
A Logical Design Process for Columnar Databases

João Paulo Poffo∗ and Ronaldo dos Santos Mello†
Informatics and Statistics Department
Federal University of Santa Catarina
Florianópolis/SC, Brazil 88040-90

Email: jopapo@gmail.com∗ and r.mello@ufsc.br†

Abstract—Emerging technologies often break paradigms. NoSQL
is one of them and is gaining space with the raising of Big
Data, where the data volume exceeded the petabyte frontier and
the information within these data can be of great importance
to strategic decisions. In this case, legacy relational databases
show themselves inadequate to efficiently manage these data and,
consequently, their traditional project methodologies should must
be reviewed to be suitable to new data models, such as the NoSQL
columnar model. Regarding columnar database design, the liter-
ature lacks of methodologies for logical design, i.e., processes that
convert a conceptual schema to a logical schema that optimize
access and storage. Thus, this work proposes an approach for
logical design of columnar databases that contributes to fill the
void between classic project methodologies and the technological
forefront with the NoSQL movement, in particular, columnar
databases. Preliminary experiments had demonstrated that the
methodology is promising, if compared with a baseline.

Keywords–database design; logical design; nosql; columnar
database.

I. INTRODUCTION
With the advent of the cloud computing paradigm, the op-

portunity to provide DataBase Management Systems (DBMS)
as services is strengthened, as witnessed by Amazon RDS and
Microsoft SQL Azure [1]. NoSQL is one of these movements
which is standing out by providing DBs with high availability
and scalability. These characteristics are essential to social
media, profile repositories, content providers, among other
applications [2].

NoSQL is a commonly known term that covers several
non relational DBs which can manage high amounts of data.
They are categorized by key/value, column, document and
graph DBs [3][4]. In DB-Engines [5], there is a ranking of
DB products and in the top ten, seven of them are relational.
However, what draws the attention are the three others: Mon-
goDB (a document DB), Cassandra (a columnar DB) and Redis
(a key/value DB).

A DB is called columnar when the smallest information
unit to be manipulated is a column. The best way to imagine
it is like a two-level data aggregation structure [6]. As in
key/value DBs, the first level is a key that identifies an ag-
gregation of interest. The difference with respect to columnar
DBs is that the second level contains several columns that
can hold simple or complex values, and these columns can be
accessed all at once or one at a time.

The traditional DB design methodology has three main
phases: conceptual, logical and physical design [7]. In contrast,
this sequence seems to have been suppressed for columnar
DBs. It neglects the conceptual design phase, starting with the
column sets design and how they will be accessed [8].

Based on this motivation, this work proposes a reconcilia-
tion between the classical DB design approach and columnar

DBs, contributing with a logical design process that considers
the semantics of the application domain (a conceptual schema)
and aims to achieve an optimized conversion from a conceptual
schema to a logical columnar schema. A conceptual model
must be expressive, simple, minimal and formal [9] and there
are several models that respect these standards. In this work,
the Extended Entity-Relationship (EER) conceptual model is
considered. We also propose several conversion rules from
an EER conceptual schema to a logical notation suitable to
the columnar data model. This logical data model is another
contribution of this work, which can also be applied to
represent a reverse engineered schema of a columnar DB. The
most adherent usage of our approach is in long-term running
high-growth applications that needs to scale, like never-ending
games and social network, among others. All these features
are demonstrated through an experimental evaluation.

Preliminary related work are [10], where the conceptual
model are mapped into hierarchical model (XML), and [11],
who proposes to do the same, but targeting object-oriented
DBs. However, they do not focus on NoSQL DB design. We
just borrow from them some ideas for the proposed conversion
rules. In [12], it is presented a NoSQL Abstract Model (NoAM)
which aims to embrace the data model of any existing NoSQL
DB, and [13] focuses on Cassandra columnar DBMS. Sharp et
al. [14] and Schram et al. [15] suggest limited orientations for
the logical and physical design with columnar DBs. However,
all of them lack information about how to provide logical
design based on a conceptual schema. Other works [4][8][15]
deal with logical design using columnar DBs, but do not
present detailed conversion rules as well as an evaluation of
their proposals. Distinctly, Meijer and Bierman [16] present
a mathematical model to NoSQL DBs and demonstrates their
correlation with the relational model. However, it does not
make reference to columnar DBs nor deals with conceptual
design or conversion process. In short, the literature still lacks
a comprehensive approach to this problem.

The rest of this paper is organized as follows. Next section
analyzes related work, exposing their strengths and weakness,
as well as the gap filled with this work. In Section III,
fundamentals about DB design and NoSQL, with emphasis
in columnar DBs, are presented. Section IV is dedicated to
our proposal for logical design of columnar DBs, including its
formalization. Some experiments are designed and evaluated
in Section V, followed by our conclusions in Section VI.

II. RELATED WORK
Besides the classical methodology for relational DB de-

sign [7], some conceptual to logical conversion for non-
relational DBs proposals are found, such as XML DBs [10],
object-oriented DBs [11] and NoSQL DBs [12][13]. Still,
there are several guidelines for how to directly convert some

29Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-474-9

ICIW 2016 : The Eleventh International Conference on Internet and Web Applications and Services



logical structures in columnar DBs [4][8][14][15][17]. What
is evident in this current literature is the lack of a clear and
comprehensive approach that transforms a conceptual schema,
such as an EER schema, into a logical schema for columnar
DBs.

Schroeder and Mello [10] proposes a mapping approach
from a conceptual model (EER) to an equivalent XML logical
model. Its process comprises conversion rules for all EER con-
cepts and it is improved by considering workload information.
Despite its different focus, its methodology is well-suited to
convert complex objects as our work. The same applies to
[11], whose target is an object-oriented DBs. Both have a
comprehensive EER-to-logical conversion approach into their
specific outputs, but they do not explore NoSQL DBs.

The proposal [12] stands for a NoSQL DB design solution
to any kind of NoSQL data model. The basis of their approach
is what they call an abstract data model using aggregates called
NoAM. Their process considers a conceptual data model, a
design of aggregated objects in NoAM, a high level NoSQL
DB design and its implementation. Although the proposal acts
in the three design phases, it does not focus on columnar
DBs, and does not consider all the conceptual constructs, such
as composite attributes and N:M relationships, nor formalizes
conversion rules between a conceptual modeling and logical
representations in the NoAM model. The approach in [13]
is similar but more complete, as it covers all concepts from
an ER conceptual model (without extensions introduced by
EER) for a logical design. A logical columnar DB schema
for Cassandra is also proposed. The proposed conversion is
query-oriented and enforces redundancy, which is consistent
with three followed assumptions: know your data, know your
queries, aggregate and duplicate your data. Our approach
differs from this one by not considering aggregates and being
validated experimentally.

Taking a look now at industry efforts, Microsoft presents
detailed instructions to the creation of columnar DBs optimized
for writing and reading [14]. These guidelines are enriched
by considering the Wide-Column concept, which is similar
to a matrix transposition, i.e., the focus is on the columns
instead of the rows. They determine what must be done to
maximize scalability, availability and consistency, but they lack
the conceptual data modeling related to the domain.

The case study in [15] presents a system whose relational
access and data volume grows very fast (Twitter data). So,
the authors propose the usage of a columnar DBMS (Cas-
sandra). All of the study, challenges and system construction
are discussed. They explain how to perform the transition
to the columnar DB and their results. They manually use
workload information to optimize the design by applying
denormalization. They also presents a practical case and its
challenges, but they lack a formalization and validation of
the process. Besides, they also suppress the conceptual design
phase.

Similarly, only to contrast relational and non-relational
approaches, Wang and Tang [8] show simple principles of
conceptual design using UML and the straightforward conver-
sion to Cassandra. However, their proposal considers a very
restrict set of conceptual structures, and does not formalizes
its process. In [4], the conceptual design (based on the ER
model) of a case study for an application related to blog posts
is converted to MongoDB (a document DB) and Neo4j (a graph
DB). Their focus is not on the conversion itself, but the access

TABLE I. RELATED WORK COMPARISON.

Feature W
or

k
Sc

hr
oe

de
r

&
M

el
lo

20
08

[1
0]

Fo
ng

19
95

[1
1]

Sh
ar

p
et

al
.

20
13

[1
4]

Sc
hr

am
&

A
nd

er
so

n
20

12
[1

5]
W

an
g

&
Ta

ng
20

12
[8

]
K

au
r

&
R

an
i

20
13

[4
]

M
ei

je
r

&
B

ie
rm

an
20

11
[1

6]
B

ug
io

tti
et

al
.

20
14

[1
2]

C
he

bo
tk

o,
K

as
hl

ev
&

L
u

20
15

[1
3]

T
hi

s
w

or
k

20
16

Conceptual design
Logical design
Conversion rules
Columnar DB
Validation

optimization, enriching our process with their troubleshooting.
Differently, the approach in [16], named CoSQL, presents a
mathematical model to key/value DBs and demonstrates its
correlation with the relational model. It also defines a common
query language to relational and non-relational DBs based on
the relational algebra. Its proposal to defined a logical layer
had inspired our conversion process by proving a conceptual-
to-logical correlation for NoSQL DBs. However, this approach
does not formalize a conversion process nor validate it.

Table I shows a comparison of related work. It highlights
five features: Conceptual design indicates that there is at
least one kind of conceptual model considered by the work;
Logical design indicates that the related work considers logical
design; Conversion rules indicate if the work clearly defines
rules to transform a conceptual schema into a logical schema;
Columnar DB focuses on this kind of DB and, lastly, if the
approach reports some kind of Validation. To each feature is
assigned one of three signs: the work fully supports the feature

, the feature is not mentioned or the feature is partially
treated .

As shown in Table I, only our proposal fully covers all
the considered features. The formalization of the conceptual-
to-logical conversion rules, the definition of the conversion
process and its validation are the main contributions of this
work. These points are detailed in Section IV.

III.FUNDAMENTALS
This section presents the fundamentals related to the clas-

sical DB design, NoSQL DBs and columnar DBs.

A. DB Design
The DB design aims to rightly define real world facts and

their relationships, as well as their modeling in a target DB,
aiming at maximizing storage and access requirements. The
classical phases of DB design are: data requirements gathering,
conceptual, logical and physical design [7].

Several conceptual models are available for DB design, like
Unified Modeling Language (UML), Object with Roles Model
(ORM), and the most representative one, the EER [7][9]. The
three main EER concepts are: (i) entity (an abstraction of a
set of similar real world objects), (ii) relationship (a semantic
connection between entities), and (iii) attribute (a property
associated with an entity or relationship).

Figure 1 shows an example of an EER schema. In this ex-
ample we can identify abstract constructs such as classification
(entities and their attributes), aggregation (composite attributes
or association relationships) and generalization (subset and
superset behavior) with associated constraints. In traditional

30Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-474-9

ICIW 2016 : The Eleventh International Conference on Internet and Web Applications and Services



A

CB D

R1 R2

R3E H

F G

(t,d)

(1,1) (1,1)

(0,1)

(0,N)(0,N)

(0,N)

Union (p)

id1
a1

a5

a3 (1,5)

id2
a4 (0,1)

a2 (1,3) a2 1
a2 2

Figure 1. An example of EER schema [10].

DB design methodologies, this conceptual schema is the basis
for generating a logical and then a physical schema in the
target DB model. In the first case, this mapping is supported
by a conversion process that offer alternatives to generate an
optimized DB schema.

B. NoSQL
A DB is based on a data model and a set of operations

that allow data definition and manipulation. Data manipulation,
in particular, respects the classical Atomicity, Consistency,
Isolation and Durability (ACID) properties [6]. Until recently,
this fundamental and untouchable acronym ruled sovereign.

However, digital data show today a fast growth in Volume,
Variety and Velocity (VVV). Such a phenomena is called Big
Data, which typically corresponds to massive data collections
that cannot be suitable handled by traditional DBMSs that
respect to the ACID properties. In order to address Big
Data management, movements like NoSQL and NewSQL had
emerged [3].

NoSQL, in particular, covers a wide range of technologies,
architectures and data models. NoSQL DBs usually do not
ensure ACID properties in order to avoid the overhead to
guarantee them and provide better scalability and availability
[18]. Instead, they are Basically Available, hold a Soft state
and are Eventually consistent (BASE), i.e., availability and
partitioning are prioritized to the detriment of consistency.

NoSQL DBs comprises the following data models [3]: (i)
key/value DBs store data items identified by a key and indexed
by hash tables. Values can contain both simple and complex
data, but are accessed as a single unit. Queries are usually only
directly by key; (ii) columnar DBs store heterogeneous sets of
columns for each data item. Each column holds a simple value
or, in some cases, a set of nested columns; (iii) document DBs
store data items that are called documents, which are usually
stored in XML, JSON or BSON formats. Unlike key/value DB,
values can be semistructured and one document usually hold
a set of attributes; (iv) graph DBs maintain nodes and edges,
and both can hold attributes. It is the only one that support
explicit relationships.

The focus of this paper is on columnar DBs, which is
detailed in the following.

Column family

Key Column 1 Column 2 . . . Column N
Data Time Data Time Data Time

Key 2 Column 1’ Column 2’ Column N’
Data Time Data Time Data Time

...
. . .

Key M Column 1M Column 2M Column NM
Data Time Data Time Data Time

Figure 2. Columnar DB data model representation.

C. Columnar DBs
Columnar DBs (also known as extensible records,

wide-column, column-family, column-oriented or BigTable-
implementations) are so named because the smallest portion
of information increment is a column. Each column has
basically a name and a value, and a column value can hold a
simple value or a set of columns, as stated before. A column
also contains a timestamp which is used to manage mutual
exclusion regarding concurrency problems.

A column family is a container of lexical ordered
columns [19]. Thus, columns that are read together must be
kept in the same column family. It is possible to add undeclared
columns to a column family. Its flexible structure allows it.
So, it is frequently sparse. A key uniquely identifies each
line in a column family. This key can define, according to
its partitioning strategy, in which cluster server the data are
stored. The same key can be used in different column families.
Figure 2 shows a basic representation of this data model.

Cassandra is a popular columnar DBs, originally created by
Facebook and now maintained by Apache [20]. It has some
special features like super column and composite keys. The
former works like a nested column family. The latter is a way
to add one dimension to the key into a column family.

It is important to empathize that there is not a global rule
or standard with respect to the columnar DB data model.
This is highlighted by Table II, that shows which concepts
are supported by the main columnar DBMS. It indicates three
kinds of information regarding each DB product: it supports
the concept , it does not support it , or it’s possible to
workaround the concept or it exists in a limited way .

TABLE II. DATA MODEL CONCEPTS FOR COLUMNAR DATABASES.

Feature D
B

C
as

sa
nd

ra

R
ia

k

H
B

as
e

D
yn

am
oD

B

A
cc

um
ul

o

Te
ra

da
ta

Sy
ba

se
IQ

Collection data type
Flexible structure
Composite keys
Super columns

Columnar DBs can be horizontally and vertically parti-
tioned. Some of the good candidates to use this kind of
DB are logs, content providers, personal pages, blogs, among
others [6][21]. On the other hand, columnar DBs are not a good
choice when the scope of a system is not clear, because of the
high cost on deep structural changes. Despite flexible, changes
almost always must be adjusted in the application and may
deteriorate its performance. This is not the case of classical
relational approach because of its rigid structure. Therefore,
columnar DBs are more sensitive to query pattern changes than

31Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-474-9

ICIW 2016 : The Eleventh International Conference on Internet and Web Applications and Services



X
# x1 Y

y1
[] y2
# Z

Z
# z1 W 1:L
˜ z2 w1
[n:m] z3
ˆ Y

Figure 3. Overview of the diagrammatic notation of a columnar DB schema.

in the schema, other than relational DBs. This fact strengthens
the need for a well-defined conceptual and logical design.

IV.PROPOSAL
This section details our approach for logical design of

columnar DBs. First, it introduces a logical design notation for
columnar DBs. In the following, the overall conversion process
of an EER conceptual schema to a logical columnar DB
schema is defined in terms of high level algorithms, inspired
by [9].

The general reasoning of our conversion process is to
offer a logical schema with data sets that support nested
column families and bidirectional relations. The first strategy
is achieved by the use of shared keys, which provides access
efficiency as close related data are stored near each other. The
second strategy is used when the first strategy is not applied,
being achieved through artificial relations. Both concepts are
detailed in the following. We decided not to consider the
traditional aggregate approach for logical modeling of NoSQL
databases, followed by most of the related work, because it
can generate deep nested data relationships which cannot be
efficient, in terms of accessing, for some application domains,
as illustrated in our experimental evaluation (see Section V).

A. Logical Notation for Columnar DBs
The conceptual modeling represents relevant data but not

how they are persisted in the DB [7]. So, it is necessary to
provide some abstraction level of the DB to the user. The
generation of this abstraction level is called logical design,
and it comprises the transformation of a conceptual schema
into a logical schema suitable to the DB data representation.

The conceptual-to-logical conversion is a transformation
between data models in different abstraction levels. As there
is no a standard for the columnar DB data model, we define
a logical notation for this data model. The concepts of our
logical notation are defined in the following.

Definition 1 (Column): A column c is a tuple c =
{(n, v, t)|n = name, v = value, t = timestamp}.

Definition 2 (Column family): A column family is a map
f : A 7→ B where A = {key} is a set of unique keys, and B =
{c} is a set of columns such that, for every α ∈ A, there is a
unique object f(α) ∈ B.

Definition 3 (Shared key): Given a logical columnar DB
schema S so that F ∈ S is a column family and F ′ ∈ S is
another column family, a key is shared if key(F ) = key(F ′),
i.e., a key is a shared key if the same value is used the identifier
of two or more column families.

Definition 4 (Artificial relation): Given a logical columnar
DB schema S so that F ∈ S is a column family and F ′ ∈ S
is another column family, there is an artificial relation if ci ∈
F = key(F ′), i.e., if any column in a family match the key
of a column family.

Figure 3 shows the notation for the logical representation
of a columnar DB schema proposed in this paper. A column
family is represented by a rectangle with the name on top and

an optional cardinality constraint in its side. This cardinality
constraint allows the definition of repeatable columns within
a family when a column family is nested into another one
(W, for example). Each internal line in a column family
represents a column where the hash symbol (#) means the
key, tilde (˜) means a mandatory column, caret (ˆ) means an
artificial relation and brackets ([]) define unrestricted internal
collections. Brackets with values ([n:m]) mean an explicit
cardinality constraint. No column data types are described in
this version of the logical notation as NoSQL DBs supports
virtually anything.

A shared key is the reuse of the key of another column
family. It is represented by the coupling of two or more column
families in a way that its hierarchy is visible. In other words,
a column family that intends to share the key of another one
is welded with the column family that holds the original key,
like X to Y, and Z to W. The artificial relation is represented
by a line that connects column families whose tips are arrows
or diamonds, like Z to Y. The arrow means the existence of a
column with the caret (that stores the key of the other family)
and the diamond means an aggregation on the column. Finally,
the 1:L relationship (also introduced in this work) represents
a not known superior limit, like 1:N relationships, but this
limit is not high. Usually the ”L” side is associated to weak
entities (employee dependents, for example). It allows the use
of shared keys, which cannot be used in 1:N relationships.

B. Conversion Process
It is important to notice that, due to the flexible nature of

columnar DBs, it does not enforce several restrictions. The
application must be responsible for it. It is argued in [22]
that the absence of a DB schema is a fallacy. A schema
always exists, but instead of being enforced by the DB, the
application assumes the control of data integrity constraints. In
this context, the concept of shared key, as introduced before,
was defined to deal with the absence of referential integrity
in columnar DBs. This strategy avoids the number of physical
references between column families, and, as a consequence,
the overhead to manage the referential integrity.

The high level algorithms for mapping EER constructs to
the columnar DB logical representation are presented in the
next Sections. These algorithms are based on the notion of
entity paternity, which is defined as follows.

Definition 5 (Entity Paternity): Given two entities EP and
EC , we say that EP is parent of EC (or, in other words, EC

is child of EP ), if: (a) EC is a specialized entity and EP is
the generic entity in a specialization relationship; (b) EP is the
entity that unifies two or more entities in an union relationship,
being EC one of the unified entities; (c) EP is a mandatory
entity that has 1 as maximum cardinality on its side in a 1:1,
1:N or N-ary relationship.

In short, our process traverses all entities and, for each
entity, it checks if there is a relationship where this entity
is a child. If it exists, the parent entity in the relationship
is prioritized, i.e., it is converted first. This checking and
prioritization is repeated until there is no more parent entities.

When all column families are generated from entities (in
a recursive way that takes into account paternity relation-
ships), column family keys are defined and entity attributes
are converted. The process ends with the conversion of the
relationships, which can generate new columns and column
families to represent adequately its dependencies. All of this

32Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-474-9

ICIW 2016 : The Eleventh International Conference on Internet and Web Applications and Services



conversion reasoning is detailed in the following.

C. General Conceptual to Logical Schema Conversion
The algorithm in Figure 4 is the main conversion process.

Its input is an EER schema. All the entities of the EER
schema are traversed:2 (line 2) and, for each one, the algorithm
in Figure 6 is triggered:3. Its output is added to the set of
column families that compose the columnar DB logical schema
and then returned:5.

Input: EER schema (α)
Output: Columnar DB logical schema (α′)

1 α′ ← ∅
2 foreach ε ∈ α|ε is an entity do
3 α′ ← α′ ∪ createFamily(ε)
4 end
5 return α′

Figure 4. Conceptual to logical schema conversion

Example 1 (Schema conversion): The conversion of the
EER schema of Figure 1 generates the columnar DB logical
schema in Figure 5 according to algorithm in Figure 4.

When an entity is visited by the loop, its parent entity
is converted before it, in a recursive way, if it exists (see
algorithm in Figure 6). Each converted entity is marked to
avoid its repeated conversion. The loop in this algorithm aims
to reach all EER schema entities, even the ones that are part of
disjoint groups of related entities. A general example is given
in the following, and details about the conversion of each EER
construct are further exemplified.

D. Column Family Generation
The input of algorithm in Figure 6 can be an entity or a

relationship and it outputs a set of column families. For each
analyzed entity, this algorithm provides the conversion of all
other conceptual constructs related to it (relationship types and
attributes). The same holds if a relationship is being treated.
First, it initializes the set of output column families:1. If the
entity or relationship was not visited yet:2, then a list of EER
concepts is created with generalizations, unions and association
relationships where the input entity is child:3. If the input is a
relationship, it is assumed that it does not have relationships,
so the list is empty.

Then, for each concept:4, the same algorithm is triggered
recursively with its parent as input:5. Next, a new column
family is created:7 with a name:8 and a key (see algorithm in
Figure 7). In the following, for each attribute of the input:10,
algorithm in Figure 9 is called:11 to define a suitable column
(or even an aggregated column family) to the new column
family. The new column family is added to the result set:13,

A
# id1 B R1 C D R3

a1 a5 # E
# E # H

E
# id E-a2 1:3
ˆ R3 a2 1
ˆ R1 a2 2

F
# id F-H

# H

G
# id G-H
[1:5] a3 # H

H
# id2
a4
ˆ R3
ˆ F
ˆ G

Figure 5. Example of output columnar DB logical schema generated from
the EER schema of Figure 1.

followed by the traversing of the list created before, as well
as reflexive or N:M relationships of the input entity:14. Thus,
for each relationship, algorithm in Figure 10 is triggered with
the relationship and the new column family. Finally, its output
is added to the result set:15 and the result set is returned:18.

Input: Entity or relationship (ε)
Output: Column family set (ω)

1 ω ← Preexistent column family referring to ε or empty set
2 if checkAndMarkIfIsFirstVisitTo(ε) then
3 πP ← generalizations, unions, n-ary and binary parent

relationships of ε, in this order.
4 foreach π ∈ πP do
5 ω ← ω ∪ createFamily(Parent entity in π)
6 end
7 ε′ ← New empty column family
8 ε′.Name← ε.Name
9 ε′.Key ← defineKey(ε)

10 foreach δ ∈ ε|δ is an attribute do
11 ω ← ω ∪ convertAttribute(ε′, δ)
12 end
13 ω ← ω ∪ ε′
14 foreach π ∈ ε|π ∈ πP ∨ π.Type ∈ {reflexive, N :M} do
15 ω ← ω ∪ convertRelationship(π, ε′)
16 end
17 end
18 return ω

Figure 6. Algorithm for entity or relationship to column family conversion
(createFamily)

Example 2 (Column family generation): The conversion
of the entity A occurs seamlessly creating the homonym
column family and its attributes. Next, when converting B,
it searches for parent relationships and finds a total disjoint
generalization. As the parent entity A is already converted,
it creates the column family B and decides for a shared key.
The same occurs for C and D.

E. Shared Key Generation
The algorithm in Figure 7 is responsible to generate a

shared key. It receives as input an entity or relationship and
returns the set of attributes that compose its key. Initially,
the result set receives the key of the input:1. If such a key
does not exist:2, then if the input is an entity:3, it builds a
list of generalization or mandatory 1:L or 1:1 relationships,
respectively:4, so the result set receives the first item on the
list:5. We chose the first item in order to get the parent rela-
tionship with the most potential cardinality, so the shared key
concept can be better exploited. If the input is a relationship:6,
the key is the side of the relationship with maximum and
minimum cardinalities as 1:7. Finally, if the result set is still
empty:9, a customized key is defined as a new column ID:10.

Input: Entity or relationship (ε)
Output: Attributes which compose the key (ω)

1 ω ← ε.Key
2 if ω = ∅ then
3 if ε is entity then
4 π ← Parent generalizations, 1:L and 1:1 parent mandatory

relationships of ε, in this order
5 ω ← π1.Key
6 else
7 ω ← key of the (1,1) side of ε, if exists
8 end
9 if ω = ∅ then

10 ω ← {ID}
11 end
12 end
13 return ω

Figure 7. Algorithm for key definition (defineKey)

Example 3 (Shared key generation): Consider the initial
conversion of entity A of Figure 1. As it has an identifier
attribute (id1), it is defined as the key of its corresponding
column family. As A is a parent entity of B, C, D, R1 and R3,
they all share its key, as shown in Figure 5.

33Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-474-9

ICIW 2016 : The Eleventh International Conference on Internet and Web Applications and Services



F. Artificial Relation Generation
When a shared key is not possible, e.g., for the conversion

of N:M relationships and partial generalizations, an artificial
relation is defined. The term artificial stands for the fact
that it is a relation whose integrity must be managed by
the application, not the DBMS. The algorithm in Figure 8
is invoked by the algorithm in Figure 10, but we present
it close to the definition of shared keys for sake of better
understanding. The algorithm in Figure 8 is responsible to
define artificial relationships in a columnar DB logical schema
through the generation of additional column families for them.
These additional column families are categorized as auxiliary
(when it shares the key with its parent) or intermediary (when
it is an independent family referenced by an auxiliary one).

Input: Two column familes (ε1; ε2) and the relationship (π)
Output: Additional column families (ω)

1 ω ← ∅
2 if ε1 was created for a relationship then
3 ε′ ← ε1
4 else
5 ε′ ← Preexistent column family between ε1 and ε2
6 end
7 if ε′ = ∅ then
8 εT ← Temporary entity whose name is composed by the names

of the input associated with ε1 through a 1 : 1 relationship
9 ε′ ← createFamily(εT )

10 ω ← ε′
11 end
12 δ1 ← New key column
13 δ1.Name← ε2.Name
14 ε′ ← ε′ ∪ δ1
15 if π.Type 6= (N :M) ∨ π promoted to associative entity then
16 δ2 ← New column that represent an artificial relation
17 δ2.Name← ε2.Name
18 ε2 ← ε2 ∪ δ2
19 end
20 return ω

Figure 8. Algorithm for artificial relation creation
(createArtificialRelation)

The input of this algorithm are two column families (first
and second ones), and the relationship. It outputs additional
column families necessary to the definition of the artificial
relation. The algorithm is divided in two parts: (i) the definition
of the source column family, and (ii) the definition of the
artificial relation.

In order to define the source column family, it checks if
the first column family was created from a relationship:2. If
yes, it means that it can behave as an auxiliary family that
can receive additional columns (Example 4), so it is set as the
source column family:3. If not:4, the algorithm searches for
a column family that was created to associate the two input
column families (Example 9), and sets it as the source family:5.
After that, if no source family was defined:7, a temporary entity
is created:8 with a 1:1 relationship with the entity referring
the first column family (to allow the definition of a shared
key), and the result of the conversion of the temporary entity
is set as the source column family (Example 5).

After the source column family is defined, the artificial
relation is established by creating a new key column:12, naming
it:13 and adding it to the source column family:14. Only if the
relationship is not N:M or it is promoted to an associative
entity:15 , the other side of the artificial relation is defined as a
column:16. It is named:17 and added to the second column
family:18. At the end, the generated column family set is
returned.

Example 4 (Artificial relation for N-ary relationship):
A N:M relationship promoted to an associative entity is
handled exactly like a N-ary relationship. When the entity

E of Figure 1 is going to be converted, it is detected that
it has a N:M relationship (R3) with H that was promoted to
an associative entity. So, it creates the column family R3.
The definition of the key detects that there is a parent 1:1
relationship with D through R2 and shares its key. Then, an
artificial relation is defined from E to H through R3 (column
E). When H is further converted, the artificial relation for the
other direction is created (column H in R3 - see Figure 5).

Example 5 (Artificial relation for 1:N relationship):
When the conversion process analyzes entity E, it detects that
it has one parent entity B through R1. So, B is converted first.
After, the column family E is created and its relationships are
converted, in this case, R1. During R1 conversion (Algorithm
in Figure 10), it detects that it is a binary 1:N relationship
with attributes. Therefore, a column family is created for the
relationship. When it happens, the algorithm detects that it can
share a key with its mandatory side. So, the column family
R1 is created and it receives the key of E as a secondary key.
In this way, B can reach any E. Finally, E receives a column
referencing R1 and the association becomes bidirectional.

G. Column Generation
The algorithm in Figure 9 is responsible to convert an

attribute of an entity or relationship. It receives as input the
target column family and the attribute to be converted. The
output is a set of additional column families. The first part
verifies if the attribute is composite:2. If yes, it creates a
new column family:3, names it:4, gets the key of the input
column family:5 (shared key), sets the same cardinality from
the conceptual attribute:6 and then, for each child attribute of
the composite attribute:7, it calls itself recursively:8 to convert
it, and the output is added to the result set. Next, the created
column family is added to the result set:10. If the attribute
is not composite:11, a new column is created:12, named:13, the
cardinality of the attribute is copied:14 and the column is added
to the input column family:15. At the end, the result set with
the possible created column families is returned:17.

Based on the algorithm in Figure 9, we can summarize
the attribute conversion cases as follows: (i) a key attribute
generates a column family key, i.e., a mandatory and unique
information within a column family; (ii) a mandatory and
optional attribute generates a column in a column family;
(iii) a multivalued attribute generates a collection column
in a column family; (iv) a composite attribute, as it is not
a native feature of columnar DBs, it is represented as a new
column family with a shared key; (v) a multivalued composite
attribute is converted in the same way of a composite attribute
with the additional definition of a cardinality constraint for the
generated column family.

Example 6 (Column generation): The attribute a1 of the
entity A is an example of a monovalued mandatory attribute.
It generates a simple column in A. The column family E-a2
is an example of how a composite attribute is converted. The
composite attribute itself turns into a column family and their
attributes become columns.

H. Relationship Conversion
This section details the conversion of EER relationships to

a columnar DB logical schema. In traditional relational DB
design, the conversion of 1:1 relationships usually merges
the involved entities into an unique component in the logical
schema [10][11]. Instead, our approach creates at least two

34Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-474-9

ICIW 2016 : The Eleventh International Conference on Internet and Web Applications and Services



Input: Column family (ε′) and attribute (δ) to convert
Output: Additional column families (ω)

1 ω ← ∅
2 if δ is composite then
3 ε′′ ← New empty column family
4 ε′′.Name← ε′.Name+ δ.Name
5 ε′′.Key ← ε′.Key
6 ε′′.Cardinality ← δ.Cardinality
7 foreach δ′ ∈ δ|δ′ is a child attribute do
8 ω ← ω ∪ convertAttribute(ε′′, δ′)
9 end

10 ω ← ω ∪ ε′′
11 else
12 δ′ ← New column
13 δ′.Name← δ.Name
14 δ′.Cardinality ← δ.Cardinality
15 ε′ ← ε′ ∪ δ′
16 end
17 return ω

Figure 9. Algorithm for attribute to column conversion
(convertAttribute)

column families (a third one is additionally created if the
relationship has attributes) and typically a shared key is used
to nest it. The advantage of this approach is that the shared key
puts data together through sharding. The merging of entities
can leverage underutilization as all the columns of a key are
loaded to memory.

Different from 1:1, 1:N relationships always generate
artificial relations. It is also defined an auxiliary column family
associated with the parent side through a shared key to handle
relationship information. This separation allows the auxiliary
entity to concentrate reads because it knows the exact keys of
related data and the application can conveniently decide which
information is important to acquire.

For N:M relationships, two difficulties arise: (i) how to
access the data of the related entity through the relationship,
and (ii) how to do it efficiently. For a better adherence to
columnar DBs, it is necessary to both column families to know
each other keys. Thus, instead of including the relationship
in a particular column family, it is created an auxiliary one
on each column family that refers each other in order to
maintain bidirectional navigability, separation of concerns and
keeping related data near.This strategy is expanded to N-ary
relationships, where the main difference is that it has more
dimensions associated to it and the creation of the relationship
column family is mandatory to hold all the references and its
different cardinalities.

Example 7 (Binary relationship conversion): The
relationship R1 is 1:N. In this case, an artificial relation is
created. We have a parent column family B and a child E.
The parent receives an auxiliary column family R1 with a
shared key that points to the child and the attributes of the
relationship. The child receives a column referring the parent.
So, it is possible to navigate to B children through R1, and E
can access its parent through the new column.

The conversion of relationships is supported by the algo-
rithm in Figure 10. It deals with all existing EER relationship
types. Its input is a relationship and the source entity, and its
output is a column family set. In the first part of the algorithm,
we initialize the result set to empty:1 and proceed the analysis
and treatment of each type of relationship:2:

• Binary or reflexive relationship does not consider a
promoted associative entity or N:M relationship:3. If
the relationship has attributes:4, it creates a column
family:5 and makes it the parent of the relationship:6.
Then, if the parent and the source column family do

not share the key or the relationship is reflexive:8, the
creation of an artificial relation is triggered:9 and the
output is added to the result set;

• N-ary relationship considers a promoted associative
entity or N:M relationship:12. It creates a column
family to the relationship:13 and a temporary binary
relationship (with the same cardinality on the source
entity, and maximum cardinality 1 on the output
column family:14) that is converted recursively. Its
output is added the result set:15;

• Generalization or union relationship initially checks
if it is partial or the entity do not share a key
with its parent:18. If so, an inverted artificial relation
between them is created, using the source as parent
and the parent entity in the relationship as child:19.
The generated output is added to the result set.

Temporary relationships are transient and its lifetime ends
within its scope. So, it ceases to exist after its use. Its objective
is to break the input relationship into smaller binary ones that
can be handled by the available structures in our notation for
columnar DBs.

Input: Relationship (π) and source column family (ε)
Output: Column family set (ω)

1 ω ← ∅
2 switch π.Type do
3 case (Binary ∨ Reflexive) ∧ not (N:M ∧ promoted to associative

entity) do
4 if π.Attributes 6= ∅ then
5 ω ← createFamily(π)
6 π.Parent← ω
7 end
8 if ε.Key 6= π.Parent.Key ∨ π.Type = Reflexive then
9 ω ← ω∪ createArtificialRelation(π.Parent, ε, π)

10 end
11 end
12 case N-ary ∨ (N:M ∧ promoted to associative entity) do
13 εR ← createFamily(π)
14 πT ← Temporary binary relationship with the same

cardinality on ε and maximum equals 1 on εR
15 ω ← ω ∪ εR ∪ convertRelationship(πT , ε)
16 end
17 case Generalization ∨ Union do
18 if π is partial or any entity in π cannot share key among

them then
19 ω ← ω∪ createArtificialRelation(ε, π.Parent, π)
20 end
21 end
22 end
23 return ω

Figure 10. Algorithm for relationship convertion
(convertRelationship)

Example 8 (Generalization conversion): Entity A is the
parent entity in the generalization relationship and it is con-
verted before its specializations. For entity B, the algorithm
verifies that the parent entity (A) is already converted and then
proceeds its own conversion. So, the family B is created and,
as it is a specialized entity in a total generalization, it shares
its parent key. In this case, no new column family is created
as the relationship is represented by the shared key. The same
reasoning is applied to the entities C and D.

Total unions are similar to total and disjoint generalizations
(t,d) because all instances have a single inheritance. Thus,
the same reasoning to convert generalizations applies. Partial
unions are more complex because of the possibility of multiple
inheritance, as well as none at all. Thus, the conversion process
treats this kind of relation as a N-ary relation.

Example 9 (Union conversion): The entity H is a partial
union of F and G. Considering that the first entity to be
converted is F, the conversion process initially checks if F
parents were already converted, as explained before. In this

35Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-474-9

ICIW 2016 : The Eleventh International Conference on Internet and Web Applications and Services



Game First

Second Player

Rounds Round

N

N

1

1

1

N

username
firstname
lastname

moves (0,N)
comments (0,N)
actions (0,N)
spells (0,N)

Figure 11. EER schema obtained through a reverse engineering process from
the logical modeling for a game domain presented in [12]

Figure 12. A sample in the NoAM abstract model [12].

case, H was not treated yet, and then H is converted first. The
H column family is created and, as it does not have any parent
relation, the processing returns to F, which is then converted.
At this time, it is verified that the union is partial and an
intermediary column family to hold the artificial relation is
created (F-H). The same holds to G.

V. EXPERIMENTAL EVALUATION
The aggregation strategy for logical modeling prioritizes

data accessing, avoiding read and write operations on different
nodes. This is the reasoning behind NoAM [12], a close related
work that also deals with NoSQL logical design. Such a
strategy considers that is most efficient to gather all related
data in a single operation. However, some problems arise
from this strategy, like transporting irrelevant data for query
operations or the need to persist the whole aggregate for update
operations. This experiment intends to explore these limitations
and to highlight our approach as a more efficient solution. The
case study proposed by NoAM is a game application, and we
compare it with our approach by adapting their experiments
to a scenario which game data grows to a deterrent size. This
scenario is suitable to modern game applications that, in many
cases, simply never end.

To evaluate our approach, the EER schema in Figure 11
was generated through a reverse engineering process from
the NoAM logical modeling (Figure 12), composed by two
aggregates: Player (with game references) and Game (with

Player
# username First Second
firstname # Game # Game
lastname

Game
# id Rounds
ˆ secondPlayer # Round
ˆ firstPlayer

Round
# id
[] moves
[] comments
[] actions
[] spells
ˆ Game

Figure 13. Logical modeling for a columnar DB in the game domain
generated by our proposal.

Player

mary Mary
Wilson

rick Ricky
Doe

ann Anne
Smith

First
mary 2345
mary 2611
rick 2345

Second
rick 2345
ann 2611
mary 2345

Game

2345 mary
rick

2611 mary
ann

Rounds
2345 1
2345 2
2345 3
2345 4
2345 5
2611 6
2611 7

Round

1

m1,m2,...
c1,c2,...
a1,a2,...
s1,s2,...
2345

2 ...

Figure 14. Physical modeling sample for in the game domain generated by
our proposal.

Figure 15. Physical modeling sample for in the game domain in NoAM [12].

its rounds).
The EER schema is then converted by our approach into

the columnar logical schema presented in Figure 13. A sample
of persisted data generated by our approach is shown in
Figure 14, and part of this same sample represented by the
NoAM approach is shown in Figure 15. The main difference
between both proposals is that ours expands the number of
column families from two to six. However, three of them are
referenced by shared keys (First, Second and Rounds),
so the data is near and easily referenced. Three artificial
relations exist and the same number of references are made
by the NoAM proposal (firstPlayer, secondPlayer
and Game). Besides, all the attributes in both modelings are
similar, except for opponent, that it is assumed to be the
opposite player.

In order to evaluate our proposal, we have implemented
both logical schemata in the Cassandra columnar DB, and we
compare read/write operation timespan according to a scenario
which we believe that the NoAM approach cannot handle well.
For running our experiments, a remote Cassandra cluster with
three nodes was deployed. Its overall performance is not the
focus of this work nor the latency with data transport.

An algorithm to rule the experiment was defined and
consists of two parts: (i) creating a game and; (ii) playing
the game. In short, for each created game, a hundred rounds
multiplied by the game count were created. Each game has
two players and both are updated to maintain a list of games
they are playing. A game creation is a single write operation.
To update the list of games of both players, 2 reads and 2
writes are necessary. To add a round to a game, it is needed
1 read and 1 write operation. Thus, at the end of the fourth
game, 2.020 reads and writes were accomplished.

The presented charts are comparisons between NoAM
(solid line) and our proposal (dotted line). The X axis rep-
resents the iterations of the algorithm, and the Y axis is the
average spent time in seconds. Figure 16 shows the spent time
with write operations for the four games and its rounds, and
Figure 17 shows the spent time with read operations. The deep
drops in these charts (near iterations 100, 300, 600 and 1000)
denotes the start of new games (with empty rounds).

The experiment shows that, as the data blocks (or aggre-
gates) grows, in NoAM approach, the timespan also raises.
For small sized aggregates, the timing is similar for both
approaches. However, when a single game reaches 70 rounds,
they have a drop of 50% in terms of performance comparing
to our approach. With a hundred rounds, NoAM is 2.6 times
slower. Therefore, the increasing size of the aggregate impacts

36Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-474-9

ICIW 2016 : The Eleventh International Conference on Internet and Web Applications and Services



Figure 16. Average write time for a thousand iterations.

Figure 17. Average read time for a thousand iterations.

almost linearly to their performance decrease. This situation
does not occur in our proposal because we make use of
significantly smaller amount of data for each operation, and
it happens independently of the hierarchical height on Y axis.
Thus, our approach continues to be scalable as the number of
game rounds grows.

The only inconvenient is that to gather all game data,
our approach needs to pose several queries. However, these
round-trips have a minimized impact on performance, as recent
Application Programming Interfaces (API) can issue several
queries in a single request to the server.

VI.CONCLUSION
This work represents a connection between classical DB

design and columnar DBs, proposing an efficient approach for
DB columnar logical design from an EER conceptual schema.
Our contributions are a logical notation for columnar DBs, a
set of conversion algorithms that generates a logical schema
in that notation, as well as an experimental evaluation that
compares our approach against a close related work (the NoAM
approach), with very promising results. Our logical notation
defines a minimal set of concepts needed to achieve a suitable
structure to be implemented in a columnar DB.

The experimental evaluation shows a data modeling for
columnar DB which reveals to be impracticable to NoAM [12],
but viable to our approach.

We argue that scaled and massive data is not only for data
mining. This work makes a progress in an area that urges
to make NoSQL a reliable alternative to classical relational

DB design. Domains where data that tends to grow very fast
require efficient logical modeling strategies, as proposed in this
paper.

Future work include experiments with existing benchmarks
and other typical Big Data domains, like social networks, as
well as the consideration of the application workload infor-
mation in our logical design process. Workload information
is important as a guide to define optimized logical structures
for the most frequently accessed data by the application
operations.

REFERENCES
[1] C. Curino et al., “Relational cloud: A database service for the cloud,”

in 5th Biennial Conference on Innovative Data Systems Research,
Asilomar, CA, January 2011, pp. 235–240.

[2] T. Hoff, “What the heck are you actually using nosql for?”
http://highscalability.com/blog/2010/12/6/what-the-heck-are-you-
actually-using-nosql-for.html, 2010, retrieved: Apr, 2016.

[3] A. B. M. Moniruzzaman and S. A. Hossain, “Nosql database: New
era of databases for big data analytics-classification, characteristics and
comparison,” International Journal of Database Theory and Application,
vol. 6, no. 4, 2013, pp. 1–14.

[4] K. Kaur and R. Rani, “Modeling and querying data in nosql databases,”
in Big Data, 2013 IEEE International Conference on, Oct 2013, pp. 1–7.

[5] Solid IT, “Db–engines ranking,” http://db-engines.com/en/ranking,
2016, retrieved: Apr, 2016.

[6] P. J. Sadalage and M. Fowler, NoSQL distilled: a brief guide to the
emerging world of polyglot persistence. Pearson Education, 2012.

[7] S. B. Navathe, C. Batini, and S. Ceri, “Conceptual database design:
an entity-relationship approach,” Redwood City: Benjamin Cummings,
1992.

[8] G. Wang and J. Tang, “The nosql principles and basic application of
cassandra model,” in Computer Science Service System (CSSS), 2012
on International Conference, Aug 2012, pp. 1332–1335.

[9] R. Elmasri and S. B. Navathe, Database systems. Pearson, 2005.
[10] R. Schroeder and R. d. S. Mello, “Improving query performance on

xml documents: a workload-driven design approach,” in Proceedings of
the eighth ACM symposium on Document engineering. ACM, 2008,
pp. 177–186.

[11] J. Fong, “Mapping extended entity-relationship model to object model-
ing technique,” vol. 24, 1995, pp. 18–22.

[12] F. Bugiotti, L. Cabibbo, P. Atzeni, and R. Torlone, “Database design for
nosql systems,” in Conceptual Modeling. Springer, 2014, pp. 223–231.

[13] A. Chebotko, A. Kashlev, and S. Lu, “A big data modeling methodology
for apache cassandra,” in Big Data (BigData Congress), 2015 IEEE
International Congress on. IEEE, 2015, pp. 238–245.

[14] J. Sharp, D. McMurtry, A. Oakley, M. Subramanian, and H. Zhang,
“Data access for highly-scalable solutions: Using sql, nosql, and poly-
glot persistence,” Microsoft patterns & practices, 2013.

[15] A. Schram and K. M. Anderson, “Mysql to nosql: data modeling
challenges in supporting scalability,” in Proceedings of the 3rd annual
conference on Systems, programming, and applications: software for
humanity. ACM, 2012, pp. 191–202.

[16] E. Meijer and G. Bierman, “A co–relational model of data for large
shared data banks,” Communications of the ACM, vol. 54, no. 4, 2011,
pp. 49–58.

[17] L. Cabibbo, “Ondm: An object-nosql datastore mapper,” Faculty of
Engineering, Roma Tre University. Retrieved June 15th, 2013.

[18] A. Milanović and M. Mijajlović, “A survey of post-relational data
management and nosql movement,” Faculty of Mathematics University
of Belgrade, Serbia, 2012.

[19] R. Mathies, “Cassandra data model,”
http://wiki.apache.org/cassandra/DataModelv2, 2015, retrieved: Apr,
2016.

[20] Apache Foundation, “Cassandra wiki,” http://wiki.apache.org/cassandra,
2009, retrieved: Feb, 2015.

[21] R. Cattell, “Scalable sql and nosql data stores,” SIGMOD Record,
vol. 39, no. 4, 2010, pp. 12–27.

37Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-474-9

ICIW 2016 : The Eleventh International Conference on Internet and Web Applications and Services



[22] B. Schwartz, “Schemaless databases don’t exist,”
https://vividcortex.com/blog/2015/02/24/schemaless-databases-dont-
exist, 2015, retrieved: Apr, 2016.

38Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-474-9

ICIW 2016 : The Eleventh International Conference on Internet and Web Applications and Services


