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Abstract—We describe a load distribution algorithm in 

this paper that uses the current transaction response 

time as feedback for dynamically routing traffic to a 

minimal number of machines that run a business 

function (pool), with the constraint to consistently meet 

the response time requirements. This enables us to 

dynamically vary the number of nodes as per traffic 

levels, traffic mixes, and varying node capacities - a 

typical scenario in cloud environments. First, we present 

details of the basic algorithm followed by an extended 

version. Both have been implemented and tested in the 

eBay private cloud. We include graphs that show how 

the number of active nodes vary with incoming traffic 

volume while preserving the response time requirements. 

Results of using the extended version illustrate how the 

performance of the mirror environment closely matches 

that of the real environment while running production 

traffic. 

Keywords-Software Load Balancer; feedback; SLA; load 

distribution; minimum nodes; energy optimization 

I. INTRODUCTION 

eBay’s network sees varying amounts of traffic 
that show a diurnal variation, with traffic peaks during 
mid-day and evening hours. Early morning and 
midnight traffic varies from being half of the peak to 
even less, depending upon the business function 
served. Traffic handled by a typical node serving a 
typical business function on the network is shown in 
Fig 1. 

 
Figure 1. Traffic pattern seen in a typical node running a typical 

application 

 
This means a number of nodes allocated to handle 

peak traffic of a given business function or application 
are idling for a significant part of the day. However, 
capacity managers are often uneasy about reducing the 
size of application pools during times of reduced need 
because any unexpected increase in traffic might result 
in the response time requirements not being met.  

The above situation warrants two needs: 

 An automatic way to detect the saturation state 
of  nodes and augment the pool 

 Ability to readily deploy and shutdown nodes 
as requirement dictates 

Detection of the saturation state has to be dynamic 
and the system should be able to trigger the addition of 
new nodes in time, as needed, without affecting the 
application response time. It is possible to quickly add 
nodes capable of taking traffic in a responsive cloud 
setup using some of our earlier work, i.e., configure a 
node, deploy code, and bring it into traffic in a short 
amount of time. 

In addition, if the right number of nodes in an 
application pool is dynamically managed, it can result 
in a significant reduction in energy consumption in the 
data center, in terms of power and cooling, while 
preserving the application response times through the 
course of the day, irrespective of traffic levels.   

Nodes of the eBay cloud, about 185,000, come 

from various processor generations and systems 

technologies and thus, one Virtual Machine (VM) of a 

given size (CPU, memory, etc.) may vary significantly 

in capacity from another VM. Hence, using a round 

robin load dispatching will stress these nodes 

differently. In order to overcome the effect of varying 

technologies, weighted round robin is suggested. 

However, in a cloud environment, an application run 

by a guest VM does not have a dedicated environment 

on the host system and the background load on the 

host can vary considerably. This means the weights 

used would not only depend upon the technology used, 

but also vary with the other applications and their load 

on the host system. This performance variation is 

described in detail in [1].  Keeping the weights 

correctly defined becomes a complex task and does 

not guarantee the required transaction response time.  
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The main focus of this paper is to present a 

heuristic algorithm that minimizes the number of 
nodes needed to handle the traffic at any time with a 
constraint of preserving response time needs. This sets 
the stage to power machines up as needed and take 
down machines when not required for an extended 
period of time in the cloud environment.  

The rest of the paper is organized as follows. In 
Section II, we present a summary of the types of 
routing algorithms used, stating how our algorithm 
differs from those algorithms. Section III has the 
description of the basic algorithm, where the requests 
and their response time distribution are more or less 
similar. Since the algorithm relies on routing requests 
to a minimal number of nodes, we also detail a 
heuristic method to route transient bursts in traffic in 
the case where the maximum number of nodes 
available is less than necessary for that traffic level 
(degraded operation). Section IV contains the changes 
needed to extend this procedure to heterogeneous 
traffic. We detail in Section V how we verified the 
performance of this algorithm. Section VI has the 
detailed results for both implementations and Section 
VII presents our conclusions.  

 

II. CURRENT WORK IN CLOUD TRAFFIC 

ROUTING ALGORITHMS 

Load balancing algorithms mainly fall into two 
categories- static algorithms and dynamic algorithms. 
According to recent survey papers [2][3], optimal 
routing algorithms to maximize throughput used in the 
cloud are based on shortest queueing with maximum 
weight scheduling at each server. The same policy is 
shown to be queue length optimal. These algorithms 
are also shown to be optimal for resource usage under 
heavy traffic conditions. Algorithms described in these 
surveys are all dynamic and are based on stochastic 
arrivals. In all the algorithms addressed in the 
literature, the number of servers traffic is routed to is 
given apriori. All optimization is done to either 
maximize throughput or to provide the best experience 
for the request, given the set of available servers. 

Another survey paper by Katyal et al. [4] presents 
a thorough classification of routing requirements in the 
cloud and various algorithms that cater to these 
requirements. Static algorithms are based on routing to 
a given set of IP addresses or given machines that 
have the needed resources. Dynamic algorithms, 
presented in this paper, use the state of the system to 
route the request 

 There is a detailed comparison of various types of 
load balancing methods presented in a recent paper [5] 
that proposes the development of a new method for 
getting improved response times from servers. Active 
VM Load Balancer [5] comes close to what we 
propose, among the methods described in that paper. It 
takes into consideration the number of requests 

currently allocated to a server in deciding where to 
route the next incoming request. However, all 
available nodes are always open to receiving traffic 
and traffic is routed to nodes such that the quality of 
service is best. None of the algorithms described in [7] 
(Round Robin, Weighted Round Robin, Throttled 
Load Balancing, Dynamic Load Balancing using 
system utilization, and Active VM load balancer) vary 
the number of nodes to which traffic is routed.  

None of these algorithms surveyed deal with 
routing to a minimal number of servers at any time. 
What makes our work unique is the fact that our 
algorithm routes the requests to a minimal number of 
nodes, freeing up unused nodes while maintaining the 
application response time requirement.  
 
 

III. BASIC ALGORITHM DESCRIPTION 

All commands or requests (embedded in the URL) 
come to the Software Load Balancer (SLB) and are 
forwarded to the node of choice. In the basic version 
of the algorithm, we only consider requests 
corresponding to similar response times. 
Subsequently, we extend this to more realistic 
environments with heterogeneous requests. 

A. Algorithm Principle 

Little’s Law [6] describing the relationship 

between response time and number of requests in the 

system states 

L = x W            (1) 

where, ‘L’ is the number of requests in the system,  is 

the arrival rate of requests, and ‘W’ is the expected 

response time. In other words, response time ‘W’ and 

the number of requests in the system ‘L’ are linearly 

related. So, by controlling the maximum number of 

requests (or connections to a node, and equivalent to L 

in the above formula), we can control the response 

time effectively. This is the main idea behind this 

algorithm. 
In the eBay private cloud, Service Level 

Agreement (SLA) for various commands is typically 
governed by the distribution of the response times.  
Henceforth, we will refer to the response times as SLA 
in this paper. We use the historical median of the 
currently observed response time, with consideration 
to the time of day, for baseline (SLA-med), and the 2

nd
 

standard deviation (SLA-95) for tolerance. We 
accumulate the deviation of observed transaction 
response time of a node from SLA-med for each of a 
predefined set of transactions. As the accumulated 
value exceeds a certain predefined threshold 
proportional to SLA-95, we adjust the value for the 
maximum allowed connections into that node. To 
illustrate this, consider the following example. Let the 
median response time for a given command equal 
100ms (SLA-med=100ms) and the 95

th
 percentile (~2

nd
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standard deviation or P95) equal 200ms (SLA-
95=200ms). Now, if the next series of response times 
are 120ms, 90ms, and 150ms, then the differences 
accumulated would be 20ms, -10ms, and 50ms 
respectively, summing up to 60ms.  When the sum of 
response times of transactions up to a given number 
exceeds a given threshold, we take action by reducing 
the maximum number of connections allocated to that 
node.  

To understand the statistical basis of this, let each 
response time xi be normally distributed with a mean 

and standard deviation If yi = xi - then the sum 

of k such differences, i yi ~ N(0,√k* So the 

difference will exceed +/-3*√k* with a probability 
< 1%. When this happens, this either signifies a very 
rare occurrence or it shows a shift in distribution of the 
variable, implying that the response times are either 
systematically increasing or decreasing. If the 
response times are increasing, we could control it by 
decreasing the maximum connections we allow into 
the node and vice-versa. For normal distribution, mean 
should be equal to median; however, our empirical 
distribution is not normal and has outliers. Hence, in 
our method we choose median instead of mean as it is 
more stable and not influenced by outliers. Further, 
since the traffic volume and response times, 
influenced by the traffic, are not temporally constant, 
median is calculated over a moving window and SLA, 
taken from the historical data, is changed over time.  
 

The Software Load Balancer (SLB) maintains an 
ordered list of nodes and attempts to send the requests 
to nodes in that order. If a node that occurs earlier in 
the ordered list has connections available, then the 
request is sent to that node. The requests will use a 
minimal number of nodes as a result of maintaining an 
ordered list and sending traffic to the earlier nodes, 
until they cannot serve the request within the required 
service time constraint, likely because of lack of 
resources on that node. We can tune this threshold to 
achieve the necessary SLA by controlling the 
maximum connections into a node. Note that the 
action to increase or decrease the connections is based 
only on the SLA target (median and P95 values), 
which are essentially surrogates used to represent 
resource utilization. It is to be noted that poor 
performing applications will also be exposed by this. 

B. Procedure 

Flow charts in Fig. 2 and Fig. 3 show how the load 
distribution algorithm works in the SLB.  Fig. 2 shows 
how the maximum number of connections (CMax) is 
dynamically adjusted for any given node after each 
transaction (N) is completed by that specific node in 
the pool. Each node is initialized with its own CMax 
and they are based on historical observation of traffic 
handling capability of the overall pool, taking into 
consideration the time of  day, the day of week, and 
the season. Its value is adjusted, as described in the 

flow chart, based on the value of an accumulator 
which essentially maintains the sum of differences 
between the actual observed response times seen at the 
node and the expected response time or SLA. 

 
Figure 2. Basic Flow Chart to determine Max connection for each 

node 

The accumulator is reset whenever either a 
predefined maximum number of transactions (NMax) 
have been completed by the node or when CMax is 
modified as a result of the accumulator exceeding 
certain thresholds. A buffer of 5 connection counts 
while decreasing, prevents the reduction of 
connections too soon and from being unable to 
accommodate any surge in traffic while idling. It also 
ensures traffic is not black-holed into one node when 
transactions complete too fast because of error returns 
or bugs in the application. 

C. Node choice and Degraded Operation 

Fig. 3 shows how a choice of the node to route the 
request to is made when a new request comes into the 
SLB. It is to be noted that when there is no node found 
fit to route the request to (a case when there should 
have been more nodes made available but not fulfilled 
for whatever reason), the load distribution procedure 
drops to a lower grade of service level. Degraded 
service level is applicable only in cases when the 
system does not provision additional nodes in time. 

Routing can use the following in such cases. 

 Simple Round Robin or random routing to 

the available nodes. 
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 Use of a relaxed SLA (gradually increasing 

the SLA by 10% at a time) to determine a 

new CMax for each node and routing the 

request to the first node with available 

connections. We will refer to this method as 

Relaxed SLA. 
 

 
Figure 3. Basic Decision Flow Chart 

Details of degraded operation will be beyond the 

scope of this paper though both of the following 

methods have been implemented and verified. We use 

the latter method, in the final implementation, by 

always maintaining a secondary CMax value 

corresponding to relaxed SLAs. In a situation where 

no node is considered available under the relaxed 

SLA, we repeatedly try from the first node, using the 

secondary CMax (that is 10% higher than the value at 

the previous level of relaxation) until a node, if any, 

that permits traffic to be routed is found. This process 

of relaxing SLA is done iteratively.  

IV. HETEROGENOUS ENVIRONMENT  

The preliminary version of the algorithm 

described above is only applicable to a homogeneous 

environment where all requests have a response time 

requirement of the same order.  However, a single 

eBay application can handle requests of different types 

with varying response time needs, ranging from a few 

milliseconds to nearly a second. If incoming requests 

to such an application is handled as a single type with 

a large variation, this large variance makes it difficult 

to effectively adjust the CMax value.  

We extend the basic version of the algorithm by 
grouping commands with similar response times. 
Using the historical median and standard deviation of 
the response time for a command as input variables, 
we use KMeans to classify the commands into a 
limited number of groups. The number of groups is 
determined by the number of peaks observed in the 
distribution of response times of all commands.  For a 
distribution as shown in Fig. 4, the number of groups 
will equal to 2. In cases where multiple modes in the 
distribution come from the same command, due to 
multi-modal distribution of the response times of the 
same command, the number of groups to classify the 
commands should be appropriately reduced. Once the 
number of groups is chosen, KMeans classification is 
used to group the commands.   

In a production environment, the behavior of 
commands and their respective response time 
distribution varies continuously, mainly due to 
variability in user behavior. Therefore, the grouping 
process is repeated each hour to ensure minimum 
variability within a group. 

Once the commands are classified into multiple 
groups, we introduce SLB Group Modules as in Fig. 6, 
with each module handling only commands for a 
single group. 

 
Figure 4 - Histogram of response distribution of all commands 

 
Figure 5: Allocation of Commands to groups and Seeding CMax for 
each group 
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The next step is to allocate a base number of 
connections for each group. This is done by weighting 
the total number of connections according to arrival 
rate * median response time for each group. Fig 5 
summarizes this process. 
 

Fig 6 shows how commands are routed to 
individual SLB Group Modules by the master router. 

 

 
Figure 6. Routing of commands to SLB Modules in a 

Heterogeneous environment 

V. VERIFICATION ENVIRONMENT 

Algorithm verification was accomplished as 

follows. A typical eBay application (in Java) was 

deployed on 4 nodes each configured with 4 

processors and adequate memory, and backed by 

necessary services and databases. Transactions 

executed by this application during a typical day were 

captured from the production application logs and they 

were grouped by similar measured response times. 

This provided a workload to be later played back by 

JMeter [7] instances and targeted to the SLB running 

various algorithms. In the first phase, we restrict the 

transactions to a single group with homogeneous 

response times; the later phase will include 

transactions with wider response times. 

Multiple Jmeter instances were used to control 

traffic rate and patterns. Performance metrics were 

obtained through JMX interface built into the 

application as part of routine measurement 

infrastructure.  This infrastructure provides 

measurements such as throughput (Transactions Per 

Second), CPU utilization, and Transaction Response 

Time, besides JVM heap related metrics, aggregated 

over a selected interval such as 1 minute, 10 minutes, 

or one hour. For short experiments of an hour or two 

durations, 1-minute aggregation is used. In the first set 

of experiments presented, we use round-robin routing 

to handle the degraded state of operation. 

VI. RESULTS 

Here we discuss the results of executing this 

algorithm showing the traffic arrival pattern as well as 

the corresponding performance trend of each of the 

nodes with respect to the elapsed time. Fig. 7 shows 

the intensity of the load in terms of active users on the 

system as time goes by. Fig. 8 shows the throughput 

achieved by each of the nodes, their corresponding 

CPU utilizations, and response time of the requests on 

corresponding nodes. Discontinuities in the later part 

of Fig 8 and Fig. 9 are because of the measurement 

infrastructure dropping measurement data. 

 
Figure 7. Arrival Pattern with multiple load variations 

Fig. 8 demonstrates the recoverability of the 
system following this algorithm in a cyclical traffic 
pattern, including a small burst (from 9 to 12 minutes 
into the test) that was not compensated by an increase 
in the number of nodes resulting in a brief loss of 
response time SLA (800ms). However, as the load 
eases up after about 13 minutes into the run, CPU 
utilization starts to come down, also bringing the 
response time under SLA. Eventually, when the traffic 
slows down considerably, nodes start to drop off in 
LIFO fashion. As can be seen from the CPU 
utilization plot, Fig. 8b and Fig. 9b, this algorithm 
provides for completely removing a node from the 
pool between 15 and 20 minutes and, again, between 
32 and 45 minutes of this abridged test. 

The reader is encouraged to also note that one of 
the nodes shows 25% CPU utilization even before 
traffic begins in the graphs in Fig. 8b and Fig. 9b. 
Driving one of its 4 CPUs into an artificial loop and 
consuming 25% of the available resources 
purposefully degrades that node. This is to 
demonstrate the resilience of the algorithm when 
nodes of heterogeneous capabilities are presented, or 
during misbehavior of any of the nodes in the pool that 
may be unavoidable but not easy to extricate in time. 
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TABLE I.  COMPARISON OF RESPONSE TIMES 

 

 
Table I summarizes a test run where live traffic 

from multiple servers was mirrored into the SLB 
created to handle heterogeneous requests with 3 
groups. The servers allocated to the SLB were part of 
the eBay cloud, thus representing the same 
environment as the current servers. The reader is 
drawn to the highlighted row that shows how response 
time requirement was met, both median as well as 95

th
 

percentile, for the most predominant type of request in 
a typical traffic composition of the peak day of the 
week by executing the algorithm. 

 

Resource Consumption Ceiling 

Brief loss of SLA, from 9 to 12 minutes into the 
test, (Fig. 6c) was mainly because CPU was driven to 
about 95% utilization leaving insufficient processing 
capacity even for basic bookkeeping functions of the 
system. Adherence to the set response time SLA can 
be controlled by introducing an additional constraint 
on maximum resource utilization, or running the 
application at a slightly lower priority that gives 
system processes an opportunity to do their functions 
necessary for the stability of the system. 

An experiment was conducted to simulate this 
constraint by limiting the incoming traffic to use just 
under 90% CPU and the results given below in Fig. 9b 
are indeed encouraging in confirming that observation. 

VII. CONCLUSION 

We have presented in this paper an algorithm for 

efficient allocation of resources while adhering to 

response time requirements of applications under 

varying load conditions in cloud environments. The 

full potential of this algorithm can be realized with an 

adjunct system to flex up and flex down the nodes as 

needed. 

Future work should include a mechanism for a 

trigger to add and remove nodes, and has built-in 

hysteresis to avoid frequent add/remove. The trigger 

mechanism should have complete knowledge of the 

cloud environment and should provide enough lead 

time based on provisioning time needed by the 

underlying cloud management system and the traffic 

intensity or rate of change in the traffic.  
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  Median   P95 Count 

                

Command Target Ref T-R in % Target Ref T-R in % Ref 

AdvS 123 109 12.84 262 238 10.08 3892 

AllD 103 112 -8.04 208 218 -4.61 5540 

ChsM 457 459 -0.44 1228 1028 19.44 8960 

Cust 43 39 10.26 138 138 0.00 1206 

FavS 19 222 -91.44 106 417 -74.47 1010 

FndH 637 613 3.92 2236 2881 -22.37 43 

FndM 90 96 -6.25 1098 5315 -79.34 593 

GetC 76 75 1.33 76 75 1.33 1 

JsDi 569 559 1.79 1054 1066 -1.11 11625 

Prev 163 160 1.88 260 242 7.44 722 

RecC 363 368 -1.36 517 544 -4.96 82951 

SvSD 320 322 -0.62 549 558 -1.61 273873 

SePr 477 477 0.00 682 686 -0.45 1631 

SRPR 679 676 0.44 1400 1432 -2.23 1444307 

SRSS 560 561 -0.18 1111 1170 -5.04 200592 

SelO 585 579 1.04 1060 1059 0.09 62547 

SimI 575 583 -1.37 915 985 -7.11 131498 

V4Aj 244 104 134.62 323 196 64.96 4 

Vero 832 750.5 10.86 2830 907 212.14 2 

ZipP 44 42 4.76 96 71 35.21 426 

TOTAL             2231423 
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Figure 8. Under-provisioned System - SLA Violation at peak load.                                     8a – TPS, 8b – CPU, 8c – Transaction Time 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 9. System Behavior under controlled load – Opportunity to remove a node under light load.       9a – TPS, 9b – CPU, 9c – Transaction Time 

 

Nodes phased in gradually Nodes dropped out or eased as traffic goes down 
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