
LDaaSWS: Toward Linked Data as a Semantic Web
Service

Leandro José S. Andrade and Cássio V. S. Prazeres
Computer Science Department

Federal University of Bahia
Salvador, Bahia, Brazil

Email: {leandrojsa, prazeres}@dcc.ufba.br

Abstract—The Web was originally created to link HTML doc-
uments. Nowadays, the Web has improved its potential, and
heterogeneous applications, resources, data and users can interact
with each other. Two proposals for improvement of the current
Web, Semantic Web and Web Services, have established standards
that make the interoperability between heterogeneous Web appli-
cations possible. Another way to improve the current Web is the
Web of Data, which provides guidelines (Linked Data) about how
to use Semantic Web standards for publication and definition of
semantic links on diverse data sources. However, there is a gap in
the integration between Web Service based applications and Web
of Data applications. Such a gap occurs because Web Services
are “executed” and Web of Data applications are “queried”.
Therefore, this paper introduces the LDaaSWS (Linked Data as
a Semantic Web Service), in order to provide Web Services for
data sources from the Web of Data. The LDaaSWS can fulfill the
current gap between Web Services and Web of Data applications
by making the Web of Data “executed” through Web Services.
In order to compare this work with current approaches for Web
Services, this paper also presents an evaluation of LDaaSWS by
comparing with SOAP Web Services.

Keywords–Web of Data; Semantic Web Services; OWL-S; Linked
Data.

I. INTRODUCTION

The initial purpose of the Web was to create hyperlinks
between Hypertext Markup Language (HTML) documents
[1]. From this initial purpose, the capability of the Web has
been improved extensively, for example, now making user
collaboration (Web 2.0) [2] and applications interoperability
(Web API and Web Services) possible [3]. According to Martin
et al. [4], standards should be developed for the Web and,
furthermore, Web Services have to produce and consume data
through a common protocol to make data interchange between
heterogeneous applications possible.

In this case, standards are means to describe Web Services
with languages such as Web Services Description Language
(WSDL) and Web Application Description Language (WADL),
which present service syntactical description of Simple Object
Access Protocol (SOAP) services [5] and RESTful services
[6], respectively. After Berners-Lee’s [7] first article about
the Semantic Web, several works have introduced different
approaches for the semantic description of Web Services, in
order to automate tasks, such as discovery, composition and
invocation of Web Services [8] [9]. As a result, several ap-
proaches were proposed as standards for semantic description
of Web Services, among which the Semantic Markup for Web
Services (OWL-S) used in this work.

On the other hand, Berners-Lee [10] introduced a set of
guidelines (Linked Data) to publish data on the Web. These
rules indicate to use URI for identify resources, the HTTP
protocol to access resources, Resource Description Framework
(RDF) and SPARQL Query Language for RDF (SPARQL)
for description, query, and hyperlinks to other resources. Such
guidelines were inspired by a project to publish open data on
the current Web: Linking Open Data [11]. Furthermore, the
Web of Linked Data is being called the Web of Data [1].

Developers of applications from the current Web want
to make their applications functionalities and/or data avail-
able to be accessed by other applications [12]. According
to O’Reilly [2], there are several different data sources that
demand applications through combining such data sources
to offer composite services. These kinds of applications are
known as mashups, which integrate Web resources to create
new applications [13]. However, developing such mashups
demands programming efforts for program developers, because
they have to discover and compose the available Web resources
[14] .

Therefore, there is a gap in the integration between these
two Web evolution trends: Web Service based applications and
Web of Data applications. Such a gap occurs because Web
Services are “executed” through Hypertext Transfer Protocol
(HTTP) requests, and Web of Data applications are “queried”
through SPARQL queries. This issue is current and relevant, as
several authors presented works [15] [16] [17] with approaches
to address it. Some of these works introduce approaches to
describe Web Services with Linked Data and others introduce
approaches to produce Linked Data through Web Services or
Web APIs. In order to overcome this gap, this paper introduces
the Linked Data as a Semantic Web Service (LDaaSWS), in
order to provide Semantic Web Services of data sources from
the Web of Data. In summary, this paper proposes to make
access on Linked Data sources through Web Services possible.

In order to establish the Linked Data cloud as a Web Ser-
vice provider, LDaaSWS implements Semantic Web Services
described with OWL-S. This approach enables the automatic
integration of data from the Web of Data with others types
of OWL-S based services (for instance, SOAP and RESTful).
Furthermore, LDaaSWS also enables the automatic generation
of Linked Data queries from service requests described on
OWL-S.

Figure 1 presents the overall view of our proposal by
explaining a possible scenario of a tourism application, which
needs a Web Service that receives as input a city and gives as

56Copyright (c) IARIA, 2015. ISBN: 978-1-61208-412-1

ICIW 2015 : The Tenth International Conference on Internet and Web Applications and Services

outputs some information about this city (latitude and longi-
tude, hotels, description, population size and phone code). In
this scenario, there is not a Web Service that fulfill the request,
however some parts of the resquest can be attend. In Figure 1
shows two OWL-S/WSDL Web Services (Services 2 and 5 in
Figure 1) that fulfill output about hotels and phone code of
city. It has other Web Service (Service 1 in Figure 1), now
a LDaaSWS one, that suplement information about latitude
and longitude of the city. However, in this scenario there are
not Web Services for outputs about description of city and
population size (Services 3 and 4 in Figure 1). Then, we
present an extension (Section III) to language OWL-S in order
to allow the description of LDaaSWS proposed in this article,
used in Service 1 in Figure 1.

Figure 1. LDaaSWS overall view.

We developed a module for discovery of new LDaaSWS
services to fulfill parts of services requests without a match
(showed in Section IV). In Figure 1 the outputs 3 and 4 do
not have services to attend, so we can use the module for
discovery LDaaSWS to do it.

In this sense, this paper introduces the following results:
i) OWL-S ontology extension to provide support for services
derived from the Web of Data; ii) the usage of the OWL-S
API [18], in order to enable the execution of the LDaaSWS in
the same way as traditional (SOAP or RESTful) Web Services
are executed; iii) automatic generation of Web of Data queries
from OWL-S service requests, in order to enable the automatic
requests and execution of LDaaSWS.

In this paper, Section II presents related works. Linked
Data as a Semantic Web Service (proposal of this work) is
described in Section III. Section IV introduces the automatic
request and execution of LDaaSWS. Section V describes the
results of the evaluation performed in our approach. Finally,
Section VI presents the final remarks and recommendations
for future works.

II. RELATED WORK

The literature reports works that use the Web of Data as
Web Services, or even use Linked Data for describing Semantic

Web Services (SWS). According to Pedrinaci et al. [19], SWS
and Web of Data together can solve some problems that limit
the use of both. The combination of these two features, in
addition, can increase use of SWS, as this will add to your
field a growing multidisciplinary information base, serving as
a complete and complementary method in the discovery and
composition of Web Services.

Following a different line of research, but within the same
context, Taheriyan et al. [16] identified the need for the
composition of services from different sources to improve
application development. Thus, the authors proposed an ap-
proach to integrate Web API’s to a Linked Data cloud with
the use of semantic description, using RDF and SPARQL.
Norton and Stadtmller [20], [21] underscore the need for
composing RESTful services by reducing the effort of the
manual programming developer; it proposes a description of
the services using Linked Data principles and semantically
describing its inputs and outputs with SPARQL and RDF.

Paolucci et al. [22] propose the integration of SAWSDL
(Semantic Annotations for WSDL) with Semantic Web Ser-
vices described in OWL-S. The authors point out advantages
in describing Semantic Web Services in OWL-S language and
propose an extension of the ontology description of executions
of OWL-S Web Services (Grounding) to support services with
SAWSDL descriptions in OWL-S.

III. LINKED DATA AS A SEMANTIC WEB SERVICE

This paper proposes Linked Data as a Semantic Web
Service (LDaaSWS), in order to provide Web Services from
Linked Data sources. The motivation for this proposal mainly
focuses on three points: i) the Web of Data is a database where
access is restricted to SPARQL, which limits its potential
queries, because it hinders integration with other data sources
that have no Linked Data; ii) LDaaSWS makes the usage
of the Linked Data cloud as a service provider possible; iii)
LDaaSWS enables Linked Data to be integrated automatically
with other Web Services supported by the language OWL-
S (for instance, SOAP and RESTful Web Services), enabling
interoperability of data and reducing the programming effort
for service discovery and composition.

Thus, this paper presents SPARQLGrounding, which is an
extension to the language OWL-S in order to allow the descrip-
tion of LDaaSWS. The OWL-S ontology is composed of three
sub-ontologies: Profile, Process and Grounding. The
first two are abstract, generic and can include any implemen-
tation of service (SOAP-WSDL, RESTful-WADL, etc.). The
Grounding ontology had been defined to be the concrete
part of the OWL-S. Whereas it does not define type of service
implementation, the Grounding is responsible for describing
how the service will be performed. OWL-S can and should be
extended to any type of service through the extension of the
Grounding ontology.

Thus, the SparqlGrounding ontology proposed in this
work is an extension of the OWL-S Grounding used to allow
the Web of Data be executed as a service, i.e., to actually
implement execution of LDaaSWS proposed in this paper.

In this context, the extension proposed in this paper
followed the following requirements: i) allow execution of
SPARQL queries based services that enable the mapping of
input and output of services to SPARQL triples; ii) be in line

57Copyright (c) IARIA, 2015. ISBN: 978-1-61208-412-1

ICIW 2015 : The Tenth International Conference on Internet and Web Applications and Services

with other OWL-S ontologies, that is, its inputs and outputs
are correctly associated with the elements of Process and
Profile ontologies; iii) not to be dependent on anything
other than document OWL-S and its sub-ontologies for a full
description; iv) offer a semantic description, unambiguously,
for automated processes of discovery, selection, composition
and execution of services, performed by software agents.

The mapping of OWL-S Grounding for SPARQL ex-
tends the abstract layer composed by Grounding and
AtomicProcessGrounding classes, both defined by
OWL-S. Figure 2 shows a UML class diagram that displays
such extension.

Figure 2. SparqlGrounding model.

Figure 2 illustrates the Service, Profile and
Process ontologies which details were omitted
to highlight the specialization of Grounding
ontology. Classes SparqlGrounding and
SparqlAtomicProcessGrounding in Figure 2 are
not part of the OWL-S Grounding ontology. These classes
are proposed in this paper with the aim of describing the
execution of LDaaSWS.

The model presented in Figure 2 proposes group-
ing the new classes in a dedicated ontology, called
SparqlGrounding. This approach avoids any change in
the specification of OWL-S, which will facilitate the adop-
tion of our new ontology, without interfering with exist-
ing services described in OWL-S prior to incorporation of
SparqlGrounding.

In order to formalize SparqlGrounding, it is nec-
essary to provide a description of all its elements fol-
lowing the syntax of the OWL language. Figure 3 de-
scribes the formalization of the SparqlGrounding class
as a subclass of the Grounding class previously defined
by OWL-S. Note also that the definition has restrictions
related to the existence of AtomicProcessGrounding
(line 5 of Figure 3) and that all such should be of type
SparqlAtomicProcessGrounding (line 6 of Figure 3).

The SparqlAtomicProcessGrounding class, shown
in Figure 4, is a subclass of AtomicProcessGrounding
and has the restriction of a data property (Datatype-
Property) called sparqlEndPoint, which stores the
URI endpoint that a SPARQL query must be submitted on

Figure 3. SparqlGrounding Class.

completion of the service. Other elements are associated with
LDaaSWS belonging to this class.

Figure 4. SparqlAtomicProcessGrounding Class.

A SPARQL query can have prefixes that are eventually
used in triplets, so in SparqlGrounding a property of
type ObjectProperty (lines 1 to 4 of Figure 5) is defined,
followed by the OWL class SparqlPrefixMap (lines 6 to
19 of Figure 5), which defines the prefix name (PrefixName)
and the associated URI (PrefixUri). Figure 5 presents
an excerpt of this definition; note that SparqlPrefixMap
defines the existence of only one elements PrefixName and
PrefixUri, ensuring integrity for the formation of prefixes.

Figure 5. SparqlPrefixes Property and SparqlPrefixMap Class.

Figure 6 (lines 1 to 4) shows the definition
of input parameter of SparqlGrounding. The
SparqlIntputParamMap class (lines 6 to 21 of Figure 6)
is responsible for the mapping between elements of Process
(Input) through of property owlsParameter (line 17 of
Figure 6), and data associated with the input of the service.
In WADL and WSDL groundings, the owlsParameter is
used to connect the input ID of syntactic service document.
However, in the context of LDaaSWS, it is used to indicate
which variable in the query will be mapped with the input
data.

Finally, Figure 7 describes the definition of triple be-
longing to the clause WHERE of SPARQL queries, map-
ping the subject, predicate and object of the triple, re-
spectively represented by the properties TripleSubject
(line 9 of Figure 7), TriplePredicate (line 15 of Fig-
ure 7) and TripleObject (line 21 of Figure 7). In

58Copyright (c) IARIA, 2015. ISBN: 978-1-61208-412-1

ICIW 2015 : The Tenth International Conference on Internet and Web Applications and Services

Figure 6. OWL elements to describe service input.

SparqlTripleMap there is a restriction on the amount of
elements that make up the triple to ensure its syntactic integrity.

Figure 7. OWL elements to describe SPARQL triples.

IV. AUTOMATIC REQUEST AND EXECUTION OF
LDAASWS

LDaaSWS makes automatic service requests (Sec-
tion IV-A) possible through automatic generation of SPARQL
queries from OWL-S requests. Moreover, it is also possible
to perform automatic execution (Section IV-B) of LDaaSWS
from the queries generated. This section presents such two fea-
tures (automatic request and execution) of LDaaSWS, which
enable software agents to access services based on Linked Data
automatically.

A. Automatic Request
In order to explore the Web of Data, it is necessary to

use SPARQL, which makes the need to map the semantics
described by the OWL-S language to a SPARQL query indis-
pensable. Figure 8 presents an overview of the generation of
the SPARQL queries module from service requests described
in OWL-S: OWL-S to SPARQL. From the service request (part
1 of Figure 8), one SPARQL query of type ASK (returns true
or false, respectively, exist or not one or more data according
to the request). (part 2 of Figure 8) is developed, which is
generated from the ontology of the inputs and outputs. We
choose this type of query, because it has a lower cost of
implementation, given that, at this stage, no one wants to return
data but rather validate the query.

After the generation of an ASK query, the next step is the
application of this query in an endpoint (part 3 of Figure 8) to
check for data that matches the request. In the case of ASK
query return positive, an OWL-S service can be created and
can use this database for the answers (part 4 of Figure 8),
which one can follow to implement the SparqlGrounding
(described in Section III).

Figure 8. OWL-S to SPARQL: Automatic Request.

There are some challenges associated with this mapping
OWL-S to SPARQL shown in Figure 8. Initially, the semantic
expressiveness of OWL-S language is greater than the expres-
siveness of SPARQL. This implies the need to identify what
types of requests are enabled to perform the query expression.
Therefore, for an experimental evaluation, we selected a profile
of simple OWL-S request, which allows the generation of
queries. Thus, requests for services where the input element
is owned (is a property) by the output element (or otherwise)
were selected. For example, a service request where the input
is the latitude and longitude of a city and the output is an
ontology class that represents city.

Figure 9 presents the description of a service request (part
“a” of Figure 9), which has the ISBN of a book as input and
a Book (a class) as output. The ISBN is part of the domain
Book (part “b” of Figure 9), thus this type of service allows
to generate a SPARQL query similar to the query displayed in
part “c” of Figure 9.

We can map other types of queries through using tech-
niques for similarity of ontologies, or even through inferences,
which allow the resources of inputs to be related with the
resources of outputs. We can also generate queries that partially
meet the requests, where the generated service can later be
combined with other services to meet the initial request. As
a result, SparqlGrounding allows the execution (Sec-
tion IV-B) of any service described with SPARQL query, in
other words, it does not restrict the execution of services with
queries automatically generated. Thus, if a developer designs
a SPARQL query manually and wants to set it as an OWL-
S service, the SparqlGrounding can be implemented for
such a query. However, the mapping of queries is out of the
scope of this paper.

B. Automatic Execution
Figure 10 illustrates an overview of the LDaaSWS exe-

cution. The starting point is the OWL-S request (step 1 in

59Copyright (c) IARIA, 2015. ISBN: 978-1-61208-412-1

ICIW 2015 : The Tenth International Conference on Internet and Web Applications and Services

Figure 9. Service request and SPARQL query.

Figure 10) and from analysis of the ontologies that describe
the inputs and outputs, a SPARQL query equivalent to the
request is developed (OWL-S to SPARQL module in Figure 10
corresponds to Figure 8). At this stage, not all service requests
produce SPARQL queries, since not all of them refer to
information available on the Web of Data (this issue is treated
in Section IV-A). After that, the resulting query is validated
in the Linked Data cloud (step 2 in Figure 10), at which time
whether or not there is data available to fulfill this request is
reviewed.

Figure 10. LDaaSWS Automatic Execution.

In step 3 in Figure 10, if there is information in the Web of
Data for the OWL-S request, it has been a Grounding OWL-
S (described in Section III), which describes how to run a
service. Finally, the resulting Grounding is sent to the OWL-
S API (step 4 in Figure 10) to be executed (step 5 in Figure 10).

Importantly, once a whole process to request execution of
LDaaSWS is held (steps 1-5 of Figure 10), this procedure
should not be repeated for subsequent requests, because the

new discovered service may be stored in a database of services
that can be accessed in the future, reducing the time for
discovery and generation of service.

Figure 11 shows a snippet of a code to perform a service
that uses the SparqlGrounding. Initially, the service is
loaded into knowledge base (line 3 of Figure 11) to allow ac-
cess to the Process, which, consequently, indicates the data
input (lines 5 to 7 Figure 11). Finally, in line 12 of Figure 11,
the service is performed, which, from Process, is called
the class SparqlGroundingProvider, which starts the
whole foundation class SparqlGrounding implemented by
the service.

Figure 11. Code snippet to perform a service.

V. LDAASWS EVALUATION

In the LDaaSWS evaluation, we used an Intel Core i5
computer with four cores of 1.80GHz, 6GB of RAM memory,
with operation system Debian/Linux 8.0, Java environment
with J2SE 1.7 and Eclipse 3.8.1. Additionally, we used the
Apache Web Service for access and storage of Web Services
and the DBPedia [23] for access to a Linked Data base. The
services used to execute the tests were extracted from the
OWL-S Test Collection [24] package, which have been adapted
to use DBPedia ontology and the updated version 1.2 of OWL-
S.

Experiments have been performed to evaluate the perfor-
mance (execution time) of our proposal. Toward greater consis-
tency of results, for each evaluation 30 tests were executed and
the execution time in each test was observed. As described in
Sections III and IV, the development of LDaaSWS has three
important contributions, which were separately analyzed for
better evaluation. Therefore, Section V-A shows the evaluation
of the SparqlGrounding ontology; Section V-B presents
the evaluation of automatic generation of SPARQL queries –
request and execution.

A. SparqlGrounding ontology
In the ontology evaluation, the OWL-S API was used.

Indicating the correct functioning of SparqlGrounding
ontology is necessary in order to run a Semantic Web Service
using SparqlGrounding; in other words, it must use the
OWL-S API with support for LDaaSWS for execution of a
Web Service.

Therefore, in order to evaluate the performance of
SparqlGrounding, the execution time was fully mea-
sured in the following points: i) reading of ontologies before
starting the execution Process; ii) mapping and reading of
Grounding classes; and iii) preparation time for Semantic
Web Service execution. This paper did not deal with the
Web Service execution, because it was beyond the scope of

60Copyright (c) IARIA, 2015. ISBN: 978-1-61208-412-1

ICIW 2015 : The Tenth International Conference on Internet and Web Applications and Services

contributions and its execution time is generally associated
with the performance of the service itself.

Because the WSDLGrouding is a built-in grounding
of the OWL-S API, we related measurements taken with
SparqlGrounding in comparison to equivalent measure-
ments of WSDLGrouding. Figures 12, 13 and 14 show the re-
sults of measurements of SparqlGrounding in comparison
with WSDLGrouding. We can see that there are no substantial
differences in performance; however, SparqlGrounding
has better performance because in the query preparation it
does not need access to a syntactic document, which re-
duces the execution time of SparqlGrounding. As a re-
sult, through an analysis of the graphs, it appears that the
SparqlGrounding gives satisfactory performance with the
OWL-S API.

Figure 12. Mapping and reading classes WSDLGrounding and
SPARQLGrounding

Figure 13. Reading ontologies related to WSDLGrounding and
SPARQLGrounding

Figure 14. Preparation time for execution of the service with
WSDLGrounding and SPARQLGrounding

B. Request and Execution
In order to evaluate the automatic generation of SPARQL

queries, we applied a scenario where the main module for
SPARQL queries generation was subjected to executions using
OWL-S service requests. Figures 15 and 16 show a piece of the
code of service requests highlighting elements of input (lines
1 to 6 of Documents 15 and 16) and output (lines 8 to 13 of

Figure 15 and lines 8 to 20 of Figure 16) of the Process,
which are the main features for the generation of SPARQL
queries.

Figure 15. Part of the service request ISBN-BOOK

Figure 16. Part of the service request City-Latitude/Longitude

We split the evaluation into three parts, for better mea-
surement of the performance of the SPARQL query generator
module: i) time of reading of ontologies associated with the
request OWL-S service; ii) the building time of the SPARQL
query; and iii) query execution time (DBPedia endpoint[25]).

Figures 17, 18 and 19 show graphs with execution time
measurements for OWL-S service requests of Figures 15 and
16, noting the time spent in three situations: reading of the
OWL-S service request (Figure 17), creation of the SPARQL
query (Figure 18) and execution of the SPARQL query created
(Figure 19). It is important to note that over 50% of total
execution cost is associated with the reading of ontologies, a
point that is not connected with the implemented solution, but
rather the access of resources of the OWL-S service request.

Figure 17. Time of reading of ontologies

Thus, the results reported for measuring execution time
of the creation and execution of SPARQL queries show that
total time for automatic generating SPARQL queries was about
5 seconds. This time is quite acceptable considering that the
developer of a Web Service would not need to develop a
query manually and this process will not be repeated in cases
of OWL-S services requests already converted into SPARQL
queries.

61Copyright (c) IARIA, 2015. ISBN: 978-1-61208-412-1

ICIW 2015 : The Tenth International Conference on Internet and Web Applications and Services

Figure 18. Time of creation of SPARQL query

Figure 19. Time of execution SPARQL query

VI. FINAL REMARKS

The evolution of the Web presents a scenario with data
coming from various sources and applications that can pro-
vide its functionality by merging information from different
sources. This trend motivates researches efforts for the devel-
opment of techniques that create environments and techniques
for automatic discovery of data and services in the Web.

Therefore, this paper aims at providing Semantic Web Ser-
vices using semantic descriptions with OWL-S language from
Linked Data: the LDaaSWS. This proposal presents important
contributions to the area of Semantic Web Services, especially
regarding the discovery, because LDaaSWS allow automatic
generation of Web Services from the Linked Data cloud.
Furthermore, it enables the development of more elaborate
applications, which require less expertise of developers and
enable more integration and reuse of data from the Web of
Data.

Improvements that can be made from the reported work
include: i) implementation of other mappings of complex
OWL-S requests to automatically generated SPARQL queries;
ii) conducting experiments to evaluate the composition of
LDaaSWS with other already established Web Services types
(such as SOAP and RESTful), based on approaches to Seman-
tic Web Service composition reported in literature [26].

REFERENCES

[1] C. Bizer, “The emerging web of linked data,” IEEE Intelligent Systems,
vol. 24, no. 5, Sep. 2009, pp. 87–92.

[2] T. OŔeilly, “What is web 2.0. design patterns and business models
for the next generation of software,” Communications and Strategies,
September 2005.

[3] C.-C. Tsai, C.-J. Lee, and S.-M. Tang, “The web 2.0 movement:
mashups driven and web services,” W. Trans. on Comp., vol. 8, no. 8,
aug 2009, pp. 1235–1244.

[4] D. Martin, M. Burstein, D. Mcdermott, S. Mcilraith, M. Paolucci,
K. Sycara, D. L. Mcguinness, E. Sirin, and N. Srinivasan, “Bringing
semantics to web services with owl-s,” World Wide Web, vol. 10, no. 3,
Sep. 2007, pp. 243–277.

[5] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F.
Nielsen, S. Thatte, and D. Winer, “Simple Object Access Protocol
(SOAP) 1.1,” World Wide Web Consortium, W3C Note, 2000.

[6] L. Richardson and S. Ruby, Restful web services, 1st ed. OŔeilly,
2007.

[7] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web,”
Scientific American, vol. 284, no. 5, May 2001, pp. 34–43.

[8] S. McIlraith, T. C. Son, and H. Zeng, “Semantic web services,”
Intelligent Systems, IEEE, vol. 16, no. 2, 2001, pp. 46–53.

[9] P. Larvet, B. Christophe, and A. Pastor, “Semantization of legacy web
services: From wsdl to sawsdl,” in Internet and Web Applications and
Services, 2008. ICIW ’08. Third International Conference on, June
2008, pp. 130–135.

[10] T. Berners-Lee, “Linked data - design issues,” W3C, no. 09/20, 2006.
[Online]. Available: http://www.w3.org/DesignIssues/LinkedData.html

[11] C. Bizer, T. Heath, D. Ayers, and Y. Rai-
mond, “Interlinking open data on the web,”
www4.wiwiss.fu-berlin.de/bizer/pub/LinkingOpenData.pdf, 2007, stand
12.5.2009. [Online]. Available: www4.wiwiss.fu-berlin.de/bizer/pub/
LinkingOpenData.pdf

[12] D. Benslimane, S. Dustdar, and A. Sheth, “Services mashups: The new
generation of web applications,” Internet Computing, IEEE, vol. 12,
no. 5, 2008, pp. 13–15.

[13] S. Makki and J. Sangtani, “Data mashups & their applications in
enterprises,” in Internet and Web Applications and Services, 2008. ICIW
’08. Third International Conference on, June 2008, pp. 445–450.

[14] G. Di Lorenzo, H. Hacid, H.-y. Paik, and B. Benatallah, “Data integra-
tion in mashups,” SIGMOD Rec., vol. 38, no. 1, jun 2009, pp. 59–66.

[15] S. Roy Chowdhury, C. Rodrı́guez, F. Daniel, and F. Casati, “Baya:
assisted mashup development as a service,” in Proceedings of the 21st
international conference companion on World Wide Web, ser. WWW
’12 Companion. New York, NY, USA: ACM, 2012, pp. 409–412.

[16] M. Taheriyan, C. A. Knoblock, P. Szekely, and J. L. Ambite, “Rapidly
integrating services into the linked data cloud,” in Proceedings of the
11th international conference on The Semantic Web - Volume Part I,
ser. ISWC’12. Berlin, Heidelberg: Springer-Verlag, 2012, pp. 559–574.

[17] S. Stadtmüller and B. Norton, “Scalable discovery of linked apis,” Int.
J. Metadata Semant. Ontologies, vol. 8, no. 2, Sep. 2013, pp. 95–105.

[18] M. D. Evren Sirin and T. Mller. Owl-s api. Available on the internet
at http://on.cs.unibas.ch/. Last access in 21 October 2014. [Online].
Available: http://on.cs.unibas.ch/ (2012)

[19] C. Pedrinaci, J. Domingue, and R. Krummenacher, “Services and the
web of data: An unexploited symbiosis.” in AAAI Spring Symposium:
Linked Data Meets Artificial Intelligence. AAAI, 2010.

[20] B. Norton and S. Stadtmüller, “Scalable discovery of linked services,”
in Proceedings of the Fourth International Workshop on Resource
Discovery, vol. 737, RED Workshop. Heraklion, Greece: CEUR-WS,
Mai 2011.

[21] S. Stadtmuller, “Composition of linked data-based restful services,” in
Proceedings of the 11th international conference on The Semantic Web,
ser. ISWC’12. Berlin, Heidelberg: Springer-Verlag, 2012, pp. 461–464.

[22] M. Paolucci, M. Wagner, and D. Martin, “Grounding owl-s in sawsdl,”
in Service-Oriented Computing - ICSOC 2007, ser. LNCS, B. Kramer,
K.-J. Lin, and P. Narasimhan, Eds. Springer Berlin Heidelberg, 2007,
vol. 4749, pp. 416–421.

[23] Dbpedia. Available on the internet at http://www.dbpedia.org. Last
access in 24 December 2014. [Online]. Available: http://www.dbpedia.
org (2014)

[24] M. Klusch and P. Kapahnke. Owls-tc is a owl-s service retrieval
test collection to support the evaluation of the performance of owl-s
semantic web service matchmaking algorithms. [Online]. Available:
http://projects.semwebcentral.org/projects/owls-tc/ (2010)

[25] Sparql endpoint dbpedia. Available on the internet at
http://www.dbpedia.org/sparql. Last access in 27 October 2014.
[Online]. Available: http://www.dbpedia.org/sparql (2014)

[26] T. Weise, S. Bleul, D. Comes, and K. Geihs, “Different approaches to
semantic web service composition,” in Internet and Web Applications
and Services, 2008. ICIW ’08. Third International Conference on, June
2008, pp. 90–96.

62Copyright (c) IARIA, 2015. ISBN: 978-1-61208-412-1

ICIW 2015 : The Tenth International Conference on Internet and Web Applications and Services

