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Abstract—Web display advertisement is occupying a major
part of the marketing industry. With the vastly increasing
number of competing advertisers, allocating web advertising
space becomes a challenge, due to the need to run a large-scale
auction in order to determine the winners and payments. As a
result, some of the most desired properties, such as truthfulness
(a.k.a. strategy proofness), and social welfare maximization are
typically sacrificed by the auction mechanisms used in practice,
in exchange of computational efficiency. Furthermore, those
mechanisms typically assume a fixed partition of the advertising
space, and use a simple mechanism, such as Generalized Second
Price (GSP) auction to avoid the combinatorial explosion of
the size of the problem when users are allowed to bid on
arbitrary regions of the space. In this paper, we go beyond this
non-combinatorial approach, and investigate the implementation
of strategy–proof mechanisms which are truthful–in–expectation
and approximately socially efficient, with an attempt to under-
stand their computational efficiency, social welfare and revenue,
when applied to Web display Ads. Those mechanisms were
proposed recently as a theoretical engineering of the compu-
tationally less efficient mechanisms of Lavi and Swamy. Our
experimental results show that allowing combinatorial bidding
can offer substantial improvements in both social welfare and
revenue as compared to slot-based methods, such as the GSP
mechanism.

Keywords—Combinatorial auctions; algorithmic mechanism de-
sign; Generalized Second Price; truthfulness.

I. INTRODUCTION

Internet advertising is one of the most important marketing
tools due to its growing number of audience. Internet adver-
tising revenues in the United States totaled $42.8 billion for
2013, with an increase by 17% over the previous year [1]. One
can basically distinguish two types of online advertisement:
(I) Search advertising, which typically appears on search
web pages, usually based on keywords searched by user,
e.g., Google, Yahoo!; (II) Display advertising, which typically
appears on non-search web pages, usually based on content
and type of web-page, e.g., news sites, airlines sites, social
networks sites, etc. [2].

In both types of advertisement, auctions are typically used to
determine which advertisement will be displayed. In contrast
to Search advertising, display advertising does not need a real-
time auction mechanism and can thus be done offline, allowing
for a substantially larger processing time. This paper will be
concerned only with the second type.

Algorithmic mechanism design (AMD) studies optimization
problems in which part of the input is not directly available
to the algorithm; instead, this data is collected from self-
interested agents. who can manipulate the algorithm by mis-
reporting their parts of the input, if that would improve their
own objective functions. It is therefore desirable to design a
protocol or a mechanism which interacts with the agents so that
their selfish behaviour yields a globally desirable outcome.
Adding to this the requirement of computational efficiency,
AMD quests for efficient algorithms that (approximately) opti-
mize a global objective function (usually called social welfare),
subject to the strategic requirement that the best strategy
of the agents is to truthfully report their part of the input.
Such algorithms are called incentive compatible or truthful
mechanisms.

If the underlying optimization problem can be efficiently
solved to optimality, the celebrated VCG mechanism [3]
achieves truthfulness, social-welfare optimization, and poly-
nomial running time. In general, and more specifically in
the display Ad auctions with a relatively large number of
advertisers, the underlying optimization problem can only be
solved approximately. Lavi et al. [4][5] showed that certain
linear programming based approximation algorithms for the
social welfare problem can be turned into randomized mech-
anisms that are truthful-in-expectation, i.e., reporting the truth
maximizes the expected utility of an agent. The Lavy-Swamy
(LS)-reduction is powerful [4]–[7], but unlikely to be efficient
in practice because of its use of the Ellipsoid method for linear
programming. In fact, we are not aware of any attempt to apply
the LS-approach in practice or at least to perform a systematic
study of its applicability and effectiveness, compared to the
mechanisms which are currently being used.

Presently Google and Yahoo! are using Generalized-
Second-Price (GSP) auction mechanism to auction off slots.
GSP looks somewhat similar to VCG but its properties and
equilibrium behavior are quite different. Unlike the VCG
mechanism, GSP is not truthful [8], but is by far computa-
tionally more efficient. On the other hand, a major drawback
of GSP when applied to Display Ad auctions is that it is
inherently slot-based, that is, the advertising space has to be
apriori partitioned into fixed slots, which are auctioned off
in a way similar to keyword auctions. This has the obvious
disadvantage of limiting the bidding power of the agents,
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which could be otherwise exploited to increase the total social
welfare of the agents and/or the revenue due to the auctioneer.
Allowing combinatorial bidding, where agents can bid on
different regions (bundles) of the advertisement space can offer
substantial improvements in both social welfare and revenue,
provided that there are computationally efficient mechanisms
that can deal with this kind of bidding.

Very recently, Elbassioni et al. [9] gave an efficient imple-
mentation of the LS-approach based on the simpler multiplica-
tive weights update (MWU) methods. The simplification comes
at the cost of slightly weaker approximation and truthfulness
guarantees. In this paper, we investigate the effectivity of their
method when applied to display advertisement auctions. We
carry out extensive experiments to compare these methods
with GSP in terms of truthfulness, social welfare and revenue.
Our experiments show that the proposed implementation can
handle auctions involving hundreds of bidders and thousands
of bundles, and offer substantial improvements in both social
welfare and revenue as compared to slot-based methods, such
as the GSP mechanism.

In Section II, we discuss about Internet advertisement,
auction, drawbacks of non-truthful auction mechanisms and
its impact on online advertisement. In Section III, we explain
the outline of the problem and algorithmic solutions. We
also define relevant terminology and definitions. In IV, we
elaborate our experimental set-up. We discuss our evaluation
process in Section V. We present our results and analysis for
social-welfare, revenue and running time in Section VI. We
compare the VCG-based mechanism with GSP mechanism in
Section VII. Finally we conclude our work in Section VIII.

II. RELATED WORK

Online advertisement dates back to at least 1994 when
HotWire started to sell banner ads to advertisers [10]. After
a small hiatus during the period of dot-com crash, online
advertisement along with online auctions became one of the
major form of exchange of items and services over the Internet.
GoTo.com introduced the use of auction mechanisms for
allocating advertising space on web pages showing results of
the query to generate revenue [10]. Presently, most of online
advertisement uses some form of auction based on keywords,
combination of keywords, or space [8][10][11].

Overture (now a part of Yahoo!) operated a first-price
auction in early 2000s for search advertisement. Since this
form of auction is not truthful, bidders used to bid strategically
to increase their utility [12]. Furthermore, there was a loss in
revenue and the market was unstable due to frequently lying
bidders. Hence, VCG-based mechanisms were suggested to
stabilize auction outcomes. Since, these mechanisms require
solving an NP-hard winner determination problem, a vari-
ant of second-price auction came in practice, the so-called
Generalized Second Price (GSP) auction. Yahoo! and Google
AdWords use the GSP mechanism. This mechanism is non-
truthful for multiple items, but it has envy-free equilibrium [8].
Although it is better than the first-price auction and widely
used, various researches showed that the GSP mechanism

has its own flaws. In particular, the bidders maybe forced to
undertake complicated tasks of choosing a bidding strategy to
increase their utility. Asdemir [13] and Edelman et al. [12]
showed that the GSP mechanism might result in bidding wars
cycles and static bid patterns are frequently observed. The
strategy of bidders to outbid each other until one of them
drops their bid and the other one follows by dropping its bid
to just by very small ε above the competitor’s bid is known
as Bidding war cycle. Static bid patterns is defined as the
bidder’s fixed pattern of bidding based on their expectation to
win. This might result in unstable markets. Matthew et al. [14]
showed that for some strategic bidding the GSP mechanism
does not converge for 3 or more slots/items. These results show
that GSP is not strategy-proof and there is a requirement for
strategy proof mechanisms for a stable market.

The term AMD was first coined by Nisan et al. [15]
in 1999. AMD combines the idea of utility maximization
of independent selfish agents and mechanism design from
economics, Nash equilibrium and individual rationality from
game theory, with the analytic tools of Theoretical Computer
Science, such as computational constraints, worst-case analysis
and approximation ratios which are not addressed in classical
economic mechanism design. From practical implementation
point of view, the most important aspect of AMD is the
analysis of computational efficiency. If a mechanism cannot
be implemented to scale well with respect to number of items
and bidders, it cannot be considered as a viable solution. This
rules out many classic economic mechanisms which satisfy the
mechanism designer’s requirements but are computationally
inefficient in general to implement. The celebrated classical
mechanisms like, Vickrey-Clarke-Groves auction (VCG) and
Generalized Vickrey Auction, involve the solution of NP-hard
winner determination problems and, in spite of their rich game
theoretic properties, are impractical to implement.

Combinatorial auctions are market mechanisms in which
bidders can bid on bundles of multiple items, i.e., combination
of items. The common example of combinatorial auctions
are Federal Commission for Communications (FCC) auctions
of spectrum licenses, course registration, airport take-off and
landing time slots, job shop scheduling and electricity markets
etc [16]. There are various mechanisms proposed for combi-
natorial auctions, such as AUSM auction, RAD mechanism,
PAUSE mechanism and iBundle mechanism etc [16].

Sandholm [17] presented an approximate search algorithm
for solving combinatorial auctions. He showed that dynamic
programming and exhaustive enumeration methods are too
complex to scale for large number of items (20-30 items).
Restricting the combinations might result in polynomial time
winner determination problem for combinatorial auctions but
it has economic inefficiency, since imposing restrictions on
certain combinations of items bars bidders from bidding on the
combination they might prefer. Furthermore, the bids in [17]
were generated by randomly taking values from either [0; 1]
or from [0; g], where g is the number of items in the bid. This
method of bid generation does not consider various economic
aspects, such as highly valued/preferred combinations, sub-
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additive bids, super-additive bids, etc. Hence, [18] claimed that
this type of bid generation results in computationally trivial
winner determination problem.

In [19], an optimal auction mechanism for multi-unit com-
binatorial auctions for single-minded bidders was presented. If
a bidder is only interested in a single specified bundle (or any
of its supersets), it is known as single-minded bidder; a single-
minded bidder values at zero any other (non-superset) bundle.
In real life, a bidder might be interested in buying multiple
bundles with varying preferences. Thus, this setting is not
practically applicable in real life. Furthermore, [19] does not
consider sub-additive and super-additive scenarios for combi-
natorial auctions bids. Archer et al. [20] gave an approximate
truthful randomized mechanism for combinatorial auctions
with single parameter agents. In a single parameter setting,
bidders provide one single input to specify their preference,
e.g., single-minded bidder. They provided a general technique
to modify linear programming-based randomized rounding
algorithms to make them monotone with high probability,
giving an efficient truthful-in-expectation (TIE) mechanism
that approximately maximizes social-welfare. However, single
parameter mechanisms are rarely used in practice [21], as
the present development in online transactions, Internet mar-
kets, Internet advertising and online auctions mandate multi-
parameter setting mechanisms. Lavi et al. [4][5] extended the
results in [20] to non-single parameter settings and showed that
certain linear programming based approximation algorithms
for the social welfare problem can be turned into randomized
mechanisms that are truthful-in-expectation with the same
approximation ratio. Dughmi et al. [22] suggested the first
black-box reduction from arbitrary approximation algorithms
to truthful approximation mechanisms problems for a non-
trivial class of multi-parameter problems. In particular, they
proved that every social-welfare-maximization problem that
admits an FPTAS and can be encoded as a packing problem,
also admits a truthful-in-expectation randomized mechanism
which also an FPTAS.

In display Ad auctions, the social welfare maximization
problem amounts to finding a maximum-weight independent
set (that, is a pairwise-disjoint collection) of squares (or more
generally ”fat” rectangles), among a given set of weighted
squares. Auctions of this type have been considered in [23][6],
but only theoretical results were provided without considering
the efficient implementation of the proposed mechanisms.

In this paper, we will focus on the efficient implementa-
tion of Lavi-Swamy mechanism, as proposed in [9], and its
application to display Ad auctions as suggested in [6]. To the
best of our knowledge, this is the first attempt to implement
a VCG-based mechanism, which scales with the number of
bidders and items.

III. THE SETTING

A. Items and Bundles

The Advertising space is divided into small units of unitary
squares which we refer to as items. A combination of items is
called a bundle. In our case, bundles are restricted to be also

Bundle 1

Bundle 2

Bundle 3

Figure 1. Items and bundles

squares; see Figure 1 where bundles are represented by dotted
squares.

B. Bidding Mechanism

This refers to the manner in which the value of bid for items
and bundles are offered or quoted.

We distinguish the following types of valuations (bids) vi,
for bidder i:

1) Sub-additive setting: For a bundle S consisting of uni-
tary squares S1, . . . , Sk, vi(S) ≤

∑k
j=1 vi(Sj). This

takes into account the bundles/items that are substi-
tutabilities.

2) Super-additive setting: For a bundle S consisting of
unitary squares S1, . . . , Sk, vi(S) ≥

∑k
j=1 vi(Sj). This

takes into account of bundles/items that are complemen-
tarities.

3) Arbitrary-setting: In arbitrary case, we provide bidders
the capability to choose between sub-additive and super-
additive valuations.

We call a bidder k-minded if (s)he bids a positive value on at
most k bundles.

C. The Social Welfare Maximization Problem

Given the vector of bids v = (v1, . . . , vn), the social welfare
maximization (SWM) problem is to find the optimum integer
solution of the following linear program:

z∗(v) = max
∑
i,S

vi(S)xi,S (1)

s.t.
∑

i,S: j∈S
x∗i,S ≤ 1 ∀ items j (2)∑

S

x∗i,S ≤ 1 ∀ bidders i (3)

xi,S ≥ 0 for all i, S.

Informally, we want to find an allocation that maximizes the
total valuations (i.e., the social welfare) while making sure that
(2) each item is only assigned to one bidder and (3) each bidder
is only assigned at most one bundle. In our implementation,
we used CPLEX [24], to solve the relaxation LP.

For α ∈ (0, 1], we say that an algorithm A is an α-
integrality-gap-verifier for the LP (4) if for any vector of bids v
and any (fractional) feasible solution x∗ of the LP, A returns
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an integral solution xI of social welfare
∑
i,S vi(S)xIi,S ≥

α ·
∑
i,S vi(S)x∗i,S . A randomized 1

16 -integrality gap verifier
for (4) was given in [6] and works as follows:

Algorithm 1 Integrality-Gap-Verifier (x∗)

Require: A fractional allocation x∗

Ensure: An integral solution xI s.t.
∑
i,S vi(S)xIi,S ≥

1
16

∑
i,S vi(S)x∗i,S

1: for each bidder i do
2: choose a bundle Si as follows

Si =

{
S with prob. 1

8x
∗
i,S

∅ with prob. 1− 1
8

∑
S x
∗
i,S

3: end for
4: Let W = ∅; xI = 0
5: Let S1, S2, . . . , S` be the bundles selected in Step 2 in

non-increasing order of size
6: for i = 1, . . . , ` do
7: if Si does not intersect any range Sj with j ∈W then
8: add i to W ; xIi,Si = 1
9: end if

10: end for
11: return xI

In our implementation, we run Algorithm 1 a constant
number of times and take the solution with largest social
welfare, to ensure with high probability that it returns a
solution with social welfare at least 1

16 of the optimal.

D. Randomized Truthful-in-expectation Mechanisms

A mechanism consists of an allocation rule and a pay-
ment scheme. Given the vector of bids v, the allocation rule
determines a feasible allocation, that is, a feasible integral
solution to the LP (4), while the payment scheme determines
the payment pi to be charged to bidder i. The utility of a
bidder is defined as her valuation over her allocated bundle
minus her payment: Ui(v) := vi(S) − pi. In a randomized
mechanism, all these (allocation, payments, and utility) are
random variables. Such a mechanism is said to be truthful-in-
expectation (TIE) if for all i and all vi, v̄i, v−i, it guarantees
E[Ui(v̄i, v−i)] ≥ E[Ui(vi, v−i)], where the expectation is
taken over the random choices made by the algorithm. Here,
we denote by v̄i the true valuation of bidder i, and use the
standard terminology v−i := (v1, . . . , vi−1, vi+1, . . . , vn). In
other words, the expected utility is maximized when the bidder
reports her valuation truthfully.

E. The Lavi-Swamy Mechanism

We next review the LS-reduction. It consists of three steps:
1) Find an optimal solution x∗ for the LP-relaxation (4),

and determine the VCG prices p1 to pn. The price for the
ith agent is pi =

∑
j 6=i
∑
S vj(S)(x̂j,S −x∗j,S), where x̂

is an optimal solution for LP (4) with input (0, v−i),
that is, when bidder i is removed from the auction.
The allocation x∗ and the VCG-prices are a truthful
mechanism for the fractional problem.

2) Write α · x∗ as a convex combination of integral solu-
tions, i.e., α · x∗ =

∑
I λIx

I , λI ≥ 0,
∑
I∈N λI = 1,

and xI is an integral solution to (4). This step requires
an α-integrality-gap-verifier for (4) for some α ∈ (0, 1].

3) Pick the integral solution xI with probability
λI , and charge the i-th agent the price1

pi · (
∑
S vi(S)xIi,S/

∑
S vi(S)x∗i,S).

F. The EMR Implementation
If one considers the implementation of the LS-mechanism in

the display Ad setting, step 2 stands as the major bottleneck
as it requires solving a linear program with an exponential
number of variables. A direct solution of this would require
the use of the Ellipsoid method for linear programming which
is typically highly inefficient in practice. Elbassioni et al. [9]
proposed a solution using the simpler multiplicative weights
update methods, which were used for speeding-up convex
optimization [25]–[31]. In particular, it was shown that a
variation of the approach by Garg et al. [27] can be used to
obtain a convex combination that dominates α · x∗. Then the
packing property of the polytope can be used to covert this
into an exact equality algorithm (see Algorithm 3 below). The
details of this are given in the following sections.

1) Finding a Dominating Convex Decomposition: Such a
decomposition is equivalent to finding an optimal solution of
the following LP:

min
∑
I

λI (4)

s.t.
∑
I

λIx
I
i,S ≥ α · x∗i,S for all (i, S) ∈ L (5)∑

x∈NI

λI = 1 (6)

λI ≥ 0 for all I.

Here, L = {(i, S) : x∗i,S > 0}.
By turning (C2) into an inequality

∑
x∈NI λI ≥ 1, the

authors in [9] reduced the problem to a covering linear
program, which can be solved via the approach in [27][28],
at the cost of losing a factor of (1 + 4ε) in the approximation
ratio. The procedure is given as Algorithm 2 and works by
maintaining a set of weights pi,S that can be though of as
a penalty for the violation in the constraint corresponding to
the pair (i, S) in (C1). As long as a scaled version of (C1) is
not satisfied for some (i, S), the algorithm uses the weights
pi,S (in step 5) to construct a valuation vector v′ that is fed
to the α-integrality gap verifier A in step 6, which in turn
returns an integral solution xI . This solution and its multiplier
λI (computed in steps 7-9) are added to the list of solutions
I. Then the set of ”active” constraints L (which are not yet
satisfied) is updated and a new iteration is started.

For y ≥ 0, we define the function

h(y) =

{
y if y < 1
−∞ otherwise.

1If
∑

S vi(S)x
∗
i,S = 0, the price is zero.
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Algorithm 2 Dominating(x∗,A)

Require: A feasible fractional solution to (4), an α-integrality
gap verifier A for (4), and an accuracy parameter ε ∈
(0, 1/2]

Ensure: A collection of integral feasible solutions {xI}I∈I
to (4) and convex multipliers {λI}I∈I s.t.

∑
I∈I λIx

I ≥
α

1+4εx
∗

1: I := ∅; M = 0
2: L := |{(i, S) : x∗i,S > 0}|; and T := ln |L|

ε2

3: while M < T do

4: pi,S := (1− ε)
h(

∑
I∈I

λIx
I
i,S

αx∗
i,S

)
, for (i, S) ∈ L

5: Set

v′i(S) :=

{
pi,S

αx∗i,S ·
∑
i′,S′ pi′,S′

for (i, S) ∈ L
0 otherwise.

6: Let xI := A(x∗, v′);
7: λI := min(i,S)∈L: xIi,S=1 αx

∗
i,S

8: if
∑
I′∈I λI′ < T then

9: λI := min{λI , 1}
10: end ifI := I ∪ {I}
11: L := L \ {(i, S) :

∑
I∈I

λIx
I
i,S

αx∗i,S
≥ T}

12: M := min

{
min(i,S)∈L

∑
I∈I

λIx
I
i,S

αx∗i,S
,
∑
I∈I λI

}
13: end while
14: λI := λI/

∑
I′∈I λI′ , for I ∈ I

15: return ({xI}I∈I , {λI}I∈I)

At the end of the procedure, the λI ’s are normalized to get
a collection of integral feasible solutions {xI}I∈I to (4) and
convex multipliers {λI}I∈I s.t.∑

I∈I
λIx

I ≥ α

1 + 4ε
x∗; (7)

see [9] for details.
2) Getting an Exact Decomposition: Given the dominating

convex decomposition (7), Algorithm 3 can be used to modify
it into an exact decomposition. The idea is to use the packing
property of the feasible set2 to add more feasible solutions with
smaller convex multipliers to offset the difference between the
L.H.S and R.H.S. of (7).

We refer the interested reader to [9] for the details as well
as the running time analysis of Algorithms 2 and 3, and only
summarize the results here.

Theorem 1. Consider a Display Ad auction on n k-minded
bidders and m items. Then, for any ε > 0, there is a TIE which
approximates the optimum social welfare within a factor of
1
16 (1−4ε) and whose running time is O(n ·TLP(n(k+m), n+

m,Vmax) + n2m(n+m) log(n+m)
ε2 ), where TLP(`, r, Vmax) is the

time to solve an LP (4) with ` variables, r constraints and
maximum objective function coefficient Vmax := maxi,S vi(S).

2that is, if x is feasible solution then any 0 ≤ x′ ≤ x is also feasible.

Algorithm 3 Equality(x̂, {xI}I∈I , {λI}I∈I)

Require: A feasible solution x̂ to (4), a collection of integral
feasible solutions {xI}I∈I to (4) and convex multipliers
{λI}I∈I s.t.

∑
I∈I λIx

I ≥ x̂
Ensure: A collection of integral feasible solutions {xI}I∈I to

(4) and convex multipliers {λI}I∈I s.t.
∑
I∈I λIx

I = x̂
1: Create a new integral solution xI0 = y0 := 0
2: I := I ∪ {I0}; λI0 := 0
3: while ∃I ∈ I, (i, S) s.t. xIi,S = 1 and

∑
I∈I λIx

I
i,S−λI ≥

x̂ do
4: xIi,S := 0
5: end while
6: while ∃(i, S) : ∆i,S :=

∑
I∈I λIx

I
i,S − x̂i,S > 0 do

7: Let I be s.t. xIi,S = 1

8: B := {(i′, S′) : xIi′,S′ = 1 and ∆i′,S′ > 0}; b = |B|
9: Index the set of pairs {(i, S)}i,S s.t. B = [1..b] and

∆1 ≤ . . . ≤ ∆b

10: For ` ∈ [0..b− 1] define a vector y` by

y`j =

{
1 for j ≤ `,
0 for j > `

11: λI := λI −∆b

12: for 1 ≤ ` < b do
13: Create a new integral solution xI

′
:= y`

14: I := I ∪ {I ′}; λI′ := ∆`+1 −∆`

15: end for
16: λI0 := λI0 + ∆1

17: end while
18: return ({xI}I∈I , {λI}I∈I)

IV. EXPERIMENTAL SETUP

A. Data Set

Since general combinatorial auctions have never been
widely implemented, it is hard to find realistic data sets for
them. In view of this, it is natural to rely on artificially
generated data sets which can capture the economic and
combinatorial issues and successfully represent the sort of
scenarios one might expect to encounter [18][32] [33].

The first ever known attempt for generating test data sets for
combinatorial auctions (CAs) was analyzed by Leyton-Brown
et al. in [18]. They discussed guidelines for generation of CA’s
bid data and provided a method for bid generation which can
successfully capture the economic and underlying structural
factors of items and their combinations in CAs. Although
they considered as many factors as possible, they overlooked
a number of economic issues which should be considered for
CA bid data generation [33].

For our experimental data, we considered various aspects
as suggested in the literature for generating the data. The
aim of generated data was to capture real-life competitive
bidding along with ideas of economic substitutability and com-
plementarity of items. The items, bundles and bidders were
randomly generated. The bidding value on each item/bundle
was made competitive by enforcing a range on bid values
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of each item such that bidders can randomly bid within that
range. Furthermore, the users were allowed to bid on bundles
of items, and the bid values of the bundles could be sub-
additive, super-additive or arbitrary.

The following aspects were considered in data generation
to capture economic parameters of realistic CAs:

1) Number of bidders n: The number of bidders is a good
measure of the size of the problem. It essentially depends
on whether the auction is between firms or individuals.
For firms, a realistic number is substantially n < 100
[33]. In case of individuals, n can be up to 10,000 for
a typical business-to-consumer auction [33].
For our experimental setup, we considered 50 ≤ n ≤
400. Further, we also considered the number of bidders
relative to number of items (m), reasonably being 0 <
n
m ≤ 2.

2) Number of items m, number of bundles k: For m unique
items, there are O(m2) possible bundles (each is a
square region). This shows the input complexity of CAs.
In realistic settings, not all combinations are preferred
and the total number of bundles is � O(m2), as there
are certain combinations which are preferred by most of
the agents. In case of advertisement auctions, typically
central regions of the screen, are more valued by bidders.
We imposed this restriction in our experimental setting.
In our experiments, the number of items/bundles ranges
from a few dozens to a few hundreds. In particular, we
considered k-minded bidders for k ∈ [0, 200]. In realistic
settings, the total number of items m > 100 [33].

3) Bidders valuations vi: In realistic settings, bidders go
for competitive bidding, i.e., they have a speculation of
the possible value of the item or combination of items
which is close to its market value, and it is likely that
they bid within a certain range of the market value [33].
To capture this idea we associated a range with each
item, and bidders can randomly bid within that range
for the item.
If the set of items are structured, other considerations
also come into picture, such as location. Our case of
online auction also represents such a case. The assump-
tion that all bundles of the same size are equally likely
to be requested is clearly violated in real-world auctions
[18]. Most of the time, advertisers would like to get
slots or combination of slots at particular location or be
indifferent to certain locations.
The following are important parameters that affect the
bidding mechanism:

• Stretch Factor (S-factor): To make the bidding
competitive, an S-factor is associated with each
item/bundle such that bidders can randomly bid
within the stretch factor of the item/bundle value.
This captures the real-life setting where bidding
values of bidders for a particular item remain close
to the estimated or assumed market value.

• Additive/Subtractive factor (E-factor): To regulate

the bid price in case of bundles, we associated an
E-factor to the bid value of bundles. The E-factor
determines the factor of value that can be added
(super-additive) or subtracted (sub-additive) from
the total sum of bids of individual items in the
bundle.

If bidding values are not regulated or chosen carefully,
then even a hard distribution can become computation-
ally easy [18]. For example, if one particular bidder is
randomly bidding very high as compared to others, it
can make the optimization problem an easy matching
and does not capture the idea of competitive bidding
[18]. Boutilier et al. [34] considered the values of bids
from the normal distribution with mean 16 and standard
deviation 3 and Sandholm [17] generated bid values
randomly from either [0, 1] or from [0 : g], where g
is the number of items in the bid. Since the bid values
are not related to number of items in a bundle, these
methods are unreasonable (and computationally trivial)
[18].
In our experimental setting, we provided a stretch factor
(S-factor) which ensured that the bid value for bigger
bundle is within a certain range of the cumulative sum
of bids of smaller bundles in the bigger bundle. We
considered the super-additive and sub-additive cases
along with the arbitrary case.

V. EVALUATION PROCESS

We evaluated our algorithm in terms of truthfulness, running
time, social welfare and revenue generated.

A. Truthfulness

To test experimentally the truthfulness of the VCG-based or
the GSP-mechanisms, we modified the bid of a particular agent
to see if (s)he can increase its expected utility by lying. In
particular, we conducted experiments such that one particular,
randomly selected bidder is lying, i.e., changes her (his) bid
values in small increments while all other bidders fix their bid
values. We computed the maximum utility the lying bidder
achieves by the mechanism, and computed the ratio to the
actual utility that bidder would have got by truthfully bidding.
We took the average ratio over thousands of experiments and
used this as a measure of how truthful is the mechanism.

B. Running Time

In the display Ad setting, where hundreds of agents are
typically participating simultaneity in the auction, it is manda-
tory for an auction designer to consider its running time. The
practical application of any mechanism depends crucially on
the fact that it should meet the time requirement.

We have considered the running time of our VCG-
based mechanism with respect to increasing the number of
items/bundles and the number of bidders.
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C. Social Welfare

Theorem 1 states that our implemented mechanism ensures
that the resulting allocation is almost 1

16 -socially efficient, i.e.,
the resulting social welfare is almost at least 1/16 times the
optimal social-welfare. While the GSP-mechanism does not
ensure a similar guarantee, we experimentally tested the gap
in social welfare between the two mechanisms. Since GSP
does not allow combinatorial bidding, we expect the behavior
to be dependent on the type of valuations used; for supper-
additive (resp., sub-additve) valuations, the mechanism VCG-
based mechanism would perform better (worse) than GSP with
respect to social welfare.

D. Revenue

Revenue can be defined as the amount of value generated
by the auction in the market which can be taken by seller.
It is, in essence, the summation of all the bidders’ payments
made to the seller. One of the important aspects of any auction
mechanism is also the revenue generated.

VI. RESULTS AND ANALYSIS

In this Section, we analyse the truthfulness, running time,
revenue, and social welfare of the VCG-based mechanism.
We further present results comparing this mechanism to GSP.
Our experimental results show that the VCG-based mechanism
is superior in many aspects to the GSP mechanism. In this
Section, we mainly consider the setting where 0.001 < S-
factor < 0.1 and 1 < E-factor < 100 and grid size is 10 ×
10, unless otherwise stated. The vertical bar shows the 95%
confidence in the results obtained.

A. VCG-based Mechanism analysis

We conducted our experiments with CPLEX [24] and
approximate packing algorithm. All the experiments in this
Section were run independently for 100 times and their average
was calculated for every-parameter.

1) Social-Welfare: We observed that the social welfare
obtained increases with the number of bidders and then comes
to a saturation value for super-additive and sub-additive case,
as shown in Figure 2.

2) Revenue: The revenue generated by our mechanism
showed its applicability in real life as shown in Figure 3.
Although the VCG-mechanism does not theoretically provide
any guarantee on revenue, our experiments show that it pro-
vided a good revenue for the market maker. Any commercial
auction market cannot be subsided, so it must generate enough
revenue for itself to sustain.

3) Running Time: As Theorem 1 claims, the running time
for our mechanism is acceptable with respect to number
of bidders, items, and bundles. An empirical verification of
this can be seen in Figure 4. As the number of bidders
increases, the running time also increases almost linearly. We
observe that the running time mostly depends on the amount
of fractional components in the fractional allocation; if this
number is high, the time needed to decompose the fractional
allocation into an integral one increases.
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Figure 2. Log curve for Social Welfare of VCG-based mechanism
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Figure 3. Log curve for Revenue of VCG-based mechanism
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Figure 4. Running Time
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Figure 5. Run Time with varying bundles

We also conducted experiments to evaluate the running time
by fixing the number of bidders and increasing the number of
bundles successively. We discovered that as the number of
bundles increases, the running time increases almost linearly.
With a higher number of bidders, the running time tends to
increase faster. The same can be seen in Figure 5.

VII. VCG-BASED MECHANISM AND GSP MECHANISM

To compare the truthfulness, social-welfare and revenue of
our VCG-based versus GSP, we conducted the experiments
with same inputs for the both. However, since the GSP
mechanism cannot handle bundles, it was not considered in
its input.

A. Truthfulness

To quantify the truthfulness of our approach as explained in
sub-section V-A, we conducted many experiments and took the
average gain/loss in utility of a lying bidder. Although in some
particular instances the lying bidder was able to increase her
(his) utility in our mechanism, in overall multiple iterations,
the lying bidder was not able to increase the average utility. At
the same time, for GSP we observed that there were random
increases in utility. In particular, most of the time the lying
bidder was able to increase the utility because even if (s)he
bids very high as compared to market valuation of the item,
(s)he ended up winning the item and still paying the bid-value
near to market price as quoted by other losing bidders. In
GSP, the items are arranged in specific order and bid-values
also have similar order. Hence, a lying bidder who was earlier
winning a lower order item or no item at all, might win
higher value item and gain substantially high utility by paying
something close to market value as quoted by other bidders. In
case of GSP, one single lying bidder can change the complete
allocation pattern; this might account for the random gain in
utility we see.

For the VCG-based mechanism, we observed that over many
iterations, the lying bidder either got either zero or less utility
for lying. Over a large number of experiments (about 1000 for
a given number of players), we found that overall the lying

20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4
Utility Ratio for VCG−based Mechanism

Number of Bidders

U
til

ity
 R

at
io

20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25
Utility Ratio for GSP

Number of Bidders

U
til

ity
 R

at
io

Figure 6. Utility Ratio
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Figure 7. Social Welfare (Arbitrary Setting)

bidder did not achieve substantially more than he could have
achieved by telling the truth. In our truthfulness experiments,
we used a grid size of 5×5, E-factor = 1 and S-factor = 0.01.
In Figure 6, the curves shown in blue represent the results for
the VCG-based mechanism and the ones in red represent those
for the GSP mechanism. We can observe that the utility ratio
for true valuation and lying valuations is less than one for
our mechanism. Thus, overall, the lying bidder is not able to
increase her (his) utility by lying. But, in case of GSP, the
lying bidder is able to increase the utility by a substantial
amount.

B. Social-Welfare

The magnitude of difference between the social-welfare of
GSP and VCG depends on the parameters like E-factor and
S-Factor. The results are presented in Figures 7, 8 and 9. In
case of super-additive, our VCG-based mechanism is able to
generate higher social-welfare as compared to GSP. This can
be attributed to the higher economic capacity of combanitorial
auction. The social-welfare in arbitrary setting is also observed
to be higher than GSP. In case of sub-additive the social-
welfare of VCG-based mechanism is lower than GSP. This can
be attributed to the fact that sub-additive bids do not increase
the overall valuation of bundle as a bid.
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Figure 8. Social Welfare (Sub-Additive Setting)
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Figure 9. Social Welfare (Super-Additive Setting)

C. Revenue

The revenue generated by our mechanism was higher than
that of GSP in super-additive and arbitrary settings. It follows
similar pattern as social-welfare. The magnitude of difference
between the revenue of GSP and VCG-based mechanism
depends on the E-factor and S-Factor. The results are presented
in Figures 10, 11 and 12 for various settings.

VIII. CONCLUSION

In this paper we provided, for (what we believe to be)
the first time, an implementation of a VCG-based mechanism
for display Ad auctions. Our experiments show that this
mechanism is more resilient to lying bidders as compared
to GSP, and has reasonable time requirements for expected
problem sizes. We also found out experimentally that the
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Figure 10. Revenue (Arbitrary Setting)
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Figure 11. Revenue (Sub-Additive Setting)

100 150 200 250 300
2600

2800

3000

3200

3400

3600

3800

4000

4200

4400

M
ea

n 
R

ev
en

ue

Number of Bidders

 

 

VCG−Based Mechanism
GSP

Figure 12. Revenue (Super Additive Setting)

implemented mechanism can offer substantially better revenue
and social welfare than GSP in many cases. One of the reasons
for this is that the combinatorial setting allows for expressing
valuations over bundles and generally, bundles have more
economic values than single items.
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