
Comparison of Heuristic Methods Applied to Optimization of Computer Networks

Tomasz Miksa, Leszek Koszalka, Andrzej Kasprzak
Department of Systems and Computer Networks,

Wroclaw University of Technology,
Wroclaw, Poland

e-mails: tom.miksa@gmail.com, leszek.koszalka@pwr.wroc.pl, andrzej.kssprzak@pwr.wroc.pl

Abstract—This paper presents an attempt to solve Capacity
and Flow Assignment (CFA) problem, which is NP-complete.
Meta-heuristic and heuristic algorithms are invented in order
to find not only feasible but also effective solution. A set of test
network instances, with provided dual bounds as a reference, is
used to: tune algorithms’ parameters, conduct experiments
and assess results. Final results provide statistical measures
derived from experiments and imply which of proposed
algorithms provides better solutions. However, the two created
algorithms seem to be promising.

Keywords-computer networks; heuristic algorithm; simulated
annealing; flow assignment; simulation

I. INTRODUCTION

The problems connected with design of Wide Area
Networks (WAN) are important due to its practical
application. Slight difference in solution quality has a big
impact on networks maintenance cost. The issues of network
design can be grouped in three categories: Flow Assignment
(FA), Capacity and Flow Assignment (CFA), and Topology,
Capacity and Flow Assignment (TCFA). Different
optimization criteria are considered, but in most cases cost
and average packet delay are chosen.

This paper deals with CFA for WAN problem with a cost
as a criterion. Demands for transfer of data between multiple
nodes may change during lifetime of already designed
network. Then, in order to reduce upkeep cost, an
optimization of routing paths (flow represents routing) and
capacity modules installed on links should be made.
Furthermore, solution of CFA problem can be used by
algorithms that solves more complex problem – TCFA
problem [1] [2].

CFA problem is NP-complete [3]. An algorithm of
branch and bound was proposed in [1]. Authors of papers [4]
[5] [6] applied successfully heuristic approaches. Other
heuristic approaches are discussed in [7]. Some strongly
polynomial algorithms are described in [8]. Meta-heuristic
algorithm MSA and heuristic algorithm MHU are proposed
in this paper, in order to solve CFA problem. Both
algorithms are original implementation of heuristic
approaches described in [1] [9] [10]. Some clues from [11]
concerning integer programming are used. What is more, an
experimentation system Ultimate Capacity and Flow
Assignment (UCFA) was designed and implemented in order
to test the proposed algorithms. This system enables to

compare results provided by MSA and MHU algorithms
against dual bounds or optimum solutions. This is achieved
by the use of sndlib test instances [12].

The paper is organized as follows. In Section II, problem
formulation is presented. The considered algorithms for
solving such a problem are described in Section III. In
Section IV, neighborhood types that are used by algorithms
described in the previous section are presented. In Section V
the designed and implemented experimentation system is
described. The results of investigations are presented and
discussed in Section VI. Finally, conclusions and prospects
for future are presented in Section VII.

II. PROBLEM STATEMENT

The CFA problem consists in finding such a multi-
commodity flow and capacity modules allocation that
satisfies conditions arising from network topology, traffic
matrix, etc.

In this paper, the CFA problem is formulated as follows,
using notation from [12].

Constants:
D – number of demands,
E – number of edges,
V – number of vertices.

Indices:
d = 1, 2, …, D – demands,
e = 1, 2, …, E – edges,
v = 1, 2, …, V – vertices,
k = 1, 2, …, K – capacity module type,
p = 1, 2, …, Pd – paths for demand.

Indexed constants:
Pd – number of paths for demand d,
hd – value of demand d,
ce – capacity of edge e,
Mk – size of the link capacity module of type k,
δedp - equals 1, if link e belongs to path p of demand d,
 equals 0, otherwise,
ξek - cost of module type k for edge e.

Variables:
xdp – flow allocation vector.

Objective:

34Copyright (c) IARIA, 2012. ISBN: 978-1-61208-183-0

ICN 2012 : The Eleventh International Conference on Networks

Constraints:

III. ALGORITHMS

A. MSA algorithm

MSA algorithm is based on meta-heuristic approach
known as Simulated Annealing (SA). SA algorithm imitates
process of annealing applied in metallurgy. A description of
SA can be found in [13]. Key factors for SA algorithm are
the way the “neighborhood” is represented and the way the
“moves” are made. These factors are closely related to the
problem which is to be solved by SA. “Moves”, which make
a significant difference between “neighbors”, should be
made in high temperatures. However, when the temperature
is close to end temperature, “moves” should be slight. This is
the adaptive divide-and-conquer effect [10].

MSA algorithm uses two types of neighborhood:
• Single Random Any Capacity (SRAC),
• Single Random Decrease Capacity (SRDC).

The former is used as default, while the latter one is used
when the temperature of current iteration is close to end
temperature. SRAC and SRDC are described below.

MSA input parameters are:
• number of possible paths for demand – KPath,
• start temperature Ts,
• end temperature Tk,
• temperature interval τ,
• iterations number L.

Best values for above parameters are derived from
experiments.

B. MHU algorithm

MHU algorithm is based on a concept presented in [1],
which suggests that neighborhood solutions of CFA problem
should be browsed in directed way. Direction should be the
“excess of unused capacity”. In other words, in following
iterations, links chosen for modification are not randomly
chosen like in MSA algorithm, but according to the amount
of unused capacity. Such an approach results in fast increase
of solution quality. Kasprzak [1] claims that such approach
can lead to optimum solutions.

MHU algorithm starts its operation by installing
maximum capacity modules on links. Multi-commodity flow
is found, and objective is calculated. If it is not possible to
find multi-commodity, the problem is unsolvable. Else, the
link that has the biggest excess of unused capacity is chosen.
Bandwidth of this link is reduced to previous capacity
module from increasing sequence of available capacity
modules for given link. If capacity module already installed
on this link cannot be decreased (is already first in sequence),
next link with biggest excess of unused capacity is chosen. If
none of links can be modified, algorithm stops. Once the
capacity module installed on chosen link has been modified,

multi-commodity flow is calculated. In this way, new
neighbor solution is generated. The step described above is
repeated given number of times (algorithm’s input
parameter), or when there are no more links available for
modification. In any iteration, solution with best objective is
chosen. The result is used as a base solution for the next
iteration. In the case when the solution generated in one of
iterations is not feasible, because it is not possible to find
multi-commodity flow, algorithm proceeds using best, last
known, feasible solution.

IV. NEIGHBORHOOD

This section clarifies the concept of neighborhood used
for solving CFA problem. Neighbor solution is a new
solution that is, in some way, modified when compared to
the previous one. In CFA, the problem it consists of:

• link configuration vector.
• demand routing vector.

Link configuration vector consists of elements representing
capacity modules installed on following links. Routing of
demands is also represented by vector. Following elements
are indexes of paths available for given demand. Set of
available paths for each demand is created once, before
neighboring solution is generated. In order to create this set
algorithms like Dijkstra’s, Bellman- Ford’s or K-
ShortestPath’s algorithm can be used. Quantity of paths
found for each demand can be done arbitrary or empirically.

A. Single Random Any Capacity (SRAC)

In this method of obtaining neighboring solution,
operations are made on both link configuration and demand
routing vectors. Index of link, that will be modified, is
drawn. Then, an index from the list of available capacity
modules is drawn. Drawn capacity module is inserted into
vector replacing previously installed capacity module in
according to drawn link index. For example, in Fig. 1 link
that index is 5 was drawn. Capacity module installed on this
link in base solution is 128kbps. Neighbor solution has on
that link capacity module whose bandwidth is 512 kbps,
because index 8 was drawn as a pointer for a list of capacity
modules.

Figure 1. SRAC neighborhood generation scheme.

35Copyright (c) IARIA, 2012. ISBN: 978-1-61208-183-0

ICN 2012 : The Eleventh International Conference on Networks

Other links are left unmodified, according to base solution.
Demand routing vector is created anew. For each demand,
path’s index from list of available paths is drawn.

B. Single Random Decrease Capacity

This method of creation of new neighboring solution is
similar to SRAC method, described in previous section.
Main difference lies in the way capacity module of drawn
link is changed. Instead of random change of capacity
module, lower capacity module is used, on condition it
exists. For example if drawn link index is 6, only this link is
modified. If capacity module installed on that link was
64kbps, and the lower capacity module is 32kbps, then
32kbps capacity module is installed. Demand routing vector
is created anew, like it is in SRAC method.

V. EXPERMIENTATION SYSTEM

Experimentation system called Ultimate Capacity and
Flow Assignment (UCFA) was created in order to solve CFA
problem with a use of MHU and MSA algorithms. System
possesses user friendly Graphical User Interface (GUI),
which facilitates experimentation. UCFA enables among
other things following options:

• Choice of test instances.
• Choice of algorithm.
• Setup of input parameters.
• Multithreaded tests.
• Live progress preview.
• Solution save.
• Results summary save.

Test instances are delivered with the experimentation
system. Every instance possesses scheme reflecting nodes
and links allocation. All instances are imported from sndlib
library [12]. This guarantees that instances have always not
only at least one feasible solution, but also provided test data
is derived from real systems, what makes the simulations
more realistic. Furthermore, information about network and
problem parameters are available, as well as information
about dual bound for problem or best solutions uploaded by
other scientists. As a result, the solutions obtained with the
examined algorithms can easily be compared to dual bound,
or to other known solutions.

In UCFA experimentation system, a user can choose
between MSA and MHU algorithms. Each of them has
configurable set of parameters. In case of MSA, these
parameters are: number of possible paths for demand –
KPath, start temperature Ts, end temperature Tk, temperature
interval τ, iterations number L. In case, of MHU the
parameters are: KPath, and iterations number L.

Multiple tests can be run in parallel; the only limitation is
performance of platform, on which the tests are being run.
Each test can be paused and resumed or cancelled. At each
stage of performing process the current results can be saved.
Solution file format is XML, what facilitates easy integration
with other simulators and benchmarks.

Results of tests are appended into summary file, where
information on algorithm type, its parameters, solution cost,
gap between dual bound and solution, simulation time, etc.

are stored. Summary file can easily be used in multiple
editors, due to its CSV structure.

VI. INVESTIGATION

Three complex experiments were conducted in order to
tune algorithms’ efficiency and carry out reliable comparison
of MHU and MSA algorithms. These experiments concern:

• influence of KPath parameter in MSA algorithm,
• parameters setup in MSA algorithm,
• solution quality gain in MSA and MHU algorithms.

Each experiment was performed with the use of UCFA
experimentation system. In the first and in the second
experiment, the three network instances were used:

pdh, dfn-bwin, nobel-german.
Each test was repeated 5 times for a given set of

parameters on a given network instance. In the third
experiment, the six network instances were used:
 dfn-bwin, nobel-eu, nobel-germany, pdh, norway, dfn-gwin.

In order to evaluate the algorithms, the two indices of
performance were introduced:

• gap to dual bound,
• gap to base solution.

Both indices are expressed in percents. Equations (4) and
equation (5) show how these measures are calculated.

denotes the cost of a current solution, while
 denotes the cost of the first solution, and

dualbound is the cost of dual bound.

A. KPath influence in MSA algorithm

 This experiment concerns influence of KPath parameter
onto solution quality. This parameter determines number of
different paths for each demand what is in direct correlation
with number of possible routing combinations. Ten values of
KPath values were considered. These values range from 1 to
10. Fig. 2 presents results of the performed experiment.

Figure 2. KPath influence in MSA algorithm.

36Copyright (c) IARIA, 2012. ISBN: 978-1-61208-183-0

ICN 2012 : The Eleventh International Conference on Networks

One can observe that value is biggest for KPath
equal to 1. However, this value must be rejected. It cannot be
used, because in case when number of available paths for
demand equals 1, then demand can flow along only one path,
what means the flow is always same. When flow is always
same, solved problem is no longer CFA problem, but only
capacity assignment problem! Due to this fact, KPath cannot
equal to 1.

Having rejected first best value, KPath parameters 2, 3
and 4 should be considered. All of them guarantee almost
same solution efficiency gain (over 100%). KPath = 4 seems
to be the best choice, because it enhances quantity of
possible demand flow combinations, while gap to first
solution stays at same high level like when choosing
parameters 2 or 3.

KPath values larger than 4 are not to be considered,
because it can be easily noticed, that they vastly decrease
solution quality. Furthermore, during experiment it was not
always possible to find more than 4 different paths for each
demand. Nobel-germany is an example of such network. If
KPath parameter was set to value higher than 4, many
networks would be unsolvable.

B. Parameters setup in MSA algorithm

This experiment concerns the parameters tuning for MSA
algorithm. Eight parameter configurations were tested. Table
1 presents names of configurations mapped to parameters
setup. It was assumed that each configuration should result in
circa 100 000 total number of iterations. This assumption
was made because of performance of available test platform.
What is more it is assumed that temperature interval is
always set to 0.9 and final temperature is of 1. The first
assumption followed [10], but the second was done by
authors of this paper on the basis of the results of preliminary
experiments.

TABLE I. CONSIDERED MSA PARAMETERS CONFIGURATIONS.

Configuration KPath Ts Tk τ L

Configuration 1 4 40000 1 0.9 1000

Configuration 2 4 4000 1 0.9 2000

Configuration 3 4 200 1 0.9 2000

Configuration 4 4 13 1 0.9 4000

Configuration 5 4 5 1 0.9 6000

Configuration 6 4 3.5 1 0.9 8000

Configuration 7 4 2.8 1 0.9 10000

Configuration 8 4 1.5 1 0.9 25000

The average gap to first solution was calculated

for each configuration. Results are presented in Fig. 3. One
can observe that configuration 8 delivers highest solution
quality gain (133%). Configurations 5, 6 and 7 have very
similar gain (over 130%). However, Configuration 1 gives
only 104% of average improvement. This shows that slight

difference in parameters setup results in big difference
between qualities of solutions.

.

Figure 3. Average gap to first solution for MSA algorithm.

Before one of configurations is chosen as best one, one
more calculation of measures (indices) is done. Optimistic
cases (maximum gaps) for each configuration are shown in
Fig. 4.

For all the configurations, maximum gaps are around
10% better than average gaps. The trend observed in
previous chart remains same. Configuration 8 is best again;
Configurations 5, 6, 7 have quite similar results to it.
Although in this case difference between Configuration 8,
and other configurations is higher than previously.
Configuration 1 remains worst again.

 Taking into consideration result presented above,
Configuration 8 is chosen as the best one. Thus, all
experiments concerning MSA algorithm are advised to be
performed using Configuration 8.

Figure 4. Maximum gap to first solution for MSA algorithm.

C. Solution quality gain in MSA and MHU algorithms

This experiment was designed in order to compare
solution quality gain over first solution delivered by MSA
and MHU algorithms. Parameters used for MSA are taken
from previous experiment, e.g., configuration 8 was used.
Both algorithms used KPath parameter set to 4.

Fig. 5 presents the results obtained with the use of MSA
algorithm. Three cases are considered: optimistic, pessimistic

37Copyright (c) IARIA, 2012. ISBN: 978-1-61208-183-0

ICN 2012 : The Eleventh International Conference on Networks

and average. In the worst case, MSA guarantees solution
quality gain of 121 %, what is not far from average gain of
138%. In the best case 163% gain is possible. It is worth to
mention, that all these values are average values from all
tested instances. Hence, it is possible, that in specific
conditions these values can even be higher.

The same relation can be observed for results obtained
with the use of MHU algorithm (see Fig. 6). Once more three
cases are considered: optimistic (maximum), pessimistic
(minimum) and the averaged. One can easily notice that
solutions obtained with a use of MHU are of better quality
than in the case of MSA algorithm. The pessimistic case is
circa 50% better than optimistic in MSA algorithm. Average
quality gain in MHU algorithm is 239%, but in best case it is
possible to get 261% improvement of solution in comparison
to the base solution.

Figure 5. Minimum, maximum and average gap to first solution for MSA.

Figure 6. Minimum, maximum and average gap to first solution for MHU.

VII. CONCLUSION AND FUTURE WORKS

In this paper capacity and flow assignment problem, that
is NP-complete [3], were discussed. For this purpose, two
new algorithms have been proposed by the authors.
Moreover, in order to conduct simulations, advanced
experimentation system was designed and implemented.

Additional effort to tune parameters of created algorithms
was taken. As a result, set of parameters that improve quality
of solutions delivered by algorithms is proposed. Finally,
both algorithms are examined to check solutions’ quality
gain over first solution. MSA delivers result which gave
average gain of 138%, while MHU algorithm improves base
solution 239% in average.

The results of both algorithms are satisfying. We believe
that further solution improvement is still possible. Prospects
for future are using ideas presented in [14] [15], including
new configurations of parameters for MSA, or making
simulation along with multistage experiment designs. It
seems highly probable, that these two ideas will result in
quality improvement of both algorithms.

REFERENCES
[1] A. Kasprzak, Designing of Wide Area Networks, Wroclaw

University of Technology Press, (in Polish), 2001.
[2] B. Gendron, T. G. Crainic, and A. Frangioni, Multi-

commodity Capacited Network Design, Telecommunications
Network Planning, Kluwer, Norwell, MA, 1998, pp. 1-19.

[3] T. Cormen and R. Rivest, Introduction to Algorithms,
Warsaw, 2004.

[4] J. Anisiewicz, T. Miksa, and M. Piec, “Cost optimization
problem in Wide Area Network design,” Proceedings of 10th
Polish British Workshop, 2010.

[5] K. Walkowiak, “Ant Algorithm for Flow Assignment in
Connection-Oriented Networks”, Int. J. Appl. Math. Comput.
Sci. 2, 2005, pp. 205-220.

[6] K. Walkowiak, “An Heuristic Algorithm for Non-bifurcated
Congestion Problem”, Paris, France, Proceedings of 17th
IMACS World Congress, 2005..

[7] D. Corne, M. Oates and D. Smith, Telecommunications
optimization: heuristic and adaptive techniques, John Wiley &
Sons, 2000.

[8] Y. Azar and O. Regev, “Strongly Polynomial Algorithms for
the Unsplittable Flow Problem”, Proceedings of the 8th
Conference on Integer Programming and Combinatorial
Optimization, 2001, pp. 15-29.

[9] M. Gerla and L. Kleinrock, “On the Topological Design of
Distributed Computer Networks”, IEEE Trans Commun., Vol.
COM-25, 1977, pp. 48-60..

[10] M. Pioro and D. Mehdi, Routing, Flow, and Capacity Design
in Communication and Computer Networks, San Francisco,
2004.

[11] L. A. Wolsey, Integer Programming. Wiley-Interscience, New
York, 1998.

[12] S. Orlowski, M. Pioro, and A. Tomaszewski, SNDlib 1.0--
Survivable Network Design Library. [Online: 20 May 2011.]

[13] C. D. Gelatt, S. Kirkpatrick, and M. P. Vecchi M. P.,
“Optimization by Simulated Annealing”, Science, New
Series, Vol. 220, 1983, pp. 671-680.L. A. Wolsey, Integer
Programming. Wiley-Interscience, New York, 1998.

[14] P. Bogalinski, I. Pozniak-Koszalka, L. Koszalka, and A.
Kasprzak, “Computer System for Making Efficiency Analysis
of Meta-heuristic Algorithms”, Proc. of the 2nd ACIIDS
conference, LNAI, vol. 5991, Springer, 2010, pp. 225-234.

[15] D. Ohia, L. Koszalka, and A. Kasprzak, “Evolutionary
Algorithm for Congestion Problem in Computer Networks”,
KES 2009, LNAI, vol. 57, 2008, pp. 57-67.

38Copyright (c) IARIA, 2012. ISBN: 978-1-61208-183-0

ICN 2012 : The Eleventh International Conference on Networks

