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Florianópolis, Brazil
carlos.westphall@ufsc.br

Abstract—This paper proposes a flexible framework to im-
prove the quality of Virtual Machine’s placements, in Clouds. It
organises them by relocating the VMs based on the Multiple-
Objectives of the environment. These Objectives are represented
by Rules, Qualifiers, and Costs, which can be extended and
prioritised. Based on Evolutionary Searches, the framework
theoretically guarantees the adoption of a better set of Place-
ments. More specifically, it seeks the non-dominated solutions
(Pareto’s Dominance concept) and compares then considering the
implementation cost of the scenario and its benefits. In contrast to
existing solutions that address specific objectives, our framework
was devised to support many types of objectives and to be easily
extensible, which enables the implementation of new and generic
prioritised elements. Moreover, we conducted experiments using
data from a real Cloud environment and show the flexibility of
our approach and its scalability.

Keywords—Virtual Machine Placement; Cloud Computing;
Multi-Objective Optimisation.

I. INTRODUCTION

Although Cloud Computing (CC) can bring many benefits
to consumers and providers, Cloud’s mismanagement usually
accentuates problems related to waste of resources. For in-
stance, performance degradation due to noisy neighbours rise
of thermal hotspots on data centre and shortage of resources
due constant migrations [1][2].

Many approaches were proposed to mitigate this problem,
such as Simulation-Based, Policy-Based, Bin Packing and Evo-
lutionary Algorithms [3]-[5]. However, these proposals usually
focus on specific objectives, e.g., on decreasing the energy
consumption. This limitation hinders the adoption of these
approaches, since Cloud’s objectives, policies and priorities
vary, and these proposals cannot adapt to these needs.

To address this limitation some works, e.g., [6]-[8], con-
sider Virtual Machine Placement (VMP) problem as a multiple
objective (MO) optimisation problem, that, simultaneously,
tries to minimise the total resource wastage, power consump-
tion and thermal dissipation costs. This wider view enables
managers to consider other facets of VMP, such as internal
policies and Service Level Objectives (SLO).

Due to those many facets, to solve MOs conflicts and guar-
antee a fast convergence, proposals usually adopt Evolutionary
strategies that build non-dominated scenarios sets (using the
Pareto Dominance concept). In this case, a non-dominated
scenario is better in at least one objective and, at the same time,

not worse in any other objective, compared to a base scenario.
Despite the efficiency, this strategy stagnates in environments
with many objectives, i.e., possibly reaching a state where
none result is good enough for all objectives simultaneously.
Moreover, the selection of the best scenario is also a challenge
due the limited evaluation’s strategies, their execution time and
cost. Besides, none of the existing solutions consider, at the
same time, the important Cloud’s characteristics: SLO, SLA,
policies and costs.

Consequently, these aspects need to be represent and imple-
ment in a standard manner, a model to solve VMP problems.
Despite the fact of many works address this issue, none of them
aimed at comprehend agnostic-objective methods, focusing
in specific and limited objectives. Thus, to the best of our
knowledge, no suitable model meets our needs to represent
different types of evaluations, quantifiable and qualifiable.

Nonetheless, the VMP problem can be divided in sub-
issues, such as Provisioning, Organisation and Dynamic Al-
location of VMs. Even though, the environment objectives are
always the same, regardless which sub-issue are being solved.
However, the majority of the proposals treat them separately
and differently – in terms of objectives and strategies.

Considering these limitations, we designed an easily ex-
tensible framework to address the VMP organisation problem.
This framework adopts a flexible approach that enables the
assessment and comparison of a single placements to the whole
clusters, enabling evaluations with grater precision. Moreover,
it uses MO qualification functions to provide a placement to
new Virtual Machines (VMs) or select and relocate VMs to
non-dominated scenarios. After filtering the possible scenarios,
it chooses the best result regarding its benefits and implemen-
tation costs.

This framework takes advantage of constraints and SLAs
to reduce the computation cost, enabling a fast local-optimal
search. The main contributions of this framework are: (i)
the support to generic multiple objectives and (ii) objective
prioritisation. The rest of this paper is organised as follows:
Section II provides the background concepts and the related
works; Section III define the Cloud model; Section IV presents
the methods and their designs; Section V describes the frame-
work’s tests, implementation and results; Section VI concludes
the article addressing the future works and open issues.
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II. BACKGROUND AND RELATED WORKS

The first part of this section presents important concepts
used to discuss the related works in the second section.

A. Background
Extract and Relocate is an approach to select and migrate

VMs (one or more) and is employed to improve the overall
state of a cloud. The selection of VMs is commonly performed
using heuristics or triggers, which normally attempt to choose
the special VMs, according to some criteria, and migrate these.

The Pareto’s Dominance concept can be used to filter the
many possibilities of Relocation. The Pareto Set is a set of non-
dominated solutions, i.e., scenarios that are better in at least
one objective and, at the same time, not worse in any other ob-
jective compared to a base scenario [9]. Let S1 = (p1, ..., py)
and S2 = (q1, ..., qy) be two scenarios with y placements
evaluations, S1 is said to dominate S2 if pi ≥ qi for all
i = 1, ..., y and S1 6= S2. Figure 1 graphically represents this
evaluation considering two objectives. The scenarios marked
with a (?) are the non-dominated solutions and the (⊗) are
dominated by their successors.

In order to build the set of possible scenarios, the MO
Variable Neighbourhood Search [10] uses the concepts of
Solution Dominance to explore the neighbour possibilities.
Thus, instead of searching all possible scenarios, the approach
explores only the non-dominated ones, building a Pareto Set
with the dominant solutions found. However, exploring only
the non-dominated solutions restricts searching space. There-
fore, they vary the neighbourhoods restarting the search from
different random scenarios. The union of the Pareto’s Sets
forms the Pareto Front set, i.e., all the (?) in Figure 1.

Furthermore, the selection of a scenario from the Pareto
Front is not a deterministic choice, depending on the problem’s
nature and the applied model. There are a wide variety of
approaches that could be adopted for VMP, for instance, Zitzler
et al. [11] compared twenty-two generic assessments that could
be used in MOPs, such as number of fulfilled goals, distance
from base scenario and error ratio.

Despite of the variety, those indicators do not consider
the cost to implement a scenario, which is an important
decision aspect in VMP. Usually, the Costs are treated as a
consequence of energy consumption or as another assessment
to be minimised [5][12][13]. However, Cost is any commodity
that Cloud Providers are willing to spend in order to achieve
an amount of benefit. Its nature is a variable aspect in kind
– such as time, computational resources or money – and it
should be part of the decision process.
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Figure 1. Representation of dominance relation and Pareto Frontier

B. Related Works
Most of the works regarding VMP focus on specific issues,

such as a set of services [13], for network optimisation
[14][15] and energy consumption [4][16][17]. Such methods
have limited applicability and, therefore, are not considered in
this work.

Nevertheless, some proposals adopt approaches which
could be adapted and improved to manage generic MOs.
For instance, the following proposals adopt the Extract and
Relocate approach to solve their specific VMP problems.
Beloglazov et al. [4] proposes four heuristics to select a VM to
be extracted based on the VM’s load, the number of migrations,
growth potential and random choice. Then, relocate them using
a variation of Best Fit Decreasing algorithm (MBFD) to map
VMs into Physical Machines (PMs), seeking to reduce power
consumption. The Best Fit Decreasing (BFD) algorithm inserts
items, in bins, sorted in decreasing order of size. After, chooses
the bin that will provide the minimum empty space after the
item is inserted.

On the other hand, Xu et al. in [18], involves three
strategies to Extract VMs: (i) find the VM with the greatest
CPU Load and less memory, to reduce migration overhead (ii)
identify the VMs that are competing for scarce resources and
(iii) check the possibility to remove every VM and shut down
the PM. Then, the extracted VM is migrated to the PM which
provides the greatest utility increase. Despite the fact that they
consider different strategies during the extraction phase, their
method is still bounded and, consequently, limited to those
specific objectives.

Contrariwise, to avoid theses dependences and limitations,
our proposal aims to be flexible enough to enable the usage
of any kind of objective, strategy or affinity, by representing
them as Qualifiers. Then, our Framework uses those Qualifiers
to Provide placements to new VMs and Organize the Cloud.

Likewise, other works also propose frameworks to gener-
alise and/or facilitate the studies in this area. However, many
were still bounded to specific goals, e.g., [12]. Next, we discuss
some proposals, which are the exceptions.

The Snooze framework [19] proposes a dynamic hierar-
chical self-organising structure. It deploys agents in PMs,
which have a partial view of the system, in order to make
decisions about their own hosted VMs, such as migrate, resize,
start, suspend, resume, shut down and destroy them. In this
framework, objectives, triggers and scheduling are represented
as centralised open defined policies, submitted to the PM
agents, where they react according to the triggered events.
The fact of divide and distribute the decisions across the PMs,
induce the improvement of local scenarios, hoping to improve
the whole Cloud. Therefore, it lacks the improvement of the
Cloud as a single unit, i.e., lacks a holistic view.

The Cielo Framework [20], aims at aiding Cloud oper-
ators to adapt the resource allocation to applications to the
operational conditions in a Cloud. It adopts a limited set of
strategies to manage CPU allocation, Response Time, Power
consumption, workload distribution and Bandwidth allocation.
Then, it uses an Evolutionary Game Strategy to improve the
Cloud. Basically, it treats applications as Players, which can
play pre-defined strategies in their turn, to improve specific
aspects of themselves. However, it adopts placement changes
regardless of its effects across the other elements.
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III. CLOUD MODEL

In this section, we describe a Cloud model for VMP prob-
lems and its elements. These elements are the key components
of the proposed framework.

In Clouds, a Placement is defined as a possible relation
between a VM and a PM, guest and host respectively. A
Scenario, in its turn, is a set of placements, which defines
where each VM is placed on the Cloud, representing the real
state of the Cloud or a possible one.

As presented in Section I, real Cloud environments have
Multiple Objectives. In our model, MOs can be represented by
the following elements: Rules, Qualifiers, Priorities and Cost.

Rules define placement constraints, i.e., rules can forbid
VMs to be placed in PMs. They are divided into two types:
Rules Free of Context (RFC) and Rules Sensitive to the
Context (RSC). The context refers to a given scenario, which
is the context where the VMs are placed. RFC define whether
a given VM can be hosted by a given PM and RSC define
whether a given scenario is valid or not, i.e., RFC validates
placements and RSC validates scenarios. In order to illustrate
these rules, consider the following examples: (i – RSC) a VM
A should not be hosted in the same PM as a VM B, and
(ii – RFC) a VM A must be placed in a PM with a specific
architecture of processor.

Qualifiers are functions used to assess the quality of one or
more placements of a Scenario. These assessments will enable
the comparison and, consequently, selection of scenarios.

Priorities are applied to sort the qualifiers. They define
weights and preferences between them, avoiding conflicts.

Cost is a function that quantifies the implementation cost
between two scenarios, a root and a target scenario. Its values
disregard units and can vary from the number of migrations
to the required resource to implement the target scenario.
Differently from the Qualifiers, it is not limited to a range
of values and it depends of two scenarios to process a result.

This model was inspired by the model used in [21], which
is based on the Organisation Theory.

TABLE I. SYMBOLS USED IN THE CLOUD MODEL DESCRIPTION

Symbol Meaning
y Number of VMs
x Number of PMs
v VM id
h PM id
V Set of y VMs
H Set of x PMs

(Va, Hb) A placement
C Set of y VM Placements
rf Rule Free of Context (RFC)
rs Rule Sensible to Context (RSC)
Rf Set of RFC
Rs Set of RSC
q Qualifier Function
z Number of Qualifiers
Q Set of z Qualifiers
U Qualifier’s weights
i Cost Function
m Maximum Cost

A. Formal Model

To avoid ambiguity and to precisely specify the elements
involved in the MO driven Clouds, in this section we formally
define the model previously described. Table I presents the
symbols used in this section and their meanings.

Let y be the number of VMs and x be the number of
PMs in the Cloud. V is a set with y VMs v and H is
a set with x PMs h, as shown in (1). A Placement is a
relation between any two elements from V and H , such as
(va, hb), and a configuration C is a set with y placements,
{(va, hb)1, ..., (vb, hc)y}, representing a scenario.

In the formal model, RFC and RSC are represented by
two distinct sets of functions, Rf and Rs, which contains an
amount of f and s boolean functions each, respectively. Given
a Placement (va, hb), a function rf returns 1 for permitted
or 0 otherwise , as shown in (2). Given a Configuration C, a
function rs returns 1 for permitted or 0 otherwise, as in (3).

Qualifiers, instead, are presented by Q, which is a set with
z functions q, Q = {q1, ..., qz}. Each function q, given any
Configuration C, returns a vector with y qualifications i, one
for each placement in C, as given by (4). These qualifications
are mapped between zero and two, excluding zero, i.e., ]0, 2].
Zero is not included because a qualifier with this value is a
RSC, which forbids a scenario.

To sort the qualifiers, there is a vector U referring to a set
of weights, which are rational numbers equal or grater than
zero, that prioritise the Qualifiers, as in (5).

Finally, i refers to Cloud’s Cost Function, which given
any scenario (C), returns a rational value grater than zero,
related to the implementation Cost of the scenario C, as given
by (6). Still, exists a number m that defines the maximum
cost that the Managers are willing to spend.

V = {v1, ..., vy} (1)
H = {h1, ..., hx}

Rf = {rf1, ..., rff} (2)
rf((va, hb), {0 ∨ 1})

Rs = {rs1, ..., rss} (3)
rs(C, {0 ∨ 1})

q(C, {p1, ..., py}) ∧ (4)
∀p ∈]0, 2]

U = {u1, ..., uz} ∧ (5)
∀u ∈ (Q ≥ 0)

i(C, {p1, ..., py}) ∧ (6)
∀i ∈ (0 > Q > m)
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IV. FRAMEWORK DESIGN

This section describes the solutions proposed for VMP
problems. Initially, we describe the steps of the organisation
method, presenting also a use case. Then, we explain the
provisioning method, which also uses the previous method.
Finally, we discuss some aspects and peculiarities of our
approach.

Considering the presented Cloud model, VMP methods
must: (i) maximises the qualifier’s evaluations and (ii) minimise
the implementation cost. Our solution uses a recursive process,
which receives the current state of the Cloud (current scenario)
and seeks better scenarios by making migrations that increase
its evaluations.

A. The Organising Method
This section explains in details each step of the developed

methodology, while Figure 2 illustrates it.
Initiating: The method receives: (i) the current scenario,

i.e., a vector with the real placements of the Cloud, (ii) an
empty VM set to control recursions (ignoreVms) and (iii) a
boolean indicator to sign recursions (isMainRecursion), start-
ing as true. At the beginning, if all VMs were explored, it ends
the recursion selecting the current scenario.

Placements Evaluation: The first step evaluates the received
scenario and generate a VM’s rank according to its assess-
ments. Each Qualifier evaluates all placements, building an
evaluation matrix ESz,y . Then, each evaluation is raised to
the power of its respective qualifier’s weight. Afterwards, the
set is reduced to a vector Ey by multiplying all evaluations of
each VM. The reduction is represented by (7).

Ey ←
z∏

n=1

ESUn
n,y (7)

VM Rank Selection: This step is based on the Extraction
strategy and its heuristic selects the VM which: (i) has the
lowest evaluation and (ii) is not present in the ignoreV ms
set.

Generation of Non-Dominated Scenarios: The objective
of this step is to identify where the selected VM could be
migrated, and generate a scenario for each possibility, i.e., at
most x − 1 scenarios. During this step, the following filters
are applied: (i) the Rules (RFCs and RSCs, respectively), (ii)
Max Cost filter, checking if the Scenario’s cost is below the
maximum, and (iii) a Pareto filter, which excludes dominated
scenarios.

Search for new Scenarios: This step, based on the Neigh-
bourhood Search, starts a new recursion to explore each
Non-Dominated scenario found. However, to avoid loops the
following information is sent with it: (i) a boolean signing
false, meaning that is not the main recursion and (ii) a copy of
the ignoreVMs set (newIgnoreVMs) and added the lowest VM,
which was selected on the first step. The newIgnoreVMs is
used to avoid deadlocks during the Search.

Select Best Scenario: The goals of this step is to select the
scenario which offers the best Cost-Benefit, also considering
the current scenario among the recursion’s results.

To achieve the equilibrium between the implementation
cost and the qualifier’s evaluation, we propose the Cost-Benefit

method represented by (8). The benefit is defined as the
difference between the evaluations of the current scenario of
the Cloud (Real Scenario – RS) and a target scenario of the
Cloud (Possible Scenarios – PS). More specifically, is the sum
of the variations of each VM evaluation of RS and PS. Since
PS is a non-dominant solution, it is not possible to have a
negative variation. Then, the cost-benefit (cb) is calculated by
the division of the benefit with the result of the cost function.

cb =

∑y
n=1 PSn −RSn

i(PS)
(8)

Return Decision: Finally, this step decides either to con-
tinue the search or return the selected scenario. If it is not the
main recursion this step will return the best scenario, which
was selected. Otherwise, it will vary the Neighbourhood by
starting a new recursion with a non-empty set of VMs to
be ignored. In this case, it will add the lowest placement of
the selected scenario in the ignoreV ms set and starts a new
recursion using this scenario and this VM set. The result of
this recursion is the method’s output. Lines 14-19 of Alg. ??
show this step.

Input: Current Scenario

Placements Evaluation

VM Rank Selection

Generation of
Non-Dominated Scenarios

Search for New Scenarios

Select Best Scenario

Return Decision

Output: Suggested Scenario

Figure 2. Flow Chart of the Organising Method

B. Provisioning for New VMs
The objective of this feature is to choose the best placement

for a new VM. In this case, the best placement would be
the one which provide the greatest benefit. This feature takes
advantage of the Organising method to select the placement.

The first step is, based on the current scenario, to adopt a
theoretical placement in the first allowed PM. Then, from a set
with all VMs of the Cloud, the newcomer is extracted from
it, in order to generate the set of VMs to be ignored. Before
start the recursion, the Cost function is deactivated, meaning
that there is no cost involved in the instantiation. After, an
Organising recursion is started sending the theoretical scenario
and the built set, as initial variables. The result of the recursion
contains the placement of the new VM.
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C. Discussion
In this section we discuss some aspects and differences

regarding other proposals and implementation issues.
The Cloud initial consistency, with the environment Rules,

is demanded for the proper work of the method, which means
that the current state of the Cloud must be in accordance with
the RFCs and RSCs. The adoption of an initial illegal scenario
interferes with the generation of new scenarios. For this, a pre
reorganisation process must be applied, which is considered
out of the scope of this work.

Adaptations of Variable Neighbourhood Search (VNS) and
Pareto’s Dominance were adopted in this proposal. The VNS
strategy builds a Pareto Front by recursively searching Non-
Dominated results from different neighbourhoods. However,
instead of using random scenarios to vary the searched Neigh-
bourhood, as proposed in [10], we use a method based on the
proposed VM Rank to vary the starting point of the search.

Likewise, the original definition of Pareto’s Dominance
compares the objectives assessments separately. We, instead,
compare the placements’ evaluations to avoid the method’s
stagnation due to quantity of objectives. Our judgement is
based on the scenario’s evaluations, which is a combination
of all its qualifiers assessments and its weights.

The ignore VMs set is used mainly to avoid deadlocks.
A deadlock occurs when the lowest VM is always the same,
i.e., their evaluation growth depends on the relocation of other
VMs. Thus, the next recursion will ignore this VM and will
try to explore other placements.

Although its use together with the Dominance Search
ensures the convergence of the method, it does not assure
finding the general best scenario. For instance, cases where
the temporary adoption of a degraded (dominated) scenario is
needed to achieve the optimal one. However, it always leads
to a better scenario, even if the method is forced to stop before
reaching the end of the search.

Our current efforts are to focus on identify and test new
deadlock scenarios, testing new approaches in that specific
subject, such as: (i) using two independent ignoreVMs sets;
(ii) changing from Depth to Wide Search, pushing the Pareto
Front forward; and (iii) using a Relaxation Factor strategy in
the Pareto filter, enabling the acceptance of dominated results
with great benefits.

Qualifiers based on Monitoring data, in some cases, are
demanded to evaluate placements. However, Evolutionary al-
gorithms compute many scenarios per second, which makes
it infeasible to depend on real-time data. For that reason, it
is recommended to pre-load the needed data and/or utilise
approximation functions in the Qualifiers, if needed.

Provisioning Gaps: Despite the proposed strategy works
in practically all cases, it’s based on the fact that there are
resources available during the first phase. We acknowledge
this weakness, however, we consider very unlikely to happen,
once a certain resources waste are maintained in the PMs.

The Max Cost constraint is one of the main convergence
catalyser of the method, i.e. it bounds many unaffordable
branches during the exploration, considerably decreasing the
number of scenarios and accelerating the search. However, the
use of this constraint should be based on the premiss that the
cost does not decrease from a base scenario to its successors.
Otherwise, valid branches could be discarded from the search.

V. EXPERIMENTS

In this section, we present the experiments to assess some
aspects of our proposal. To this aim, we use real placement
data from the main data centre of the Federal University of
Santa Catarina. This environment is composed of: 607 VMs,
18 PMs, 99 storage pools and 102 networks.

The experiments were divided into three categories: (i)
Performance, (ii) Selection and (iii) Filters.

In Performance, we measure the necessary time to evaluate
the real scenario and propose better placements. We vary the
number of VMs (between 350 and 600) and the maximum
number of migrations allowed (5, 10 and 20).

In Selection, to understand the advantages of the Rank
Selection approach, which improves the worst placements of
the scenario, we compare it to: (i) a method based on [20],
called Turn Selection, which shuffles the VMs and tries to
improve the VMs in turns, and (ii) a method called Highest
Selection, which selects VMs on top of the Rank to relocation.

In Filters, to show the importance of the Dominance filter,
i.e., a method that accepts only scenarios in which not a single
placement’s evaluation worsen and at least one improves in
comparison to the previous scenario, we confront it to a filter
that accepts scenarios which evaluations’ sum are greater than
the previous scenario, named Greater Benefit. The tests were
executed in a scenario with 600 VMs and the migration’s
threshold were varied from 6 to 14.

For the experiments we implemented and employed the
following rules: (i) pre-requirements for Live Migration, such
as network and storage accessibility; (ii) resource availability
for the migration; (iii) the cluster coherence for the migration,
i.e., if the VMs are in the same PMs’ cluster where they be-
long; and (iv) the implementation cost cannot exceed the limit.
For the qualifiers, the following strategies were implemented:
(i) Consolidate VMs in few PMs; (ii) Distribute nodes from
the same services in different PMs; (iii) Distribute VMs of the
same storage pool. For the Cost evaluation, we employed a
function that regards the number of migrations necessary to
achieve a given scenario.

The prototype was implemented in PHP 5.5 and the tests
use the Test’s Framework PHPUnit 4.2. The tests were exe-
cuted in an environment with Ubuntu 14.04, an Intel T9400
processor of 2.53GHz with 4GB of RAM. Which, in average,
processed 200 scenario per second.

A. Implementation and Results Discussion
Performance: The worst case scenario, considering 600

VMs and 20 migrations, took 62 seconds to finish. The
variation of the migration’s threshold presented a greater
impact when compared with the scenario’s size. It considerably
increases the Cost-Benefit Rate (+104%), number of analysed
scenarios and, consequently, on the execution time (+7355%).
Still, a linear pattern on execution time was noticed, due to
this threshold, which forced the premature stop of the method,
as shown in Figure 3(a).

Selection: On average, the Rank method, in comparison
to the other methods, shown a greater Cost-Benefit raise on
the lowest VMs, as shown in Figure 3(b). It was, on average,
72% faster than the TopRank method and increased 36% of
the Cost-Benefit in the worst case scenario. Although this
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behaviour was expected, since the Random and TopRank
methods do not focus on the lowest VMs, the Rank method
still managed to raise 2% of the average Cost Benefit of the
worst case scenario, which was not expected.

Filters: As expected, when we increased the maximum
amount of migrations the Dominance Filter prevented the
exponential growth of explorations, still maintaining a similar
Average Cost-Benefit (+0,002%) in comparison to the other
approach. On the other hand, the Greater Benefit Filter raised
exponentially the number of searches turning the execution
time impractical, as shown in Figure 3(c). Exponential Re-
gression leads us to an approximation of y = 0.1832e0.47x,
where x is the number of migrations and y the seconds
to execute. Otherwise, Pareto’s method give us a growth of
y = 1.76e0.196x, which is an acceptable for real environments.

In summary, due to the Dominance Filter the scenario’s
growth was drastically reduced and the Rank approach ensured
that the gained benefits were focused on the main issues, the
lowest placements. Finally, the performance results showed
that overall our method is applicable in real Cloud environ-
ments, providing a better scenario in an acceptable time.

VI. FINAL CONSIDERATIONS AND FUTURE WORKS

In this paper, we propose a novel and flexible framework
focus on organisation for VMP. To the best of our knowledge,
this is the first work to combine multiple objectives evaluations
with implementation costs to organise the VM in the Cloud.

The proposed framework supports different types of ob-
jectives, SLAs, strategies, best practices and costs in the form
of qualifier, rule and cost functions and priorities. In order
to demonstrate the advantages of our solution, we conducted
several experiments, comparing it also with other approaches,
and showed that our solution proposes a better scenario in a
reasonable time.

In the future, we plan to: (i) implement a module to adapt
Cloud’s scenarios out of accordance with the environment
rules; (ii) extend the Cost-Benefit method to consider multiple
Costs during the selection phase; and (iii) implement rules and
qualifiers that retrieve their logics from formal languages, such
as SLAC [22].
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Figure 3. (a) Migrations Thresholds, (b) Selection Methods in Different
Scenarios and (c) Filter Methods with Different Migrations Thresholds.
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