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Abstract—This paper presents an attempt to solve Capacity 
and Flow Assignment (CFA) problem, which is NP-complete. 
Meta-heuristic and heuristic algorithms are invented in order 
to find not only feasible but also effective solution. A set of test 
network instances, with provided dual bounds as a reference, is 
used to: tune algorithms’ parameters, conduct experiments 
and assess results. Final results provide statistical measures 
derived from experiments and imply which of proposed 
algorithms provides better solutions. However, the two created  
algorithms seem to be promising. 
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I.  INTRODUCTION 

The problems connected with design of Wide Area 
Networks (WAN) are important due to its practical 
application. Slight difference in solution quality has a big 
impact on networks maintenance cost. The issues of network 
design can be grouped in three categories: Flow Assignment 
(FA), Capacity and Flow Assignment (CFA), and Topology, 
Capacity and Flow Assignment (TCFA). Different 
optimization criteria are considered, but in most cases cost 
and average packet delay are chosen. 

This paper deals with CFA for WAN problem with a cost 
as a criterion. Demands for transfer of data between multiple 
nodes may change during lifetime of already designed 
network. Then, in order to reduce upkeep cost, an 
optimization of routing paths (flow represents routing) and 
capacity modules installed on links should be made. 
Furthermore, solution of CFA problem can be used by 
algorithms that solves more complex problem – TCFA 
problem [1] [2]. 

CFA problem is NP-complete [3]. An algorithm of 
branch and bound was proposed in [1]. Authors of papers [4] 
[5] [6] applied successfully heuristic approaches. Other 
heuristic approaches are discussed in [7]. Some strongly 
polynomial algorithms are described in [8]. Meta-heuristic 
algorithm MSA and heuristic algorithm MHU are proposed 
in this paper, in order to solve CFA problem. Both 
algorithms are original implementation of heuristic 
approaches described in [1] [9] [10]. Some clues from [11] 
concerning integer programming are used. What is more, an 
experimentation system Ultimate Capacity and Flow 
Assignment (UCFA) was designed and implemented in order 
to test the proposed algorithms. This system enables to 

compare results provided by MSA and MHU algorithms 
against dual bounds or optimum solutions. This is achieved 
by the use of sndlib test instances [12]. 

The paper is organized as follows. In Section II, problem 
formulation is presented. The considered algorithms for 
solving such a problem are described in Section III. In 
Section IV, neighborhood types that are used by algorithms 
described in the previous section are presented. In Section V 
the designed and implemented experimentation system is 
described. The results of investigations are presented and 
discussed in Section VI. Finally, conclusions and prospects 
for future are presented in Section VII. 

II. PROBLEM STATEMENT 

The CFA problem consists in finding such a multi-
commodity flow and capacity modules allocation that 
satisfies conditions arising from network topology, traffic 
matrix, etc.  

In this paper, the CFA problem is formulated as follows, 
using notation from [12]. 

Constants: 
D – number of demands, 
E – number of edges, 
V – number of vertices. 

Indices: 
d = 1, 2, …, D – demands, 
e = 1, 2, …, E – edges, 
v = 1, 2, …, V – vertices, 
k = 1, 2, …, K – capacity module type, 
p = 1, 2, …, Pd – paths for demand. 

Indexed constants: 
Pd – number of paths for demand d, 
hd – value of demand d, 
ce – capacity of edge e, 
Mk – size of the link capacity module of type k, 
δedp - equals 1, if link e belongs to path p of demand d,  
 equals 0, otherwise,  
ξek - cost of module type k for edge e. 

Variables: 
xdp – flow allocation vector. 

Objective: 
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Constraints: 
 

 
 

 
  

III.  ALGORITHMS 

A. MSA algorithm 

MSA algorithm is based on meta-heuristic approach 
known as Simulated Annealing (SA). SA algorithm imitates 
process of annealing applied in metallurgy. A description of 
SA can be found in [13]. Key factors for SA algorithm are 
the way the “neighborhood” is represented and the way the 
“moves” are made. These factors are closely related to the 
problem which is to be solved by SA. “Moves”, which make 
a significant difference between “neighbors”, should be 
made in high temperatures. However, when the temperature 
is close to end temperature, “moves” should be slight. This is 
the adaptive divide-and-conquer effect [10]. 

MSA algorithm uses two types of neighborhood: 
• Single Random Any Capacity (SRAC), 
• Single Random Decrease Capacity (SRDC). 

The former is used as default, while the latter one is used 
when the temperature of current iteration is close to end 
temperature. SRAC and SRDC are described below. 

MSA input parameters are: 
• number of possible paths for demand – KPath, 
• start temperature Ts, 
• end temperature Tk, 
• temperature interval τ, 
• iterations number L. 

Best values for above parameters are derived from 
experiments. 

B. MHU algorithm 

MHU algorithm is based on a concept presented in [1], 
which suggests that neighborhood solutions of CFA problem 
should be browsed in directed way. Direction should be the 
“excess of unused capacity”. In other words, in following 
iterations, links chosen for modification are not randomly 
chosen like in MSA algorithm, but according to the amount 
of unused capacity. Such an approach results in fast increase 
of solution quality. Kasprzak [1] claims that such approach 
can lead to optimum solutions.  

MHU algorithm starts its operation by installing 
maximum capacity modules on links. Multi-commodity flow 
is found, and objective is calculated. If it is not possible to 
find multi-commodity, the problem is unsolvable. Else, the 
link that has the biggest excess of unused capacity is chosen. 
Bandwidth of this link is reduced to previous capacity 
module from increasing sequence of available capacity 
modules for given link. If capacity module already installed 
on this link cannot be decreased (is already first in sequence), 
next link with biggest excess of unused capacity is chosen. If 
none of links can be modified, algorithm stops. Once the 
capacity module installed on chosen link has been modified, 

multi-commodity flow is calculated. In this way, new 
neighbor solution is generated. The step described above is 
repeated given number of times (algorithm’s input 
parameter), or when there are no more links available for 
modification. In any iteration, solution with best objective is 
chosen. The result is used as a base solution for the next 
iteration. In the case when the solution generated in one of 
iterations is not feasible, because it is not possible to find 
multi-commodity flow, algorithm proceeds using best, last 
known, feasible solution. 

IV.  NEIGHBORHOOD 

This section clarifies the concept of neighborhood used 
for solving CFA problem. Neighbor solution is a new 
solution that is, in some way, modified when compared to 
the previous one. In CFA, the problem it consists of: 

• link configuration vector. 
• demand routing vector. 

Link configuration vector consists of elements representing 
capacity modules installed on following links. Routing of 
demands is also represented by vector. Following elements 
are indexes of paths available for given demand. Set of 
available paths for each demand is created once, before 
neighboring solution is generated. In order to create this set 
algorithms like Dijkstra’s, Bellman- Ford’s or K-
ShortestPath’s algorithm can be used. Quantity of paths 
found for each demand can be done arbitrary or empirically.  

A. Single Random Any Capacity (SRAC) 

In this method of obtaining neighboring solution, 
operations are made on both link configuration and demand 
routing vectors. Index of link, that will be modified, is 
drawn. Then, an index from the list of available capacity 
modules is drawn. Drawn capacity module is inserted into 
vector replacing previously installed capacity module in 
according to drawn link index. For example, in Fig. 1 link 
that index is 5 was drawn. Capacity module installed on this 
link in base solution is 128kbps. Neighbor solution has on 
that link capacity module whose bandwidth is 512 kbps, 
because index 8 was drawn as a pointer for a list of capacity 
modules. 

 
Figure 1.  SRAC neighborhood generation scheme. 
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Other links are left unmodified, according to base solution. 
Demand routing vector is created anew. For each demand, 
path’s index from list of available paths is drawn. 

B. Single Random Decrease Capacity 

This method of creation of new neighboring solution is 
similar to SRAC method, described in previous section. 
Main difference lies in the way capacity module of drawn 
link is changed. Instead of random change of capacity 
module, lower capacity module is used, on condition it 
exists. For example if drawn link index is 6, only this link is 
modified. If capacity module installed on that link was 
64kbps, and the lower capacity module is 32kbps, then 
32kbps capacity module is installed. Demand routing vector 
is created anew, like it is in SRAC method. 

V. EXPERMIENTATION SYSTEM 

Experimentation system called Ultimate Capacity and 
Flow Assignment (UCFA) was created in order to solve CFA 
problem with a use of MHU and MSA algorithms. System 
possesses user friendly Graphical User Interface (GUI), 
which facilitates experimentation. UCFA enables among 
other things following options: 

• Choice of test instances. 
• Choice of algorithm. 
• Setup of input parameters. 
• Multithreaded tests. 
• Live progress preview. 
• Solution save. 
• Results summary save. 

Test instances are delivered with the experimentation 
system. Every instance possesses scheme reflecting nodes 
and links allocation. All instances are imported from sndlib 
library [12].  This guarantees that instances have always not 
only at least one feasible solution, but also provided test data 
is derived from real systems, what makes the simulations 
more realistic. Furthermore, information about network and 
problem parameters are available, as well as information 
about dual bound for problem or best solutions uploaded by 
other scientists. As a result, the solutions obtained with the 
examined algorithms can easily be compared to dual bound, 
or to other known solutions. 

In UCFA experimentation system, a user can choose 
between MSA and MHU algorithms. Each of them has 
configurable set of parameters. In case of MSA, these 
parameters are: number of possible paths for demand – 
KPath, start temperature Ts, end temperature Tk, temperature 
interval τ, iterations number L. In case, of MHU the 
parameters are: KPath, and iterations number L. 

Multiple tests can be run in parallel; the only limitation is 
performance of platform, on which the tests are being run. 
Each test can be paused and resumed or cancelled. At each 
stage of performing process the current results can be saved. 
Solution file format is XML, what facilitates easy integration 
with other simulators and benchmarks.  

Results of tests are appended into summary file, where 
information on algorithm type, its parameters, solution cost, 
gap between dual bound and solution, simulation time, etc. 

are stored. Summary file can easily be used in multiple 
editors, due to its CSV structure. 

VI. INVESTIGATION 

Three complex experiments were conducted in order to 
tune algorithms’ efficiency and carry out reliable comparison 
of MHU and MSA algorithms. These experiments concern: 

• influence of KPath parameter in MSA algorithm, 
• parameters setup in MSA algorithm, 
• solution quality gain in MSA and MHU algorithms. 

Each experiment was performed with the use of UCFA 
experimentation system. In the first and in the second 
experiment, the three network instances were used: 

pdh, dfn-bwin, nobel-german. 
Each test was repeated 5 times for a given set of 

parameters on a given network instance. In the third 
experiment, the six network instances were used: 
 dfn-bwin, nobel-eu, nobel-germany, pdh, norway, dfn-gwin. 

In order to evaluate the algorithms, the two indices of 
performance were introduced: 

• gap to dual bound, 
• gap to base solution. 

Both indices are expressed in percents. Equations (4) and 
equation (5) show how these measures are calculated. 

 

 
 

 
 

denotes the cost of a current solution, while  
 denotes the cost of the first solution, and 

dualbound is the cost of dual bound.  

A. KPath influence in MSA algorithm 

 This experiment concerns influence of KPath parameter  
onto solution quality. This parameter determines number of 
different paths for each demand what is in direct correlation 
with number of possible routing combinations. Ten values of 
KPath values were considered. These values range from 1 to 
10. Fig. 2 presents results of the performed experiment.   

 

 
Figure 2. KPath influence in MSA algorithm. 
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One can observe that  value is biggest for KPath 
equal to 1. However, this value must be rejected. It cannot be 
used, because in case when number of available paths for 
demand equals 1, then demand can flow along only one path, 
what means the flow is always same. When flow is always 
same, solved problem is no longer CFA problem, but only 
capacity assignment problem! Due to this fact, KPath cannot 
equal to 1. 

Having rejected first best value, KPath parameters 2, 3 
and 4 should be considered. All of them guarantee almost 
same solution efficiency gain (over 100%). KPath = 4 seems 
to be the best choice, because it enhances quantity of 
possible demand flow combinations, while gap to first 
solution stays at same high level like when choosing 
parameters 2 or 3. 

KPath values larger than 4 are not to be considered, 
because it can be easily noticed, that they vastly decrease 
solution quality. Furthermore, during experiment it was not 
always possible to find more than 4 different paths for each 
demand. Nobel-germany is an example of such network. If 
KPath parameter was set to value higher than 4, many 
networks would be unsolvable.  

B. Parameters setup in MSA algorithm 

This experiment concerns the parameters tuning for MSA 
algorithm. Eight parameter configurations were tested. Table 
1 presents names of configurations mapped to parameters 
setup. It was assumed that each configuration should result in 
circa 100 000 total number of iterations. This assumption 
was made because of performance of available test platform. 
What is more it is assumed that temperature interval is 
always set to 0.9 and final temperature is of 1. The first 
assumption followed [10], but the second was done by 
authors of this paper on the basis of the results of preliminary 
experiments. 

TABLE I.  CONSIDERED MSA PARAMETERS CONFIGURATIONS. 

Configuration KPath  Ts Tk τ L 

Configuration 1 4 40000 1 0.9 1000 

Configuration 2 4 4000 1 0.9 2000 

Configuration 3 4 200 1 0.9 2000 

Configuration 4 4 13 1 0.9 4000 

Configuration 5 4 5 1 0.9 6000 

Configuration 6 4 3.5 1 0.9 8000 

Configuration 7 4 2.8 1 0.9 10000 

Configuration 8 4 1.5 1 0.9 25000 

 
The average gap to first solution  was calculated 

for each configuration. Results are presented in Fig. 3. One 
can observe that configuration 8 delivers highest solution 
quality gain (133%). Configurations 5, 6 and 7 have very 
similar gain (over 130%). However, Configuration 1 gives 
only 104% of average improvement. This shows that slight 

difference in parameters setup results in big difference 
between qualities of solutions. 

. 

 
Figure 3. Average gap to first solution for MSA algorithm. 

Before one of configurations is chosen as best one, one 
more calculation of measures (indices) is done. Optimistic 
cases (maximum gaps) for each configuration are shown in 
Fig. 4.  

For all the configurations, maximum gaps are around 
10% better than average gaps. The trend observed in 
previous chart remains same. Configuration 8 is best again; 
Configurations 5, 6, 7 have quite similar results to it. 
Although in this case difference between Configuration 8, 
and other configurations is higher than previously. 
Configuration 1 remains worst again. 

 Taking into consideration result presented above, 
Configuration 8 is chosen as the best one. Thus, all 
experiments concerning MSA algorithm are advised to be 
performed using Configuration 8. 
 

 
Figure 4.  Maximum gap to first solution for MSA algorithm. 

C. Solution quality gain in MSA and MHU algorithms 

This experiment was designed in order to compare 
solution quality gain over first solution delivered by MSA 
and MHU algorithms. Parameters used for MSA are taken 
from previous experiment, e.g., configuration 8 was used. 
Both algorithms used KPath parameter set to 4. 

Fig. 5 presents the results obtained with the use of MSA 
algorithm. Three cases are considered: optimistic, pessimistic 
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and average. In the worst case, MSA guarantees solution 
quality gain of 121 %, what is not far from average gain of 
138%. In the best case 163% gain is possible. It is worth to 
mention, that all these values are average values from all 
tested instances. Hence, it is possible, that in specific 
conditions these values can even be higher.  

The same relation can be observed for results obtained 
with the use of MHU algorithm (see Fig. 6). Once more three 
cases are considered: optimistic (maximum), pessimistic 
(minimum) and the averaged. One can easily notice that 
solutions obtained with a use of MHU are of better quality 
than in the case of MSA algorithm. The pessimistic case is 
circa 50% better than optimistic in MSA algorithm. Average 
quality gain in MHU algorithm is 239%, but in best case it is 
possible to get 261% improvement of solution in comparison 
to the base solution. 

 

 
Figure 5. Minimum, maximum and average gap to first solution for MSA. 

 
Figure 6. Minimum, maximum and average gap to first solution for MHU. 

VII.  CONCLUSION AND FUTURE WORKS 

In this paper capacity and flow assignment problem, that 
is NP-complete [3], were discussed. For this purpose, two 
new algorithms have been proposed by the authors. 
Moreover, in order to conduct simulations, advanced 
experimentation system was designed and implemented. 

Additional effort to tune parameters of created algorithms 
was taken. As a result, set of parameters that improve quality 
of solutions delivered by algorithms is proposed. Finally, 
both algorithms are examined to check solutions’ quality 
gain over first solution. MSA delivers result which gave 
average gain of 138%, while MHU algorithm improves base 
solution 239% in average. 

The results of both algorithms are satisfying. We believe 
that further solution improvement is still possible. Prospects 
for future are using ideas presented in [14] [15], including 
new configurations of parameters for MSA, or making 
simulation along with multistage experiment designs. It 
seems highly probable, that these two ideas will result in 
quality improvement of both algorithms.  
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