 10 will be situated in the 0+0+1 = 1st
and 1+1+0+0+1 = 3th block positions. The Bloom filter

53Copyright (c) IARIA, 2016. ISBN: 978-1-61208-450-3

ICN 2016 : The Fifteenth International Conference on Networks (includes SOFTNETWORKING 2016)

1000 0100

0010

0001

Figure 2. The allocation of the second halves of the Bloom filters of the
edges in each cell.

of the this vertical edge will be as 10001000.

IV. AN ANALYSIS OF BLOOM FILTERS OF PATHS

A. Positions of 1s in the Bloom filters

All possible shortest paths consist of n ≥ 1 edges lying
between two distinct vertices continuously. All Bloom filters
of edges include two 1s and the Bloom filter of a path is
obtained by applying OR operation to the encoded adjacent
edges lying on the path together.
Lemma 2. Consider an undirected path whose direction it
towards north-east (or, equivalently, south-west). Then the first
half of the Bloom filter of the path contains a consecutive
subsequence of blocks having the form 01 and 10.

Likewise, if we consider an undirected path whose direc-
tion it towards south-east (or, equivalently, north-west), then
the second half of the Bloom filter of the path contains a
consecutive subsequence of blocks having the form 01 and
10.

Proof: This is because the coordinates of vertices u of the
path edges are increasing towards north-east and the blocks in
the first halves of the Bloom filters of the edges are specified
by the points of u. Likewise, if we consider the second halves
of Bloom filters of edges of a path directed towards south-east,
the coordinates of vertices v increase in the same way.

One can observe that some blocks in the second half of the
Bloom filter of a path going north-east contain two bits 1 at
the same time. Similarly, the first half of the Bloom filter of
a paths going south-east might include some blocks 11. If all
the edges of a specific path are turned in one direction (north
or south or west or east), then all blocks which include one bit
1 in either half of the Bloom filter of the path come after each
other consecutively without an interruption of a block such as
00 or 11.

B. The number of 1s in the Bloom filters

In our encoding the number of 1s in the Bloom filter of each
encoded edge is 2 and they are not placed randomly but depend
on the position of the edge. The Bloom filters of shortest paths
in a rectangular grid are obtained without randomness being
involved, hence, the number of 1s in these Bloom filters is
restricted.

Lemma 3. The number of 1s of the Bloom filter of the paths
in rectangular grid is not greater than 2n where the number
of edges of the path is n.

Proof: By the lemma 2, the blocks 10 or 01 constitute a
continuous sequence of blocks within the first or the second
half of the Bloom filter of a path. So, these blocks 10 or 01
represents the number of edges in the path and there are n
edges in total in a path. Hence, when the number of the bits 1
in one half of the Bloom filter of the path is n, the number of
bits 1 will be ≤ n in the other half of the Bloom filter. Any
half of Bloom filter of path does not necessarily have n 1s,
since the 1s in one half of the Bloom filter of a path might be
produced in the same positions by more than one edge. More
precisely, the path might contain the edges that are encoded
on the same block position with the same pair bits including
1. Therefore, the bits 1s of the Bloom filter of these paths are
≤ 2n.

We may note that if the edges of a path are directed in only
one way, then both halves of the Bloom filter of the path will
contain n 1s.

V. AVOIDING FALSE POSITIVES

Theorem 4. All Bloom filters of edges are unique in a
rectangular grid.

Proof: All edges of a grid of size M×N are encoded by
2(M+N) blocks and each block consists of two bits. Suppose
two edges e and f are distinct and both are horizontal. So, the
1s of these edges will take place in second bit positions in
corresponding blocks.

The vertices of the horizontal edge e will be u(i,j) and
v(i,N−j) and the vertices of the horizontal edge f will be
given with u(k,l) and v(k,N−l), when we accept the left
top and bottom corners of the grid as the centres of two
different x/y coordinate systems. Both halves of horizontal
edges are encoded with the left endpoints of the edges. The
blocks containing 1s will be placed in (i + j + 1)th and
(M +N + i+N − j+1)th block positions of the Bloom filter
of edge e. Similarly, (k+l+1)th and (M+N+k+N−l+1)th
blocks of the Bloom filter of edge f contain 1s.

Assume the edges f and e are represented by the same
Bloom filter. That means both i + j + 1 = k + l + 1 and
M +N + i+N − j + 1 =M +N + k+N − l+ 1 occur at
the same time.

i+ j = k + l (2)
i− j = k − l (3)

Then, the equations i = k and j = l are obtained. This
contradicts with the assumption that the edges e and f are
distinct.

If we suppose that both edges e and f are vertical, then both
edges will contain 1s on the first positions of the corresponding
blocks. Assume these two edges are distinct and encoded by
the same Bloom filter. Then the same equations concerning
the coordinates of the vertices u(i,j), v(i,N−j−1) and u(k,l),
v(k,N−l−1) as above can be constructed and obviously the

54Copyright (c) IARIA, 2016. ISBN: 978-1-61208-450-3

ICN 2016 : The Fifteenth International Conference on Networks (includes SOFTNETWORKING 2016)

same contradiction which is found for the edges lied hori-
zontally will be obtained.

Now we suppose that one of the distinct edges is horizontal
and the other is vertical. Namely, when e is vertical, then the
bit 1 of the Bloom filter of e will only appear in the first
positions of some blocks. Yet the bit 1 of the Bloom filter of
the edge f will appear in the second position of some blocks,
since f is horizontal. Hence even if the blocks including 1s of
these two distinct edges are in the same block positions, these
1s are not placed on the same positions.

As a result of considering these three cases, we conclude
that all edges of a grid are encoded uniquely in a given size
grid.
Theorem 5. The Bloom filter of a path consisting of n ≥ 1
edges in a rectangular grid model does not yield any false
positives when links adjacent to the path are queried.

Proof: In the proof we shall concentrate on one fixed
node of a path and demonstrate that no more than one link
will be recognised by its Bloom filter as the next link of the
path.

Consider the Bloom filter of a shortest path in a rectangular
M×N grid. Suppose a message travelling along this path has
arrived to some node via an edge e. It can continue travelling
via any of the next three edges adjacent to e at one end, and
the computer at the node needs to decide which one of them
to choose. We shall see that the Bloom filter of the path β(P)
including edge e does not yield any false positives, that is,
only one of these three edges is recognised.

An edge e encoded with 4(M + N) binary bits is rep-
resented by β(e) that is divided into two bits length blocks
called β1(e), β2(e), . . . , β2(M+N)(e). The two individual bits
constituting a block βp(e) will be denoted by β1

p(e) and β2
p(e).

Note that the Bloom filters of the edges are divided into two
equal parts and the positions of the blocks containing 1s of
all Bloom filters of edges are specified with the coordinates u
for the first half and coordinates v for the second half. When
an edge is horizontal, the bit 1 is in the second positions of
certain two blocks in the first and the second half of the Bloom
filter, and the remaining blocks are all 00. The positions of 1s
are determined by the coordinates u(i,j) and v(i,N−j) and are
at the positions β2

(i+j+1)(e) and β2
(M+N+i+N−j+1)(e), where

(i+j+1) and (M+N+i+N−j+1) represent the positions
of the blocks. Note that we will use k instead of (i+ j + 1)
and l instead of (M +N + i+N − j+1) to make the indices
simpler.

If the edge e is vertical, then 1s of the blocks will be in the
first positions of the corresponding blocks. These bits will be
at positions β1

k(e) and β1
l−1(e), since the endpoint vertices of

a vertical edge e are v(i,j) and u(i,N−j−1).
Let the three edges adjacent to the edge e at one end be

f, g and h (as shown on Figure 3). We already know that
β(e) 6= β(f) 6= β(g) 6= β(h). Now, we will look for the
false positives of the Bloom filters of the paths for these four
possible directions.

Firstly, we will suppose that the edge e is on the path where
the message moves east and the represented vertices of e will
be u(i,j) and v(i,N−j) (see Figure 3).

u(i+1,j−1)

v(i+1,N−j)

u(i,j)
v(i,N−j)

e f

g

h

u(i+1,j)
v(i+1,N−j)

u(i+1,j)

v(i+1,N−j−1)

Figure 3. The edge e is supposed to lie on a path which is on the way of
east and the next three adjacent edges of e.

The next edge the the message can follow after the edge
e can be the one to the east, north or south, that is, the
edges f, g, h, which are represented by the vertices u(i+1,j)

and v(i+1,N−j), u(i+1,j) and v(i+1,N−j−1), u(i+1,j−1) and
v(i+1,N−j), respectively. By the encoding method, we add the
values of the points of represented vertices and 1 together to
find the block positions of the pairs including 1s of the edges.
So, the bits β2

k(e) and β2
l (e) will be 1. As a result of the

encoding method, the bits β2
(k+1)(f) and β2

(l+1)(f), β
1
(k+1)(g)

and β1
(l)(g), β

1
(k)(h) and β1

(l+1)(h) will be 1.
Note that since the edge e lies on the path, the bits of

corresponding blocks of the Bloom filter of the path are
β2
(k)(P) = 1 and β2

l (P) = 1.
The proof proceeds by considering several cases: that f is

on the path, that g is on the path and that h is on the path.
If both β2

(k+1)(f) ≤ β
2
(k+1)(P) and β2

(l+1)(f) ≤ β
2
(l+1)(P)

occur at the same time, then we say whether the path includes
the edge f or f is a false positive of the path. But the bit of
the path β1

(k+1)(P) is 0. Since if the path goes north-east, then
the first half of the Bloom filter of path will contain the blocks
which consist of one 0 and one 1 consecutively (see lemma
2). That means β1

(k+1)(g) = 1 > β1
(k+1)(P) = 0. Namely,

the Bloom filter of the path is not greater than or equal to
the Bloom filter of the edge g in all bit positions. As a result,
when the Bloom filter of the edge f is smaller than or equal
to the Bloom filter of the path P in all bits positions, more
precisely β(f) ≤ β(P), then the edge g is definitely not on
the path.

When both Bloom filters of e and f are smaller than or equal
to the Bloom filter of path in all bits positions at the same
time, then the two consecutive blocks βk(P)β(k+1)(P) of the
Bloom filter of the path will look like 0101. This is because the
coordinates of the vertices used to produce the blocks includ-
ing the bit 1 in the first half of the Bloom filter are increasing
towards north-east, and the edges e and f are followed along
the path towards the east and north. Under these circumstances,
when the edge e lies on the path and β(f) ≤ β(P), then
β1
(k)(P) = 0 . But β1

(k)(h) = 1 > β1
(k)(P) = 0, then we

conclude that the edge h is not on path. The Bloom filter of

55Copyright (c) IARIA, 2016. ISBN: 978-1-61208-450-3

ICN 2016 : The Fifteenth International Conference on Networks (includes SOFTNETWORKING 2016)

edge h is not smaller than or equal to the Bloom filter of the
path in all bits positions.

Now, let us consider another case, if β(g) ≤ β(P) in all
bits positions, then we say the edge g lies on the path after the
edge e or a false positive of the Bloom filter of the path. Again,
when both Bloom filters of e and g are smaller than or equal
to the Bloom filter of the path in all bits positions and assume
the direction of travel towards the east and north, which are
the ways that make the blocks including one 1 and one 0 in the
first part of the Bloom filter of the path to lie consecutively. So
β2
(k+1)(P) = 0, but we obtain that β2

(k+1)(f) > β2
(k+1)(P),

and hence the edge f is not on the path. Subsequently, by
comparing the first bit of the (k)th block in the Bloom filter
of the path and the Bloom filter of the edge h, we will conclude
that h is definitely not an edge of the path.

Hence, both β(e) ≤ β(P) and β(g) ≤ β(P) occur at the
same time, then both β(f) and β(h) are not smaller than or
equal to the Bloom filter in all bits positions.

Finally, if both β(e) ≤ β(P) and β(h) ≤ β(P) in all
bits positions, then the second part of the Bloom filter of
the path will contain the blocks consisting of one 0 and
one 1, consecutively. The coordinates of vertices v increase
towards south-east and e and h can be travelled towards
east and south, respectively. But β2

(l+1)(f) > β2
(l+1)(P) and

β1
(l)(g) > β1

(l)(P). Hence, when β(h) ≤ β(P), the edges f
and g are definitely not on the path.

As a result, the edge e is followed by exactly one of the
adjacent edges f or g or h. As shown above, when e lies on
the path and any adjacent edges of e is smaller than or equal
to the Bloom filter in all bits positions at the same time, then
the other adjacent edges are definitely not on the path.

We considered the situation when the edge e has been
travelled by the message eastwards. When the edge e is
oriented some other way, so that message travels along it north
or west or south, the same argument as above can be applied.

VI. THE ADVANTAGES OF OUR APPROACH

The standard Bloom filter is defined as a randomized
data structure. If our model included randomness, we would
certainly get some false positives. However, we use the stan-
dard Bloom filter approach (indeed, we use disjunction and
comparison of binary arrays precisely in the way as it is
done, when the Bloom filters are used) without randomness.
The possible false positives of our use scenario are the edges
adjacent to a fixed path which the messages must follow. If
false positives existed, the messages would be sent along these
adjacent edges instead of following only the specified path.

If one position per edge was used in the Bloom filter (in
a naive attempt to avoid false positives), the length of the
Bloom filter would be 2MN + N + M , which is the total
number of the edges of M ×N sized grid. Yet the length of
bloom filter in our model is 4(M +N), which is better, since
4(M + N) < 2MN + N +M for the big values of M and
N .

In our model, the number of edges lying on a path takes its
maximum value with (M+N), when the two distinct vertices

are the two opposite corners of the rectangular grid. Therefore,
the number of edges on a path is ≤ (M+N). The length of all
encoded edges and the Bloom filter of any path is a constant
4(M +N).

Let us see how many false positives the standard Bloom
filter would produce if we used it to represent sets of this
size. The formula for the optimal value of the number of the
bits 1 of an item is obtained as k = ln 2 × m

n , when the
probability of the false positives is minimized, [9]. The ratio
of the length of the Bloom filter and the number of edges of
the path of our model is m

n = 4(M+N)
(M+N) = 4, where n takes

its maximum value. Hence, the number of 1 of an edge is
k = ln 2× 4 ≈ 2, 772. Hence, in order to obtain the minimal
probability of the false positive of the Bloom filter of the path,
the number of 1 of the all Bloom filters of the edges can be
chosen to be k = 2, like in our model.

When the number of edges on the path is maximal, then the
probability of false positives of the Bloom filter of the path
would have been obtained as (4).(

1− e
−2(M+N)
4(M+N)

)2

≈ 0, 1548 (4)

Of course, for some paths the number of edges on the path is
less than M+N . For such shorter paths, the ratio n

m decreases.
Hence, on average the probability of false positives would be
less than the equation (4). Hence, if the bits 1 would have
taken place in the Bloom filter of the edges randomly, the
probability of having no false positives in a path would be
approximately 0.852(M+N), where 2(M +N) is the number
of adjacent edges of the shortest path with maximum number
of edges in the grid.

VII. CONCLUSION

This model uses active knowledge about the particular
application of Bloom filters and combines space efficiency
and time efficiency with one hundred percent accuracy by
intelligently allocating Bloom filters to individual items. We
shall continue this research by considering other network
topologies.

REFERENCES

[1] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, 1970, pp. 422–426.

[2] Y. Lu, B. Prabhakar, and F. Bonomi, “Perfect hashing for network ap-
plications,” in Information Theory, 2006 IEEE International Symposium
on. IEEE, 2006, pp. 2774–2778.

[3] C. E. Rothenberg, C. A. B. Macapuna, M. F. Magalhães, F. L. Verdi,
and A. Wiesmaier, “In-packet bloom filters: Design and networking
applications,” Computer Networks, vol. 55, no. 6, 2011, pp. 1364–1378.

[4] L. Carrea, A. Vernitski, and M. Reed, “Yes-no bloom filter: A way of
representing sets with fewer false positives for in-packet path encoding,”
2014, submitted for publication.

[5] X. Yang, A. Vernitski, and L. Carrea, “An approximate dynamic pro-
gramming approach for improving accuracy of lossy data compression
by bloom filters,” accepted, European Journal of Operational Research.

[6] A. Broder and M. Mitzenmacher, “Network applications of bloom filters:
A survey,” Internet mathematics, vol. 1, no. 4, 2004, pp. 485–509.

[7] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz, “Theory and practice
of bloom filters for distributed systems,” Communications Surveys &
Tutorials, IEEE, vol. 14, no. 1, 2012, pp. 131–155.

[8] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: a scal-
able wide-area web cache sharing protocol,” IEEE/ACM Transactions
on Networking (TON), vol. 8, no. 3, 2000, pp. 281–293.

56Copyright (c) IARIA, 2016. ISBN: 978-1-61208-450-3

ICN 2016 : The Fifteenth International Conference on Networks (includes SOFTNETWORKING 2016)

[9] M. Mitzenmacher, “Compressed bloom filters,” IEEE/ACM Transactions
on Networking (TON), vol. 10, no. 5, 2002, pp. 604–612.

[10] T. Wolf, “A credential-based data path architecture for assurable global
networking,” in Military Communications Conference, 2007. MILCOM
2007. IEEE. IEEE, 2007, pp. 1–7.

[11] M. Mitzenmacher and G. Varghese, “Biff (bloom filter) codes: Fast error
correction for large data sets,” in Information Theory Proceedings (ISIT),
2012 IEEE International Symposium on. IEEE, 2012, pp. 483–487.

[12] X. Li, L. Peng, and C. Zhang, “Application of bloom filter in grid in-
formation service,” in Multimedia Information Networking and Security
(MINES), 2010 International Conference on. IEEE, 2010, pp. 866–870.

[13] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman, “Grid infor-
mation services for distributed resource sharing,” in High Performance
Distributed Computing, 2001. Proceedings. 10th IEEE International
Symposium on. IEEE, 2001, pp. 181–194.

[14] A. Lindgren, A. Doria, and O. Schelén, “Probabilistic routing in inter-
mittently connected networks,” ACM SIGMOBILE mobile computing
and communications review, vol. 7, no. 3, 2003, pp. 19–20.

[15] J. K. Mullin, “A second look at bloom filters,” Communications of the
ACM, vol. 26, no. 8, 1983, pp. 570–571.

[16] L. Carrea, A. Vernitski, and M. Reed, “Optimized hash for network path
encoding with minimized false positives,” Computer networks, vol. 58,
2014, pp. 180–191.

57Copyright (c) IARIA, 2016. ISBN: 978-1-61208-450-3

ICN 2016 : The Fifteenth International Conference on Networks (includes SOFTNETWORKING 2016)

