
SLA-constrained Feedback-based Software Load Distribution Algorithm that

Minimizes Computing Resource Requirement

S. R. Venkatramanan
PayPal

San Jose, CA

e-mail: raven@paypal.com

R. Hariharan and A. S. Murthy
eBay

San Jose, CA

e-mail: rehariharan@ebay.com and

asmurthy@ebay.com

Abstract—We describe a load distribution algorithm in

this paper that uses the current transaction response

time as feedback for dynamically routing traffic to a

minimal number of machines that run a business

function (pool), with the constraint to consistently meet

the response time requirements. This enables us to

dynamically vary the number of nodes as per traffic

levels, traffic mixes, and varying node capacities - a

typical scenario in cloud environments. First, we present

details of the basic algorithm followed by an extended

version. Both have been implemented and tested in the

eBay private cloud. We include graphs that show how

the number of active nodes vary with incoming traffic

volume while preserving the response time requirements.

Results of using the extended version illustrate how the

performance of the mirror environment closely matches

that of the real environment while running production

traffic.

Keywords-Software Load Balancer; feedback; SLA; load

distribution; minimum nodes; energy optimization

I. INTRODUCTION

eBay’s network sees varying amounts of traffic
that show a diurnal variation, with traffic peaks during
mid-day and evening hours. Early morning and
midnight traffic varies from being half of the peak to
even less, depending upon the business function
served. Traffic handled by a typical node serving a
typical business function on the network is shown in
Fig 1.

Figure 1. Traffic pattern seen in a typical node running a typical

application

This means a number of nodes allocated to handle

peak traffic of a given business function or application
are idling for a significant part of the day. However,
capacity managers are often uneasy about reducing the
size of application pools during times of reduced need
because any unexpected increase in traffic might result
in the response time requirements not being met.

The above situation warrants two needs:

 An automatic way to detect the saturation state
of nodes and augment the pool

 Ability to readily deploy and shutdown nodes
as requirement dictates

Detection of the saturation state has to be dynamic
and the system should be able to trigger the addition of
new nodes in time, as needed, without affecting the
application response time. It is possible to quickly add
nodes capable of taking traffic in a responsive cloud
setup using some of our earlier work, i.e., configure a
node, deploy code, and bring it into traffic in a short
amount of time.

In addition, if the right number of nodes in an
application pool is dynamically managed, it can result
in a significant reduction in energy consumption in the
data center, in terms of power and cooling, while
preserving the application response times through the
course of the day, irrespective of traffic levels.

Nodes of the eBay cloud, about 185,000, come

from various processor generations and systems

technologies and thus, one Virtual Machine (VM) of a

given size (CPU, memory, etc.) may vary significantly

in capacity from another VM. Hence, using a round

robin load dispatching will stress these nodes

differently. In order to overcome the effect of varying

technologies, weighted round robin is suggested.

However, in a cloud environment, an application run

by a guest VM does not have a dedicated environment

on the host system and the background load on the

host can vary considerably. This means the weights

used would not only depend upon the technology used,

but also vary with the other applications and their load

on the host system. This performance variation is

described in detail in [1]. Keeping the weights

correctly defined becomes a complex task and does

not guarantee the required transaction response time.

39Copyright (c) IARIA, 2016. ISBN: 978-1-61208-474-9

ICIW 2016 : The Eleventh International Conference on Internet and Web Applications and Services

The main focus of this paper is to present a

heuristic algorithm that minimizes the number of
nodes needed to handle the traffic at any time with a
constraint of preserving response time needs. This sets
the stage to power machines up as needed and take
down machines when not required for an extended
period of time in the cloud environment.

The rest of the paper is organized as follows. In
Section II, we present a summary of the types of
routing algorithms used, stating how our algorithm
differs from those algorithms. Section III has the
description of the basic algorithm, where the requests
and their response time distribution are more or less
similar. Since the algorithm relies on routing requests
to a minimal number of nodes, we also detail a
heuristic method to route transient bursts in traffic in
the case where the maximum number of nodes
available is less than necessary for that traffic level
(degraded operation). Section IV contains the changes
needed to extend this procedure to heterogeneous
traffic. We detail in Section V how we verified the
performance of this algorithm. Section VI has the
detailed results for both implementations and Section
VII presents our conclusions.

II. CURRENT WORK IN CLOUD TRAFFIC

ROUTING ALGORITHMS

Load balancing algorithms mainly fall into two
categories- static algorithms and dynamic algorithms.
According to recent survey papers [2][3], optimal
routing algorithms to maximize throughput used in the
cloud are based on shortest queueing with maximum
weight scheduling at each server. The same policy is
shown to be queue length optimal. These algorithms
are also shown to be optimal for resource usage under
heavy traffic conditions. Algorithms described in these
surveys are all dynamic and are based on stochastic
arrivals. In all the algorithms addressed in the
literature, the number of servers traffic is routed to is
given apriori. All optimization is done to either
maximize throughput or to provide the best experience
for the request, given the set of available servers.

Another survey paper by Katyal et al. [4] presents
a thorough classification of routing requirements in the
cloud and various algorithms that cater to these
requirements. Static algorithms are based on routing to
a given set of IP addresses or given machines that
have the needed resources. Dynamic algorithms,
presented in this paper, use the state of the system to
route the request

 There is a detailed comparison of various types of
load balancing methods presented in a recent paper [5]
that proposes the development of a new method for
getting improved response times from servers. Active
VM Load Balancer [5] comes close to what we
propose, among the methods described in that paper. It
takes into consideration the number of requests

currently allocated to a server in deciding where to
route the next incoming request. However, all
available nodes are always open to receiving traffic
and traffic is routed to nodes such that the quality of
service is best. None of the algorithms described in [7]
(Round Robin, Weighted Round Robin, Throttled
Load Balancing, Dynamic Load Balancing using
system utilization, and Active VM load balancer) vary
the number of nodes to which traffic is routed.

None of these algorithms surveyed deal with
routing to a minimal number of servers at any time.
What makes our work unique is the fact that our
algorithm routes the requests to a minimal number of
nodes, freeing up unused nodes while maintaining the
application response time requirement.

III. BASIC ALGORITHM DESCRIPTION

All commands or requests (embedded in the URL)
come to the Software Load Balancer (SLB) and are
forwarded to the node of choice. In the basic version
of the algorithm, we only consider requests
corresponding to similar response times.
Subsequently, we extend this to more realistic
environments with heterogeneous requests.

A. Algorithm Principle

Little’s Law [6] describing the relationship

between response time and number of requests in the

system states

L = x W (1)

where, ‘L’ is the number of requests in the system, is

the arrival rate of requests, and ‘W’ is the expected

response time. In other words, response time ‘W’ and

the number of requests in the system ‘L’ are linearly

related. So, by controlling the maximum number of

requests (or connections to a node, and equivalent to L

in the above formula), we can control the response

time effectively. This is the main idea behind this

algorithm.
In the eBay private cloud, Service Level

Agreement (SLA) for various commands is typically
governed by the distribution of the response times.
Henceforth, we will refer to the response times as SLA
in this paper. We use the historical median of the
currently observed response time, with consideration
to the time of day, for baseline (SLA-med), and the 2

nd

standard deviation (SLA-95) for tolerance. We
accumulate the deviation of observed transaction
response time of a node from SLA-med for each of a
predefined set of transactions. As the accumulated
value exceeds a certain predefined threshold
proportional to SLA-95, we adjust the value for the
maximum allowed connections into that node. To
illustrate this, consider the following example. Let the
median response time for a given command equal
100ms (SLA-med=100ms) and the 95

th
 percentile (~2

nd

40Copyright (c) IARIA, 2016. ISBN: 978-1-61208-474-9

ICIW 2016 : The Eleventh International Conference on Internet and Web Applications and Services

standard deviation or P95) equal 200ms (SLA-
95=200ms). Now, if the next series of response times
are 120ms, 90ms, and 150ms, then the differences
accumulated would be 20ms, -10ms, and 50ms
respectively, summing up to 60ms. When the sum of
response times of transactions up to a given number
exceeds a given threshold, we take action by reducing
the maximum number of connections allocated to that
node.

To understand the statistical basis of this, let each
response time xi be normally distributed with a mean

and standard deviation If yi = xi - then the sum

of k such differences, i yi ~ N(0,√k* So the

difference will exceed +/-3*√k* with a probability
< 1%. When this happens, this either signifies a very
rare occurrence or it shows a shift in distribution of the
variable, implying that the response times are either
systematically increasing or decreasing. If the
response times are increasing, we could control it by
decreasing the maximum connections we allow into
the node and vice-versa. For normal distribution, mean
should be equal to median; however, our empirical
distribution is not normal and has outliers. Hence, in
our method we choose median instead of mean as it is
more stable and not influenced by outliers. Further,
since the traffic volume and response times,
influenced by the traffic, are not temporally constant,
median is calculated over a moving window and SLA,
taken from the historical data, is changed over time.

The Software Load Balancer (SLB) maintains an
ordered list of nodes and attempts to send the requests
to nodes in that order. If a node that occurs earlier in
the ordered list has connections available, then the
request is sent to that node. The requests will use a
minimal number of nodes as a result of maintaining an
ordered list and sending traffic to the earlier nodes,
until they cannot serve the request within the required
service time constraint, likely because of lack of
resources on that node. We can tune this threshold to
achieve the necessary SLA by controlling the
maximum connections into a node. Note that the
action to increase or decrease the connections is based
only on the SLA target (median and P95 values),
which are essentially surrogates used to represent
resource utilization. It is to be noted that poor
performing applications will also be exposed by this.

B. Procedure

Flow charts in Fig. 2 and Fig. 3 show how the load
distribution algorithm works in the SLB. Fig. 2 shows
how the maximum number of connections (CMax) is
dynamically adjusted for any given node after each
transaction (N) is completed by that specific node in
the pool. Each node is initialized with its own CMax
and they are based on historical observation of traffic
handling capability of the overall pool, taking into
consideration the time of day, the day of week, and
the season. Its value is adjusted, as described in the

flow chart, based on the value of an accumulator
which essentially maintains the sum of differences
between the actual observed response times seen at the
node and the expected response time or SLA.

Figure 2. Basic Flow Chart to determine Max connection for each

node

The accumulator is reset whenever either a
predefined maximum number of transactions (NMax)
have been completed by the node or when CMax is
modified as a result of the accumulator exceeding
certain thresholds. A buffer of 5 connection counts
while decreasing, prevents the reduction of
connections too soon and from being unable to
accommodate any surge in traffic while idling. It also
ensures traffic is not black-holed into one node when
transactions complete too fast because of error returns
or bugs in the application.

C. Node choice and Degraded Operation

Fig. 3 shows how a choice of the node to route the
request to is made when a new request comes into the
SLB. It is to be noted that when there is no node found
fit to route the request to (a case when there should
have been more nodes made available but not fulfilled
for whatever reason), the load distribution procedure
drops to a lower grade of service level. Degraded
service level is applicable only in cases when the
system does not provision additional nodes in time.

Routing can use the following in such cases.

 Simple Round Robin or random routing to

the available nodes.

41Copyright (c) IARIA, 2016. ISBN: 978-1-61208-474-9

ICIW 2016 : The Eleventh International Conference on Internet and Web Applications and Services

 Use of a relaxed SLA (gradually increasing

the SLA by 10% at a time) to determine a

new CMax for each node and routing the

request to the first node with available

connections. We will refer to this method as

Relaxed SLA.

Figure 3. Basic Decision Flow Chart

Details of degraded operation will be beyond the

scope of this paper though both of the following

methods have been implemented and verified. We use

the latter method, in the final implementation, by

always maintaining a secondary CMax value

corresponding to relaxed SLAs. In a situation where

no node is considered available under the relaxed

SLA, we repeatedly try from the first node, using the

secondary CMax (that is 10% higher than the value at

the previous level of relaxation) until a node, if any,

that permits traffic to be routed is found. This process

of relaxing SLA is done iteratively.

IV. HETEROGENOUS ENVIRONMENT

The preliminary version of the algorithm

described above is only applicable to a homogeneous

environment where all requests have a response time

requirement of the same order. However, a single

eBay application can handle requests of different types

with varying response time needs, ranging from a few

milliseconds to nearly a second. If incoming requests

to such an application is handled as a single type with

a large variation, this large variance makes it difficult

to effectively adjust the CMax value.

We extend the basic version of the algorithm by
grouping commands with similar response times.
Using the historical median and standard deviation of
the response time for a command as input variables,
we use KMeans to classify the commands into a
limited number of groups. The number of groups is
determined by the number of peaks observed in the
distribution of response times of all commands. For a
distribution as shown in Fig. 4, the number of groups
will equal to 2. In cases where multiple modes in the
distribution come from the same command, due to
multi-modal distribution of the response times of the
same command, the number of groups to classify the
commands should be appropriately reduced. Once the
number of groups is chosen, KMeans classification is
used to group the commands.

In a production environment, the behavior of
commands and their respective response time
distribution varies continuously, mainly due to
variability in user behavior. Therefore, the grouping
process is repeated each hour to ensure minimum
variability within a group.

Once the commands are classified into multiple
groups, we introduce SLB Group Modules as in Fig. 6,
with each module handling only commands for a
single group.

Figure 4 - Histogram of response distribution of all commands

Figure 5: Allocation of Commands to groups and Seeding CMax for
each group

42Copyright (c) IARIA, 2016. ISBN: 978-1-61208-474-9

ICIW 2016 : The Eleventh International Conference on Internet and Web Applications and Services

The next step is to allocate a base number of
connections for each group. This is done by weighting
the total number of connections according to arrival
rate * median response time for each group. Fig 5
summarizes this process.

Fig 6 shows how commands are routed to
individual SLB Group Modules by the master router.

Figure 6. Routing of commands to SLB Modules in a

Heterogeneous environment

V. VERIFICATION ENVIRONMENT

Algorithm verification was accomplished as

follows. A typical eBay application (in Java) was

deployed on 4 nodes each configured with 4

processors and adequate memory, and backed by

necessary services and databases. Transactions

executed by this application during a typical day were

captured from the production application logs and they

were grouped by similar measured response times.

This provided a workload to be later played back by

JMeter [7] instances and targeted to the SLB running

various algorithms. In the first phase, we restrict the

transactions to a single group with homogeneous

response times; the later phase will include

transactions with wider response times.

Multiple Jmeter instances were used to control

traffic rate and patterns. Performance metrics were

obtained through JMX interface built into the

application as part of routine measurement

infrastructure. This infrastructure provides

measurements such as throughput (Transactions Per

Second), CPU utilization, and Transaction Response

Time, besides JVM heap related metrics, aggregated

over a selected interval such as 1 minute, 10 minutes,

or one hour. For short experiments of an hour or two

durations, 1-minute aggregation is used. In the first set

of experiments presented, we use round-robin routing

to handle the degraded state of operation.

VI. RESULTS

Here we discuss the results of executing this

algorithm showing the traffic arrival pattern as well as

the corresponding performance trend of each of the

nodes with respect to the elapsed time. Fig. 7 shows

the intensity of the load in terms of active users on the

system as time goes by. Fig. 8 shows the throughput

achieved by each of the nodes, their corresponding

CPU utilizations, and response time of the requests on

corresponding nodes. Discontinuities in the later part

of Fig 8 and Fig. 9 are because of the measurement

infrastructure dropping measurement data.

Figure 7. Arrival Pattern with multiple load variations

Fig. 8 demonstrates the recoverability of the
system following this algorithm in a cyclical traffic
pattern, including a small burst (from 9 to 12 minutes
into the test) that was not compensated by an increase
in the number of nodes resulting in a brief loss of
response time SLA (800ms). However, as the load
eases up after about 13 minutes into the run, CPU
utilization starts to come down, also bringing the
response time under SLA. Eventually, when the traffic
slows down considerably, nodes start to drop off in
LIFO fashion. As can be seen from the CPU
utilization plot, Fig. 8b and Fig. 9b, this algorithm
provides for completely removing a node from the
pool between 15 and 20 minutes and, again, between
32 and 45 minutes of this abridged test.

The reader is encouraged to also note that one of
the nodes shows 25% CPU utilization even before
traffic begins in the graphs in Fig. 8b and Fig. 9b.
Driving one of its 4 CPUs into an artificial loop and
consuming 25% of the available resources
purposefully degrades that node. This is to
demonstrate the resilience of the algorithm when
nodes of heterogeneous capabilities are presented, or
during misbehavior of any of the nodes in the pool that
may be unavoidable but not easy to extricate in time.

43Copyright (c) IARIA, 2016. ISBN: 978-1-61208-474-9

ICIW 2016 : The Eleventh International Conference on Internet and Web Applications and Services

TABLE I. COMPARISON OF RESPONSE TIMES

Table I summarizes a test run where live traffic

from multiple servers was mirrored into the SLB
created to handle heterogeneous requests with 3
groups. The servers allocated to the SLB were part of
the eBay cloud, thus representing the same
environment as the current servers. The reader is
drawn to the highlighted row that shows how response
time requirement was met, both median as well as 95

th

percentile, for the most predominant type of request in
a typical traffic composition of the peak day of the
week by executing the algorithm.

Resource Consumption Ceiling

Brief loss of SLA, from 9 to 12 minutes into the
test, (Fig. 6c) was mainly because CPU was driven to
about 95% utilization leaving insufficient processing
capacity even for basic bookkeeping functions of the
system. Adherence to the set response time SLA can
be controlled by introducing an additional constraint
on maximum resource utilization, or running the
application at a slightly lower priority that gives
system processes an opportunity to do their functions
necessary for the stability of the system.

An experiment was conducted to simulate this
constraint by limiting the incoming traffic to use just
under 90% CPU and the results given below in Fig. 9b
are indeed encouraging in confirming that observation.

VII. CONCLUSION

We have presented in this paper an algorithm for

efficient allocation of resources while adhering to

response time requirements of applications under

varying load conditions in cloud environments. The

full potential of this algorithm can be realized with an

adjunct system to flex up and flex down the nodes as

needed.

Future work should include a mechanism for a

trigger to add and remove nodes, and has built-in

hysteresis to avoid frequent add/remove. The trigger

mechanism should have complete knowledge of the

cloud environment and should provide enough lead

time based on provisioning time needed by the

underlying cloud management system and the traffic

intensity or rate of change in the traffic.

ACKNOWLEDGMENT

Authors would like to acknowledge Rami El-
Charif, former Technical Fellow at eBay Inc., for his
valuable contribution in discussions and guidance
throughout this exploratory design and implementation
of this algorithm and eBay management for its support.

REFERENCES

[1] Hariharan R, Murthy A.S., and Venkatramanan S. R.,

“How to handle noisy neighbors?”, CMG Conference

Proceedings, 2014, pp. 345-351.

[2] Kuppuswamy, K, and Mahalakshmi, J, “A survey on

routing algorithms for cloud computing, IJCA

Proceedings on International Conference on Computing

and information Technology 2013 IC2IT (4), pp. 5-8,

December 2013.

[3] Mohana, S. J, Saroja, M, and Venkatachalam, M,

“Cloud balancing- A survey”, International Journal of

Engineering Research and Development, Volume 8,

Issue 8 (September 2013), pp. 13-17

[4] Katyal, M, and Mishra, A, “A comparative study of

static and dynamic load balancing algorithms”,

International Journal of Distributed and Cloud

Computing, Volume 1 Issue 2 December 2013, pp. 5-14

[5] Zaouch, A. and Benabbou, F, “Load balancing for

improved quality of service in a cloud”, International

Journal of Advanced Computer Science and

Applications, Vol 6, No. 7 (2015), pp. 184-189.

[6] Little, J. D. C. (1961). "A proof for the queuing

formula: L = λW", Operations Research 9 (3), pp. 383–

387. JSTOR 167570

[7] Apache Foundation. “JMeter: Graphical server

performance testing tool” Available for download at

http://jmeter.apache.org/download_jmeter.cgi, Last

Access Date: 21APR2016

 Median P95 Count

Command Target Ref T-R in % Target Ref T-R in % Ref

AdvS 123 109 12.84 262 238 10.08 3892

AllD 103 112 -8.04 208 218 -4.61 5540

ChsM 457 459 -0.44 1228 1028 19.44 8960

Cust 43 39 10.26 138 138 0.00 1206

FavS 19 222 -91.44 106 417 -74.47 1010

FndH 637 613 3.92 2236 2881 -22.37 43

FndM 90 96 -6.25 1098 5315 -79.34 593

GetC 76 75 1.33 76 75 1.33 1

JsDi 569 559 1.79 1054 1066 -1.11 11625

Prev 163 160 1.88 260 242 7.44 722

RecC 363 368 -1.36 517 544 -4.96 82951

SvSD 320 322 -0.62 549 558 -1.61 273873

SePr 477 477 0.00 682 686 -0.45 1631

SRPR 679 676 0.44 1400 1432 -2.23 1444307

SRSS 560 561 -0.18 1111 1170 -5.04 200592

SelO 585 579 1.04 1060 1059 0.09 62547

SimI 575 583 -1.37 915 985 -7.11 131498

V4Aj 244 104 134.62 323 196 64.96 4

Vero 832 750.5 10.86 2830 907 212.14 2

ZipP 44 42 4.76 96 71 35.21 426

TOTAL 2231423

44Copyright (c) IARIA, 2016. ISBN: 978-1-61208-474-9

ICIW 2016 : The Eleventh International Conference on Internet and Web Applications and Services

https://en.wikipedia.org/wiki/John_Little_(academic)
https://en.wikipedia.org/wiki/Operations_Research_(journal)
https://en.wikipedia.org/wiki/JSTOR
https://www.jstor.org/stable/167570
http://jmeter.apache.org/download_jmeter.cgi

Figure 8. Under-provisioned System - SLA Violation at peak load. 8a – TPS, 8b – CPU, 8c – Transaction Time

Figure 9. System Behavior under controlled load – Opportunity to remove a node under light load. 9a – TPS, 9b – CPU, 9c – Transaction Time

Nodes phased in gradually Nodes dropped out or eased as traffic goes down

45Copyright (c) IARIA, 2016. ISBN: 978-1-61208-474-9

ICIW 2016 : The Eleventh International Conference on Internet and Web Applications and Services

