
Kernel Monitor of Transport Layer Developed for
Android Working on Mobile Phone Terminals

Kaori Miki
Masato Oguchi

Department of Information Science
Ochanomizu University

2-1-1, Otsuka, Bunkyo-ku, Tokyo, Japan
kaori@ogl.is.ocha.ac.jp
oguchi@computer.org

Saneyasu Yamaguchi
Kogakuin University

1-24-2 Nishi-shinjuku, Shinjuku-ku, Tokyo, Japan
sane@cc.kogakuin.ac.jp

Abstract—In recent years, with the rapid growth of smart
phone market, Android is drawing an attention as software
platform of embedded system, used as a personal digital
assistance developed by Google. While Android is taken no-
tice for its flexible development of application software and
expansion of the system, we are interested in optimization
and performance evaluation of network computing ability
of Android. Because an embedded system like Android has
architecture different from that of general-purpose PC, and due
to the poor function of I/O interface, it is difficult to grasp what
happens inside the embedded system precisely. Therefore, it is
interesting to analyze the communication behavior of Android.
In this paper, we have developed a Kernel Monitor tool suitable
for an embedded system that is able to observe the behavior
of kernel. We have applied this tool for the Transport layer
of Android. We have shown that internal operation when an
embedded system is communicating can be analyzed with our
approach.

Keywords-Android, Mobile Phone, Embedded system, Linux
Kerne,

I. INTRODUCTION

Recently, almost every user has own cellular phone.
Moreover, it is not rare to have two or more cellular phones
by a single user, and those phones are used in different
ways depending on service and the usage. Previously, a
cellular phone was used only for the voice call and text mail.
However, since the transmission rate improves recently, it is
applied to many functions including Internet access, distri-
bution of music and animation, radio, television, IC card,
and so on. Therefore, it is difficult to develop applications
for a unique OS of each career due to its huge cost. Thus,
commoditized OS for cellular phones has been desired. In
this case, the basic part is shared as a platform, and original
functions and services are developed individually. As a
result, the efficient improvement of application development
can be achieved. Moreover, since there is an advantage that
it becomes easy for programmers to develop applications on
it, the number of open software should be increased. Android
[1] has been developed by Google for this purpose. Android

is a software platform of an embedded system that works
with portable devices.

Android is different from software used in current mobile
phone terminals. There is no restriction for the applica-
tion development because this is open source software.
Applications can be executed on mobile phone equipped
with Android regardless of the career or the device, and
they can be highly customized. From these factors, the
share of Android is increasing. While Android is drawing
attention for flexible development of application software
and expansion of the system, we are interested in Android
as a system platform. In particular, since mobile phones,
such as smart phones, become a leadingwe aim to optimize
and evaluate performance of network computing ability of
Android. Most of recent research works on Android con-
centrate only on applications, except [2] in which CPU load
of Dalvik bytecode is investigated. Our research works are
focused on the communication ability of Android platforms.

Because architecture of an embedded system is different
from that of general-purpose PC, it is interesting to analyze
its communication behavior. In particular, since the mobile
phone such as smart phones becomes a leading part as a
client terminal, to analyze their behavior is drawing attention
in a variety of communication scenes. However, as for the
behavior of the embedded system, the observation method is
extremely limited due to the poor function of I/O interface.
Because the resources of an embedded system is much
less than that of general-purpose PC, the resource that can
be spared for the monitoring and analysis is insufficient.
Therefore, it is possibly considered having a substantial
influence on the behavior of the system by its monitoring.
From such a reason, it has been difficult to grasp exactly
what happens in embedded systems during communications.

In this paper, since we have overcome the difficulty of an
embedded system such as different interfaces and so on, we
have developed a Kernel Monitor tool in Android, which
has basically the same function of such a tool developed
for general-purpose PC [3]. We have applied the tool in

297

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

the Transport layer of Android. As a result, we show that
the internal operation of an embedded system when it is
communicating can be analyzed with this approach.

II. DEVELOPMENT OF APPLICATIONS ON ANDROID

In this section, we explain about Architecture of Android
and how to develop applications on it.

A. An Overview of Android

Table I
ARCHITECTURE OF ANDROID

Application(Home,Telephone,Web)
Application Framework

Android Runtime
Core Libraries, Dalvik VM Ware

Library
Linux Kernel 2.6

The architecture of Android is shown in Table 1. Android
is constructed with Linux Kernel 2.6, and various compo-
nents are added to its OS so as the platform to be composed.
Because only the kernel part is adopted from Linux, it is
possible to compose Android from various Linux packages.

Android Runtime, that is the application execution envi-
ronment of original Android, is mounted on Linux kernel.
The original virtual machine called Dalvik is installed in
Android. This corresponds to Java Virtual Machine (JVM).
Applications can be developed just suitable for Dalvik,
because the application frameworks are provided on top
of Dalvik for the execution of applications. Therefore the
portability of Android is very good.

Android is different from other software implemented
in current portable devices, and there is no restriction in
the application development because this is open source
software. Applications can be executed on mobile phone
equipped with Android regardless of the career or the device,
and they can be highly customized. Thus the load of the
application development is considered to be reduced, and
there is a flexible extendibility to another career and another
model.

The communication is performed by using the protocol
stack in Linux kernel. Thus, it is thought that the com-
munication performance of Android is decided in this TCP
implementation. Therefore, Transport layer in the kernel is
highlighted and evaluated in this research work.

B. Cross Development

The cross development that uses a different computing
environment is employed when applications of the embedded
system is developed and executed. This is because mobile
terminal’s display is too small, and neither CPU performance
nor memory capacity is enough. In Android, cross develop-
ment is generally employed. The computer that develops
chiefly is called a host environment, and Android terminal

is called a target environment. The camera equipment and
so on that the host environment does not usually include
can be executed by the emulator inside hosts. Android is not
suitable for development environment, because Android is an
embedded system that has only limited commands compared
with the case of general-purpose PC. Cross development can
raise the efficiency of development.

Not only application development but also build of An-
droid itself are executed on the form of the cross develop-
ment. The Kernel Monitor introduced in this paper is also
formed on the cross development, then implemented in the
Android terminal.

III. KERNEL MONITOR

In this section, we explain Kernel Monitor which is our
original system tool, and how to develop Kernel Monitor
that works on Android terminal.

A. An Overview of Kernel Monitor

Figure 1. An Overview of Kernel Monitor

Kernel Monitor is a tool that can recode how the value
of parameters in the kernel changed as a result by which
part of the kernel code being executed at which time when
communicating. An overview of Kernel Monitor is shown
in Figure 1. We have inserted the monitor function in the
Transmission Control Protocol(TCP) source code of the
kernel, then recompiled the kernel, TCP parameters can be
monitored as a result. Examples of what we can monitor
with this tool are the value of Congestion Window (CWND)
and various error events of communications (Local device
congestion, duplicate Acknowledgment (ACK)/ Selective
Acknowledgment Options (SACK), and Timeout). The be-
havior of kernel can be shown when it normally operates
with the Kernel Monitor. In addition, when something wrong
happens, it is possible to detect a specific problem and
investigate what happens inside the kernel.

Kernel is special software different from other applica-
tions. It cannot accept normal debug methods, and therefore,
it is difficult to observe the behavior of kernel during
communications even in the case of general-purpose PC.
However, in general-purpose PC, this problem has been
solved by using Kernel Monitor [3]. In this paper, we

298

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

have applied the Kernel Monitor to Android, an embedded
system.

B. Development of Kernel Monitor for Android Terminals

Since the base of Android is Linux kernel, Android has
a possibility to accept similar approach of general-purpose
PC. However, as Android is an embedded system, it has a
lot of different points from the case of general-purpose PC.
For example, the amount of resources of Android terminals,
such as storage and memory, are limited. Thus, the same
approach as general-purpose PC may be impossible due to
resource shortage. In addition, since the resource that can
be spared for the operation analysis is insufficient, there is a
possibility of having a substantial influence on the behavior
of the system by the operation analysis itself. Android also
need the cross compile for system and applications. OS is
built in a special way. Moreover, it is required to use a
special way to boot compiled OS on an Android mobile
phone.

Figure 2. /proc file system

Figure 3. Log of Kernel Monitor

In this paper, we have overcome difficult problems pe-
culiarly an embedded system’s own, and developed Kernel
Monitor that is the same as general-purpose PC basically.
This Kernel Monitor has been implemented in Android OS
codes, inserted into an Android mobile phone terminal, and
we have confirmed that the Kernel Monitor runs on it. We
show that it is possible to analyze the behavior of Android
when it is communicating. Figure 2 and 3 are examples of
captured display that Kernel Monitor is running on Android
mobile phone. As a result, it becomes possible to show that

Android’s kernel behavior can be analyzed with almost the
same way as the Kernel Monitor of general-purpose PC.
Thus, we have realized the monitor tool in this environment.

As an example of monitoring, we have analyzed the
relation between Congestion Window and throughput during
the communication on Android. It is introduced in the
following sections.

IV. EXPERIMENTAL SYSTEM AND MEASURING BASIC

PERFORMANCE OF ANDROID

In this section, measurement tool and experimental envi-
ronment are shown, and the experimental way is introduced.

Table II
EXPERIMENTAL ENVIRONMENT

　　
Android Model number AOSP on Sapphire(US)

Firmware version 2.1-update1
Baseband version 62.50S.20.17H_2.22.19.26I
Kernel version 2.6.29-00481-ga8089eb-dirty
Build number aosp_sapphire_us-eng 2.1-update1 ERE27

server OS Fedora release 10 (Cambridge)
CPU CPU : Intel(R) Pentium(R) 4 CPU 3.00GHz
Main Memory 1GB

Table II, Figure 4 and Figure 6 show the experimental
environment. In our study, we have cross-compiled iperf-
2.0.4 [4], and inserted it Android mobile phone. With this
tool, we have evaluated the socket access case as a basic
performance. Arm-2008q3 [5] is used as a cross compiler.

A. Android to Android Communication Throughput

Figure 4. Android to Android Communication

First, we have evaluated Android mobile phone’s through-
put with IEEE 802.11g Wireless Local Area Network (LAN)
through Access Point (AP) to another Android mobile
phone, as shown in Figure 4.

Performance of socket access using TCP and User Data-
gram Protocol (UDP) is shown in Figure 5.

TCP communication average throughput of Android to
Android is 8.2 (Mbps), while that of UDP communication
is 6.7 (Mbps), as shown in the Figure 5. According to
this graph, performance of UDP access is lower than that
of TCP in the case of Android mobile phone terminals.
There is almost no packet loss in both cases. The causes
of throughput degradation seems to exist at the sender-side.
The packet can be sent out only on a constant rate even if the

299

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

Figure 5. TCP thoughput of Android to Android Communication

bandwidth at the transmitting end is enlarged. Moreover, in
UDP access, although we have not confirmed, performance
of UDP access seems to be limited in the case of off-the-
shelf devices. By way of comparison, we have evaluated
Android-x86 that runs on x86 PC platform [6]. In this case,
we have confirmed that throughput of UDP access is higher
than that of TCP access.

B. Android Communication Performance of Remote Server
Access

Figure 6. Android Communication Performance of Remote Server Access

We have evaluated Android communication performance
of remote server access with dummynet (see Figure 6),
which artificially generates delay. This supposes to access
to a server on a remote place, which offers mobile cloud
service.

Figure 7. TCP Throughput between Server and Android Terminal in a
Higher-Latency Environment

Figure 7 is a graph of throughput in which the hori-
zontal (x-)axis is Round Trip Time (RTT) by dummynet.
Better throughput is observed in the case that server is
used as a receiver-side, because server’s receive buffer is
larger than that of Android terminal. However, in a higher

latency environment, the performance in which server is
receiver is declined. This is because Android cannot increase
CWND enough in a higher-latency environment, and there-
fore CWND is running out. We have applied Kernel Monitor
developed for Android, and analyzed CWND. It is saturated
at 66: with this value CWND is not enough. Further details
about Kernel Monitor is explained in the next section.

V. TCP TUNING AND APPLY KERNEL MONITOR TO

ANDROID

We have tried to evaluate the effectiveness of changing
Congestion Window control algorithm in TCP/ Internet
Protocol (IP). We call it TCP Tuning in the rest of this paper.
Two Congestion Window control algorithms are available
for Android — Reno and Cubic (default). One of the most
suitable Congestion Window control algorithm for mobile
terminal is Westwood that tolerates packet loss, which
cannot be applied to Android in this case. This depends on
downloaded source code of Android when it is built.

A. Congestion Control Algorithms

A lot of congestion control algorithms are discussed
in the literatures [7][8]. Reno is the basic algorithm. A
wide variety of algorithm has been developed based on
Reno. Reno detects congestion by packet loss and it regards
transfer rate at the time as available bandwidth. For example,
if three consecutive Duplicate ACKs are received, Reno
regards it as occurring of packet loss and reduces CWND
by half. Moreover, it increases CWND on receiving every
ACK. Thus, Reno is an algorithm that increases the size
of CWND gradually and drops it by detecting congestion.
CUBIC [9][10] is an improved algorithms of Binary Increase
Congestion Control (BIC). BIC is an algorithm that in
normal TCP congestion control, linear search is executed
for available bandwidth, on the other hand, binary search
is executed in BIC. Window size of CUBIC is increased
gradually.

B. Result of Android TCP Tuning

Figure 8. TCP Throughput between Server and Android Terminal with
Various Algorithms

Figure 8 shows the result of performance that each Con-
gestion Window control algorithms are applied to Android.

300

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

Packets are sent from Android terminal to server. The
performance of a round-trip including 0.2% packet loss
nearly equal to that of a round-trip with no packet loss.
The performance of the case including packet loss has a
little decline, although there are no substantial difference
between them.

C. Performance of Android to Android Communication

Figure 9. Cubic in RTT=0 [ms] including 0.2% packet loss.

CWND of Android to Android communication is shown
in Figure 9 with basic communication by Kernel Monitor.
Figure 9 shows that CWND degrades sometimes during the
communication. Since the receiver side is Android terminal
in this experiment, this is considered to be resource shortage
in some cases.

D. Comparison of CWND size in TCP Tuning

Figure 10. TCP Throughput between Server and Android Terminal with
Various Algorithms

Next, we have observed the difference of CWND behavior
in the case of TCP Tuning with Kernel Monitor. Figure 10
shows the behavior of CWND with Cubic in RTT=0[ms]
including 0.2% packet loss. Figure 11 shows CWND with
Reno.

According to Figure 10 and 11, we can observe the way
of increasing CWND size is different depending on the
Congestion Window control algorithms. Comparing both
figures, Reno sets CWND size at half of ssthresh when
congestion occurs. Next time when congestion occurs, Reno

Figure 11. Reno in RTT=0 [ms] including 0.2% packet loss.

restarts CWND size at ssthresh and enters to congestion
avoidance phase. Thus, Reno reduces CWND size less than
that of Cubic when CWND size is decreased. The way
of increasing CWND size is different from another one,
although maximum value of CWND is between 40 and 45
in both cases. Throughputs of these algorithms are almost
equal. In the case including packet loss, the behavior of
CWND can be observed differently from another algorithm.

Figure 12. CWND value with Cubic in RTT=0 [ms]

Figure 13. CWND value with Reno in RTT=0 [ms]

Next, the behavior of CWND in both cases of TCP Tun-
ing is compared without packet loss. Although there were
no substantial difference between two algorithms without
packet loss in our previous work monitoring on Android-
x86 [6], Figure 12 and 13 show that the way of increasing
CWND is different from each other. This is because Android

301

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

mobile phone terminal increase CWND slower than the case
of Android-x86.

VI. CONCLUSIONS

In this paper, we have developed Kernel Monitor that
works on Android terminals. As a result, it becomes possible
that kernel of Android can be analyzed with almost the same
way as that of the Kernel Monitor of general-purpose PC. In
addition, with Kernel Monitor, we have analyzed the relation
of throughput and CWND behavior of Android during the
communication.

As a future work, we are going to analyze various
parameters of Android with Kernel Monitor, find peculiarity
of Android, and analyze that behavior in detail. Especially,
we are going to investigate into the behavior of simultaneous
communication by multiple Android terminals.

Moreover, since most of Android communication is per-
formed by applications on Dalvik, we are going to analyze
the specific feature of Dalvik.

REFERENCES

[1] Android:http://www.google.co.jp/mobile/android

[2] Takashi Majima, Tetsuo Yokoyama, Gang Zeng, Takeshi
Kamiyama, Hiroyuki Tomiyama, and Hiroaki Takeda, ”CPU
Load Analysis Using Dalvik Bytecode on Android,” IPSJ SIG
Technical Reports, March 2010

[3] Reika Higa, Kosuke Matsubara, Takao Okamawari, Saneyasu
Yamaguchi, and Masato Oguchi, ”Analytical System Tools for
iSCSI Remote Storage Access and Performance Improvement
by Optimization with the Tools,”In the 3rd IEEE International
Symposium on Advanced Networks and Telecommunication
Systems (ANTS2009), December 2009.

[4] Iperf:http://downloads.sourceforge.net/project/iperf/iperf/2.0.4

[5] Sourcery G++ Lite 2008q-3-72 for ARM
GNU/Linux:http://www. codesourcery.com/,
http://www.codesourcery.com/sgpp/lite/arm /portal/release644

[6] Miki Kaori, Masato Oguchi, Saneyasu Yamaguchi, ”A study
about behavior of Transport layer on Android terminals in
a wireless LAN,” In Summer United Workshops on Parallel,
Distributed and Cooperative Processing (SWoPP2010),August
2010.

[7] Kojima Akihisa, Ishihara Susumu, ”A Congestion Control of
Cooperate with Internetmediate Node for MANET” Multime-
dia, Distributed, Cooperative, and Mobile Symposium (DI-
COMO2007),July 2007.

[8] Hasegawa Go, Murata Masayuki, ”Transport-layer protocols
for high-speed and log-delay networks” The Institute of Elec-
tronics, Enformation and Communication Engineers, Technical
Committee Conferences,February 2007.

[9] Sangtae Ha, Injong Rhee, and Lisong Xu, ”CUBIC: A New
TCP-Friendly High-Speed TCP Variant” ACM SIGOPS Op-
erating Systems Review, Volume 42 Issue 5, pp.64-74, July
2008.

[10] Habibullah Jamal and Kiran Sultan, ”Performance Analysis of
TCP Congestion Control Algorithms” International Journal of
Computers and Communications, Issue 1, Volume 2, pp.30-38,
2008.

302

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

