
Development of a Distributed Cryptographic System Employing Parallelized

Counter Mode Encryption

Dev Dua, Sujala D. Shetty, Lekha R.Nair

Department of Computer Science

BITS Pilani, Dubai U.A.E.

Emails: {devdua@live.com, sujala@dubai.bits-pilani.ac.in, lekharnair@gmail.com}

Abstract— In the current era of Cloud Computing, Big Data

and always-connected devices and apps, it is critical that the

data that reside on networks be secured by robust techniques

and protocols. As the data are highly distributed and

voluminous, the security measures should employ methods that

efficiently and rapidly encrypt data. This calls for scaling the

model up to employ a distributed programming paradigm, so

that the utilization of resources (computing and storage) on the

network is high and channeled for processing in an optimum

way. Exploring the idea of distributed cryptography might

hold solutions to address this potential problem. We have tried

to probe in this direction by building a distributed and flexible

cryptosystem that employs a parallelized version of the AES

algorithm. The results obtained emphasize the performance

gains, agility, flexibility and scalability of the concept of

cryptography using distributed systems.

Keywords-Big Data; Cluster Computing; Distributed Systems;

Security; Cryptography; MPI.

I. INTRODUCTION

In the past few years, the concept of Cloud Computing

[13] has gained a lot of traction, and is seeing a high

adoption rate. This concept, wherein a third party provides

networked hardware, computing platforms and application

software as a service accessible via the Internet to its

customers is more commonly given the generic term of

“cloud”. In most cases the exact location of data stored is

unknown to the customers which raises concerns over the

privacy of the data on the external network. Security of data

and their integrity is a crucial concern that most

organizations have when moving their data to a cloud. Since

cloud computing is relatively a recent trend, encryption in

the cloud is still in its early stages. Only a few cloud

providers one of them being Microsoft Azure provision

encryption of data stored in their data centers [12]. The

primary objective of encryption in the cloud is to deter

unauthorized access, as access to sensitive data (without the

knowledge of the owner) by non-permitted entities is a

privacy violation. The focus of this paper is on how

encryption can be adapted to utilize the virtually infinite

amount of resources that the cloud provides, and not Key

Management, which is another crucial aspect of a

cryptosystem.

The cloud model being considered here is a

private/hybrid cloud. The public cloud model provides

services and infrastructure over the Internet, from a location

that is external to the customers’ computing environment.

Since resources are shared in this model, this commonality

of storage/processing space makes them more vulnerable to

data protection issues than private clouds. Private clouds are

basically the same in infrastructure and software as public

clouds, and they differ in the aspect that the network that

powers and interconnects the systems in the private cloud is

exclusive to the organization that houses the cloud. Only

authorized users belonging to the organization domain can

make use of the private cloud. Hybrid clouds provide a

balance between the other two models, as one can even

combine services provided by different cloud providers to

keep each aspect of the organization’s operation process

efficient and streamlined. However, one of the drawbacks is

the hassle to orchestrate security platforms of all providers

to play with each other. Hence, it is recommended to keep

critical data safe in the private side of the hybrid cloud, and

use strong security policies to protect the data in-house.

Thus, this paper assumes that the data to be kept safe in

the data storage facilities has already been transmitted there

using a Secure Sockets Layer encrypted connection or a

connection protected by Transport Layer Security. The

cryptosystem aims to operate as soon as the data reaches the

cloud, so that the window between the unencrypted and

encrypted states of the data is as small as possible.

Parallelized encryption methods have been explored in

the past [6][10][11] and researchers have implemented

parallel encryption/decryption algorithms on single

machines with multi-core CPUs. This leads to an overall

speedup on the time spent on encryption/decryption on such

machines when compared to single process, sequential

execution of the cryptography technique. However, the

parallelizable algorithms can be scaled to the next level, by

allowing them to run on distributed systems, so that the

number of processes employed during the computation can

be drastically increased. This would allow for noticeably

faster and efficient encryption and decryption of

voluminous, stagnant files. Since the data being encrypted

will be distributed in segments over a net-work, it has a

higher level of security by virtue of the randomness of its

location.

The objective of this paper is to meet the following:

 Build and setup a distributed homogenous

computing cluster with 3 compute nodes

 Create a native cryptographic platform that makes

use of the nodes to encrypt/decrypt files in a

parallelized manner.

41Copyright (c) IARIA, 2015. ISBN: 978-1-61208-412-1

ICIW 2015 : The Tenth International Conference on Internet and Web Applications and Services

mailto:devdua@live.com
mailto:sujala@dubai.bits-pilani.ac.in
mailto:lekharnair@gmail.com

 Analyse the performance of the parallelized

encryption and decryption code on the cluster by

varying the number of slave processes operating on

varying file sizes.

 Further explore possible extensions to the project

aims to efficiently ensure security of the platform

by deploying user access control, more control in

terms of options and features to encrypt data, and

scheduling regular refreshes to the encrypted state.

II. MPI AND PARALLELIZATION OF CODE

A. Message Passing and Message Passing Interface

Message Passing [1][3][4] is one of the types of inter-

process communication, which is employed in object

oriented programming and parallel programming. Message

passing involves sending functions, signals and data packets

from one process to either all other processes or a specific

process executing the Message Passing Interface (MPI) job.

The invoking program sends a “message” to the object. This

standard contrasts from routine programming [2] wherein a

method, process or a subroutine is specifically called by

name. One of code libraries that have been consented by the

MPI Forum is the Message Passing Interface Standard

(MPI) [3], and is widely supported by users, software

library developers, researchers and even vendors. The

Message Passing Interface was built to develop a flexible,

standard and portable message passing standard to be

extensively used in programs that employ message passing.

B. Parallelization of the AES algorithm

To adapt the cryptosystem to make full use of the

cluster, the most apt cryptography mode had to be

determined so that the cipher can optimally encrypt/decrypt

data. The Counter (CTR) mode [9] was chosen, due to the

reason that unlike traditional encryption modes, the CTR

mode encrypts data by converting the underlying block

cipher into a stream cipher. It generates subsequent key

stream blocks by encrypting successive values of a counter,

which can be any sequence generating function that

produces a sequence which is guaranteed not to repeat for a

long time. The most commonly used counter, due to its

popularity and simplicity is a simple increment-by-one

counter.

The CTR mode encrypts blocks of data in a way that

encryption of a block is totally independent of the

encryption done on the previous block. This enables

efficient use of hardware level features like Single

Instruction Multiple Data (SIMD) [14] instructions, large

number of registers, dispatch of multiple instructions on

every clock cycle and aggressive pipelining. This makes

CTR mode encryption to perform much better and faster

than a CBC (Cipher Block Chaining) mode encryption.

Using the CTR mode, encryption can be easily parallelized

as each block can be independently encrypted, thus using

the entire power of the underlying hardware.

After the plaintext is received by the cipher, encryption

can then be carried out by using the pre-computed number

sequence (if pre-processing of Initialization Vectors is

used). This can lead to massive throughput, of the order

Gigabits per second. As a result, random access encryption

is possible using this mode, and is particularly useful for

encryption of Big Data, where the plaintext are chunky

blocks of huge amounts of data. A unique characteristic of

the CTR mode is that the decryption algorithm need not be

designed, as the decryption has the same procedure as

encryption, differing only in terms of initialization of the

Initialization Vector (IV). This fact holds most weightage in

case of ciphers such as Advanced Encryption Standard

(AES), used in this project, because the forward “direction”

of encryption is substantially different from traditional

inverse mapped “direction” of decryption, which has no

effect on the CTR mode whatsoever. An additional benefit

of the CTR mode is the lack of need to implement key

scheduling. All these factors contribute to a significant yield

in hardware throughput, by making the design and

implementation simpler.

III. PROPOSED DESIGN FOR THE CRYPTOSYSTEM

The CTR mode of cryptography has similar

characteristics to Output Feedback (OFB) [8], but also

allows a random access property during decryption, which is

quite suitable for this project. CTR mode is well suited to

operate on a multi-processor machine where blocks can be

encrypted in parallel. However, since the data and

processing in a cluster is distributed, the way in which

distributed encryption can be achieved needs to be

determined. One way in which the CTR mode is easily

parallelizable across nodes is by letting each process have

its own counter, and by virtue of this, its own Initialization

Vector (IV). The approach in our case is different compared

to [6] in terms of the extent to which the processing power

has been utilized. However the file splitting is somewhat

similar in approach.

The IVs and the counters should be initialized at

runtime, depending on the number of processes attached to

the MPI job, which is accessed using MPI_COMM_SIZE.

The file to be encrypted is read in parallel as n equal and

distinct parts, where n is equal to MPI_COMM_SIZE. Each

process, after reading the portion of the file that has been

assigned to it, encrypts it by passing substrings of size

AES_BLOCK_SIZE to the AES_ctr128 method of the

OpenSSL library, and writes the encrypted data to a file that

contains the block of data encrypted by that process. Thus,

after encryption, n encrypted blocks along with n IVs are

created, which reside in the machine that generated them.

A. Setup of the experimental environment

To implement and test the cryptosystem, a Beowulf

cluster [5] built using 3 compute nodes, which are regularly

42Copyright (c) IARIA, 2015. ISBN: 978-1-61208-412-1

ICIW 2015 : The Tenth International Conference on Internet and Web Applications and Services

indistinguishable, was setup and connected in a 100M

network over password-less SSH [7] and libraries and

frameworks required by the cryptosystem like unison,

libcrypto, openssl-dev and OpenMPI 1.6 were installed.

Each compute node in the Beowulf Cluster created to collect

results had the following specifications:

CPU : Intel Core i7 4770 (4 cores X 3.40 Ghz)

Memory : 8GB

Operating System : Ubuntu 14.04 LTS

 BASH scripts were used to run the scripts used to control

the cluster. All programs that were run on the MPI ORTE

were written in C. OpenMPI was used to provide a parallel

environment to the code. Unison was used to synchronize

the source code and executables across the compute nodes.

The 128bit CTR implementation of the AES algorithm

available in the OpenSSL library was used in the

cryptosystem.

 For encryption, the file path and the number of

processes are passed as command-line arguments to the

cryptosystem. The script then synchronizes the file among

all available nodes, so that a copy of the file under

encryption is available locally on the HDD of every node.

This is done to minimize I/O overhead, and the network

overhead involved in this approach is minimal compared to

the performance gains expected. The master process

evaluates the file and pads the end of the file with bytes if

the file size is not a multiple of the number of processes

specified for use. Each node then operates on the file with 4

processes per node, with each process generating an

encrypted block and iv as separate files. The display names

of the files themselves are generated in a way that the file

names of related encrypted blocks (blocks generated from

the same unencrypted file) seem totally unrelated to each

other.

During decryption, the cryptosystem recognizes the

blocks to be decrypted by means of the file name passed via

command line arguments and then attempts to decrypt those

blocks. Decryption succeeds if the number of processes

specified matches the number of processes that were used to

encrypt the file. The master process then accumulates the

decrypted blocks and creates a decrypted file with the

padding removed (if any).

B. Advantages of the cryptosystem and Impact on security

While thinking of the above design, there were concerns

about the security and integrity of the approach. The

advantages outweigh the issues, which can be improved

upon as explained in Section V.

 Counters in the CTR mode are usually limited to

the value 2
64

-1, which then has to be reset once the

counter of the code reaches this value to avoid

overflow. However, in the proposed design, each

process has a counter of its own with the above

limit, so an increase in the number of processes

that are running the engine simultaneously linearly

increases the amount of data that can be

encrypted/decrypted. Thus with n processes, the

amount of data that can be encrypted/decrypted

increases n fold.

 Data encrypted by n processes can be decrypted if

and only if n processes are used to decrypt it. Any

mismatch in the number of processes will lead to

an Exception or files with junk characters. This

ensures that the data is undisclosed and

confidential as only the party that encrypts the data

would know the number of processes that were

chosen to encrypt the data. This adds an extra

security parameter apart from the secret key. Brute-

forcing will take longer as well, as the master key

is 10 bytes long (8 bytes for the AES key and 2

bytes for the number of processes).

 Since process ranks are arbitrarily decided at

runtime, the splitting and transmission of data that

occurs during encryption is completely random.

Thus, data being encrypted is spread across the

compute nodes, which increases entropy of

location of the data. One cannot determine with

surety the exact location of every block being

generated by the cryptosystem.

 As the blocks being generated are much smaller

than the original unencrypted file, the network

overhead is also minimized.

 The system built is highly portable and extensible,

with very less setup involved. This scalability

makes the cryptosystem highly compatible with the

scaling capabilities offered by the cloud

environment it is hosted on.

 Since OpenSSL is being at the very core of the

cryptosystem, the security of the entire system in

general is enforced. The core crypto library of

OpenSSL provides basic cryptographic functions

that are highly supported by the network security

community and provides an abundantly accepted

set of encryption implementations. Any

vulnerabilities in the library are updated fairly

often, and thus the cryptosystem is free of core

security issues.

C. Description of the test files

The files used to measure the total execution time of the

algorithm were generated by using the native dd command

provided by Linux, and contained randomized data with the

text file having a fixed sizes. A random stream was

generated by Linux, which was subsequently captured by

the dd command till the stream filled in the file of the

specified size. The sizes of the aforementioned files were

100 KB, 200 KB, 500 KB, 1MB, 2.5MB, 5MB, 10MB,

20MB, 40MB, 50MB, 100MB, 500MB, and 1GB.

43Copyright (c) IARIA, 2015. ISBN: 978-1-61208-412-1

ICIW 2015 : The Tenth International Conference on Internet and Web Applications and Services

IV. PERFORMANCE ANALYSIS

As can be seen from Figure 1, the most inefficient use of

the cluster is in the first case where the number of processes

(nP) is 1. It can be safely assumed that the time taken by the

cluster to execute parallel code using just 1 process will be

close to executing a serial version of the code on a

uniprocessor. Also, as the file size increases, there is a sharp

increase in execution time, which is largely due to high

process idle times. Hence it is meaningless to use just 1

process to encrypt a big file. On the other end, the most

efficient use of the cluster is when it is used to maximum

capacity, i.e., 12 processes. A maximum performance

increase of 6.7x is obtained when the cluster is optimally

used, in the case of encryption of the 1GB file. The

throughput obtained here is 4.233 Gbps. It can also be seen

from the graph as the number of processes allocated to the

encryption sequence is increased, the time vs. size graph

tends to become flatter and linear.

Figure 1. Execution time (s) vs. File size (MB) for encryption

 The similarity between Figure 1 and Figure 2 is

apparent, courtesy of the nature of CTR mode cryptography.

Most of the code in the decryption process is the same as the

encryption process, and only slight variations in execution

times are observed. The performance speedup obtained

upon operation on the 1 GB file by using 12 processes in

this case is only 6.378x compared to 6.7x in the case of

encryption. This is solely due to the conglomeration

operation at the end of the process, which consumes time in

stitching the decrypted blocks together. Another pattern

observed is that the curves obtained when the number of

processes are increased tend to group together, indicating

that O(n) times are possible as the number of processes goes

up.

Figure 2. Execution time (s) vs. File size (MB) for decryption

V. POSSIBLE IMPROVEMENTS TO THE CRYPTOSYSTEM

Several hardware level and implementation

improvements can be made to the cryptosystem as the one

designed here is not production ready, and is a prototype to

validate the design concepts. Some improvements include:

 Using an SSD array for storage of the files would

lead to drastically improved performance, as the

I/O capabilities of SSDs are much better compared

to conventional HDDs

 The processors used for testing were consumer

machine grade, and not high performance

processors typically used by server farms. Hence,

better processors could be used

 The network on which the system was tested was a

100M LAN, however the network can be upgraded

to a Gigabit connection and a fast Switch can be

used exclusively for the compute nodes in the

cluster

 The Scatter/Gather pattern of communicative

computation provided by Open can be employed to

44Copyright (c) IARIA, 2015. ISBN: 978-1-61208-412-1

ICIW 2015 : The Tenth International Conference on Internet and Web Applications and Services

ensure robustness of the system, and allow for

better handling of processes to avoid process idle

times

 In-memory storage can be used to store the files

and restrict hard drive reads and writes. This can

lead to significant improvements in execution

times, and reduce I/O overhead

 Reduction in network data transmission and file

generation to disclose as little data as possible, as

well as avoid chances of snooping and

eavesdropping

VI. CONCLUSION

Clusters are easy to setup using OpenMPI. However, the

network being used to connect the compute nodes has to be

reliable and sufficiently fast to reduce the communication

time. The security of the platform can be further increased

by scheduling encryption at periodic intervals, in a real

world scenario, so that chances of attacks are less, and the

safety of data is uncompromised. The computing power of

the cloud can also be harnessed to create virtualized

clusters, with a fixed number of nodes, but scalable in terms

of configuration of the nodes. So, this could result in a low

performing cluster with 3 compute nodes with just 3 logical

processors and 3GB of RAM, to a high performance 3 node

cluster with 48 logical processors and 168 GB of RAM.

Furthermore, the cluster can be connected to a REST Web

API that can accept files to be encrypted, run encryption on

them, and return a link to the encrypted versions.

This shows the flexibility of the platform designed in this

project, and also proves the ease by which a cluster can be

created in just a few hours. Also, since the tools used are

open source and are industry leading solutions with a lot of

community support, the maintenance of the cluster is

minimal. This makes the cluster fault tolerant in a way, as

well as highly extensible.

REFERENCES

[1] Goldberg, Adele, David Robson (1989). Smalltalk-80 The Language.
Addison Wesley. pp. 5–16. ISBN 0-201-13688-0.

[2] Orfali, Robert (1996). The Essential Client/Server Survival Guide.
New York: Wiley Computer Publishing. pp. 1–22. ISBN 0-471-
15325-7.

[3] Blaise Barney, Lawrence Livermore National Laboratory, Message
Passing Interface, URL : https://computing.llnl.gov/tutorials/mpi/,
Retrieved: October 2014

[4] Extreme Science and Engineering Discovery Environment (XSEDE)
Project, National Center for Supercomputing Applications (NCSA),
Introduction to MPI, University of Illinois at Urbana-Champaign.
URL: https://www.xsede.org/high-performance-computing,
Retrieved: November 2014

[5] Donald J Becker, Thomas Sterling, Daniel Savarese, Johne E
Dorban,; Udaya A Ranawak and Charles V Packer, “BEOWULF: A
parallel workstation for scientific computation”, in Proceedings,
International Conference on Parallel Processing vol. 95, (1995). URL:
http://www.phy.duke.edu/~rgb/brahma/Resources/beowulf/papers/IC
PP95/icpp95.html, Retrieved: October 2014

[6] Ozgur Pekcagliyan and Nurdan Saran, Parallelism of AES Algorithm
via MPI, 6th MTS Seminar, Cankaya university, April 2013 URL:
http://zgrw.org/files/mpi_AES.pdf, Retrieved: November 2014

[7] Hortonworks, HOWTO: Generating SSH Keys for Passwordless
Login, URL: http://hortonworks.com/kb/generating-ssh-keys-for-
passwordless-login/, Retrieved: October 2014

[8] ISO/IEC 10116:2006 - Information technology -- Security techniques
– “Modes of operation for an n-bit block cipher", URL:
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.ht
m?csnumber=38761, Retrieved: December 2014

[9] Helger Lipmaa, Phillip Rogaway, Chiang Mai and David Wagner,
Helsinki University of Technology (Finland) and University of
California at Davis (USA) and University of Tartu (Estonia)
University (Thailand), University of California Berkeley (USA),
“CTR-Mode Encryption”, URL:
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/workshop1/pa
pers/lipmaa-ctr.pdf, Retrieved: December 2014

[10] Deguang Le, Jinyi Chang, Xingdou Gou, Ankang Zhang and Conglan
Lu, "Parallel AES algorithm for fast Data Encryption on GPU", 2nd
International Conference on Computer Engineering and Technology
(ICCET), 16-18 April 2010 vol.6, no., pp.V6-1,V6-6, doi:
10.1109/ICCET.2010.5486259
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=548
6259&isnumber=5485932, Retrieved: November 2014

[11] M. Nagendra and M. Chandra Sekhar, Department of Computer
Science & Technology, Sri Krishnadevaraya University,
Anantapuramu, India, “Performance Improvement of Advanced
Encryption Algorithm using Parallel Computation”, International
Journal of Software Engineering and Its Applications Vol.8, No.2
URL: http://www.sersc.org/journals/IJSEIA/vol8_no2_2014/28.pdf,
Retrieved: November 2014

[12] Microsoft Azure Trust Center: Security URL:
http://azure.microsoft.com/en-us/support/trust-center/security/,
Retrieved: October 2014

[13] Mladen A. Vouk, Department of Computer Science, North Carolina
State University, Raleigh, North Carolina, USA, “Cloud Computing –
Issues, Research and Implementations”, Journal of Computing and
Information Technology - CIT 16, 2008, 4, 235–246,
doi:10.2498/cit.1001391, URL: http://hrcak.srce.hr/file/69202
Retrieved: October 2014

[14] William Gropp, Mathematics and Computer Science Division
Argonne National Laboratory Argonne, IL 60439, USA, “Tutorial on
MPI: The Message-Passing Interface”, URL:
https://www.idi.ntnu.no/~elster/tdt4200-f09/gropp-mpi-tutorial.pdf,
Retrieved: October 2014

45Copyright (c) IARIA, 2015. ISBN: 978-1-61208-412-1

ICIW 2015 : The Tenth International Conference on Internet and Web Applications and Services

https://computing.llnl.gov/tutorials/mpi/
https://www.xsede.org/high-performance-computing
http://www.phy.duke.edu/~rgb/brahma/Resources/beowulf/papers/ICPP95/icpp95.html
http://www.phy.duke.edu/~rgb/brahma/Resources/beowulf/papers/ICPP95/icpp95.html
http://zgrw.org/files/mpi_AES.pdf
http://hortonworks.com/kb/generating-ssh-keys-for-passwordless-login/
http://hortonworks.com/kb/generating-ssh-keys-for-passwordless-login/
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=38761
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=38761
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/workshop1/papers/lipmaa-ctr.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/workshop1/papers/lipmaa-ctr.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5486259&isnumber=5485932
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5486259&isnumber=5485932
http://www.sersc.org/journals/IJSEIA/vol8_no2_2014/28.pdf
http://azure.microsoft.com/en-us/support/trust-center/security/
http://hrcak.srce.hr/file/69202
https://www.idi.ntnu.no/~elster/tdt4200-f09/gropp-mpi-tutorial.pdf

