
A Domain-Specific Language for Modeling Web User Interactions with a Model
Driven Approach

Carlos Eugênio Palma da Purificação / Paulo Caetano da Silva
Salvador University (UNIFACS)

Salvador, Brazil
email: carloseugenio@gmail.com / paulo.caetano@pro.unifacs.br

Abstract-Domain Specific Languages have many applications.
They provide a way to abstract domain concepts and express
these concepts in a more expressive way when compared with
general-purpose languages. Recently the Object Management
Group has released the beta version of its Interaction Flow
Modeling Language standard to model user interaction in
applications. We contribute with a proposal of a textual
domain-specific language, to use this model as a base for
modeling user interaction in web applications, along with
Model Driven Software Development techniques and a set of
tools and components, to propose a generative approach to
model user interaction in web applications. The approach
allows the definition of user interaction flow models using a
textual form, architecture reuse, improved code quality and
speed in development.

Keywords-Model Driven Software Development; Domain
Specific Languages; Web Applications.

I. INTRODUCTION
Researches in software reuse show that in order to

achieve significant results in this field, a paradigm shift
towards the use of software families rather than individual
systems is required [18]. In order to achieve this goal, many
technics have been proposed. In this work, we propose a
tool-set for modeling user interactions in applications using a
textual Domain-Specific Language (DSL), called EngenDSL
[12], modified for accommodate most Interaction Flow
Modeling Language (IFML) [11] concepts. The language is
used along with a set of tools and libraries that realize the
Model-Driven Software Development (MDSD) [10]
generative software approach to create applications, to
generate a small application as a proof of concept of the
methodology.

We have used the IFML standard [11] to base our user
interaction model, adding some important features such as
the possibility to define and reuse the layout and style for
views, specify presentation libraries, attaching behavior
semantics and chaining to user actions. Whilst previous
researches in this area [5] provide some kind of support to
user interaction modeling, until recently, there was not a
formal specification for modeling user interactions such as
the OMG IFML Standard.

The rest of this paper is structured as follows. In the next
section, concepts and background information related to
main topics of this paper are presented. Section 3 describes
the EngenDSL language meta-model and constructs. Section
4 discusses the model transformation problem. Section 5

provides an example application that shows language
constructs and some development tools used in the approach.
Section 6 presents some related work. Section 7 provides
some conclusion and planning for future work.

II. CONCEPTS AND BACKGROUND
The MDD – Model-Driven Development is a technique

that gives software models a high importance role in
software development process.

Following the concept of prioritization of models and
their use as key artifacts during all phases of software
development (specification, analysis, design, implementation
and testing), is the Model-Driven Software Development
(MDSD) [10]. This concept uses an agile approach to
software development, along with generative techniques to
deliver software based on a software product lines – SPL
approach.

As in all areas of science and engineering, there are
always specific and generic approaches to solve a given
problem [3]. The description of a problem in a language
developed specifically for its domain tends to be a more
optimized and direct solution, possibly caring greater
expressiveness to describe the domain concepts. Domain-
specific Languages are languages created for a particular
domain. They are also called specialized languages,
problem-oriented or special purpose languages [9]. Deursen
et al [3], defines DSL as programming languages or
executable specification languages that offer great power to
express, with notations and abstractions usually focused on a
restricted domain, a particular problem.

IFML [11] is a modeling standard developed by OMG
designed for expressing the content, user interaction and
control behavior of software applications front-end. It allows
software practitioners to model and describe the main parts
of an application front-end. Therefore, the specification
divides these parts in the following dimensions: (i) View –
the view part of the application composed of containers and
view components; (ii) State and Business Logic – the
representation of objects that carries application state and the
business logic that can be executed; (iii) Data and Event
Binding – the binding of the view components to data
objects and events; (iv) Event Control Logic – the logic
responsible to determining the action execution order after in
response to an event; (v) Architecture Distribution – the
distribution of control, data and business logic at the
application tiers.

28Copyright (c) IARIA, 2015. ISBN: 978-1-61208-412-1

ICIW 2015 : The Tenth International Conference on Internet and Web Applications and Services

The general IFML meta-model is presented in [11]. The
IFMLModel is the core container of IFML meta-model
elements and contains a InteractionFlowModel which is the
user view of an IFML application. It is composed of
InteractionFlowModelElements – an abstract class that
represents a generalization of every element of a
InteractionFlowModel (the view elements); DomainModel –
model elements that represents the business domain or data;
ViewPoints – represents only specific aspects of the system
to facilitate comprehension of referencing
InteractionFlowModelElements.

The DomainModel represents the business domain of the
application, the content and the behavior that is referenced
by the InteractionFlowModel. The DomainModel contain
DomainElements. These are specialized in terms of concepts
(DomainConcept), properties (FeatureConcept), behaviors
(BehaviorConcept) and methods (BehaviorFeatureConcept).

III. THE ENGENDSL
The EngenDSL extension was modeled to aid in developing
applications by abstracting user interaction concepts based
on IFML standard. The main objective was to define a
textual DSL, which could be used to streamline user
interaction modeling. The foundation for this was the IFML
standard and in Figures 1, 2 and 3, we present the main
concepts and extensions provided by EngenDSL to the IFML
standard.

Figure 1. The EngenDSL IFML Extension Package for View Elements

Figure 2. The EngenDSL IFML Extension package for Interaction Flow

Elements

Therefore, this EngenDSL language extension was
designed to comply with the IFML standard as much as
possible, while giving the possibility to define other
architectural aspects not covered by the standard. Figure 4
summarizes the mapping between IFML and EngenDSL
main elements.

Figure 3. EngenDSL IFML Extensions Package for Domain Elements

29Copyright (c) IARIA, 2015. ISBN: 978-1-61208-412-1

ICIW 2015 : The Tenth International Conference on Internet and Web Applications and Services

Figure 4. EngenDSL-IFML Elements mapping table

We briefly describe these elements and show examples
on how they are used in application models. The examples
and further details can be found in Section 5, and the
complete model for the approach can be seen in the GitLab
public repository for this project [4].

The IFML standard defines ViewContainers as containers
to other ViewElements like other ViewContainers and
ViewComponents. In the proposed language, the same
semantics apply. In the language, Views are model elements
that represent the container IFML concept. Structurally, in
the language, Views may be composed of other Views and
Sections (see Section element). Sections are components that
compose Views and display content. Section definitions are
laired and composed inside View definitions and have a type
- ViewSectionType. A Section definition, in the proposed
language, represents the IFML concept of ViewComponent.
Therefore, sections are used to present or capture any user
data, which conforms to the IFML standard. They have a
name, a type, a namespace, and may be composed of other
Sections or Fields – which are called subsections. Within
Sections, we have Fields. They represent the IFML
ViewComponentPart concept. Fields have a name, a type –
ViewFieldType and properties that define specific field
semantics like its ID, Label, etc. The Field’s type
semantically defines its behavior and presentation
characteristics such as “button” or “select” field types. The
EngenDSL language extends the IFML ViewComponent

concept, in that a Section definition can extend, or in-line
include another Section definition.

When developing business applications, as a rule, we
usually have present the idea of model entities that represent
real-world concepts. In the EngenDSL, the Entity concept is
derived from the Model concept in Model View Controller
(MVC) [8] and the Domain Concept in IFML.

The EngenDSL directly uses the concept of Controllers
representing, according to MVC standard, the components
that mediate data input and output for both the MVCs Model
and View. The concept of LogicalPath is directly associated
with the concept of navigation between Views and
Controllers. A Controller, at the end of processing, redirects
the user to a path. Defining this path is the function of a
LogicalPath, which is an abstraction for the concept of a
redirect in a web application. However, as a Controller can
resolve to trigger another Controller at processing end,
Views and Controllers represent, and are extensions of
LogicalPaths within EngenDSL. Therefore, a Controller may
determine, in accordance with its implementation logic,
redirect the user to a path – LogicalPath, which will
ultimately render a web page to the application user, or send
the application flow to another Controller. Note that, at some
point, the last LogicalPath in a flow within the application
logic will be a View.

Figure 5 shows an example of such a navigation flow,
detailed later in this work in Section 5 using the proposed
language. Here the ListProductsCtrl, a controller whose type
is Search (will find data in repository and return the list
found), has one of its LogicalPaths (success – the predefined
default logical path) pointing to the View ListProductsView.
After the selection event is triggered on an item in the list in
this view, the ProductListTable field target property defines
the next item in the interaction flow: the ViewProductCtrl,
which is a controller of type View. These controllers will find
an item in persistence storage and return the item data. After
performing the action, the controller will use its default
“success” LogicalPath to determine the next element in the
interaction flow - ViewProductVw.

Figure 5. Navigation Flow Example

30Copyright (c) IARIA, 2015. ISBN: 978-1-61208-412-1

ICIW 2015 : The Tenth International Conference on Internet and Web Applications and Services

IV. MODEL TRANSFORMATIONS
In consonance with Model-Driven Software

Development technics, the proposed approach uses
intermediate model-to-model transformation phase, or
phases, before final code generation and integration in the
target platform architecture. We use this technique to enable
the specification of requirements and accidental concerns,
which are foreign to the proposed DSL. The proposed
approach uses an intermediate model – Engen Intermediate
Model (EIM), which can be partially seen in Figure 6. The
entire model can be seen in the project GitLab repository [4].

Figure 6. The Engen Intermediate Model (EIM)

The solution was implemented using the XText

Framework [19] and other components. The overall elements
included in the solution are shown in Figure 7. One of these
components is the EngenGenerator Plugin. This component,
in turn, uses a set of rules specified by the internal
MTMTransformer interface.

The rule set is configured in a per project configuration
file. Each line in this file defines a component (usually a Java
class) that implements the MTMTransformer interface and its
purpose is to transform one or more elements from the given
EMF model to the EIM model already shown in Figure 6.
The triggering of M2M transformation component can be
done by any Java component.

Figure 7. EngenDSL Components

The output from M2M transformation is a XML file that
serializes the generated intermediate model. This model can
then be further customized by using a technique called model
weaving [14]. The proposed implementation of this concept
consists in augmenting the original model by setting the
value of some properties in separated configuration files.

The rationale for using this technique is that after each
model transformation and serialization, attached custom
information is not lost. This is automatically done by the
provided tooling as shown in Figure 8, in which we can see
some properties available for customization after a M2M
transformation phase. These properties come from the
previously defined intermediate model already shown in
Figure 6, and usually have a default value that can be
changed by setting the related property of the model.

Figure 8. Model weaving customization in tool

The system developer should use this model to fine-tune
the created model representation of the DSL concepts. After
this step, the M2T transformation can take place. This last
step is similar to M2M transformation but require templates
targeted to the final application specific platform and

31Copyright (c) IARIA, 2015. ISBN: 978-1-61208-412-1

ICIW 2015 : The Tenth International Conference on Internet and Web Applications and Services

architecture. These templates are responsible to transform the
augmented intermediate model into target platform code.

In Figure 9, we show a small portion of a template
written in Apache Velocity [15] that receives a model
element, identified as $field in the template, and outputs an
HTML date text field with an associated action.

Figure 9. Apache Velocity template for a text field

Therefore, in conjunction with templates, tailored to
generate the artifacts to the target architecture, this
intermediate step, allows to complete the system
configuration, build and generation of the final solution,
which will be based on the target architecture specified by
intermediate and final transformations, model weaving and
templates.

V. AN APPLICATION EXAMPLE
In this section, we show a portion of an application

modeled using the proposed method. The full examples can
be found on the project GitLab public folder [4].

The example is a small shopping application. Some of
the Entities, along with properties and constraints are shown
in the example in Figure 10.

The domain model represented by the Entity instances is
straightforward. They define the domain model elements
along with their properties and constraints. Following are the
controllers, for example the ListProductCtl. The definition
specifies a controller model element. In this case, the Search
type is defined, areas in the CreateProductCtl a Create
controller type is defined. The “Search” and “Create”
controller types (after the colon in the controller definition)
configuration binds the model element to an external
component that performs a search in the persistence storage
for the domain model element - specified by the target
property, using the provided criteria. In this specific
example, if this controller is accessed from the home page,
all elements in persistence storage should be returned, since
there are no criteria defined.

On the ListProductVw view element in Figure 11, we can
see how Sections can be nested and how the search for the
products can be further customized.

Figure 10. Entities and Controllers definitions

 While when the ListProductsCtl controller was accessed
without any search context information the controller
performed a database search for all products, without any
search criteria, the search triggered by the NewSearch button,
on the RefineSearchSection form, will use the context
information from the input fields (name AND manufacturer)
as the criteria for the controller to further filter the results.

Figure 11. The ListProductVw View Definition

32Copyright (c) IARIA, 2015. ISBN: 978-1-61208-412-1

ICIW 2015 : The Tenth International Conference on Internet and Web Applications and Services

This is automatically done by the ad-hoc Web
Framework we are using. We can see from the NewSearch
button configuration, that the target property points to the
ListProductCtl controller. This information corresponds to
the event model definition for this element. In the proposed
model, this information is sufficient for templates to interpret
the event model: the target controller for the action (along
with its fields containing the criteria for the query entered by
the user).

Figure 12 shows a screenshot for the generated HTML
running in an application server for the NewProductVw
View.

Figure 12. Running Application Screenshot for the Create Product View

As stated before, the proposed approach includes a way
to define and reuse application layout. In the DSL, we
declare the partial layout for the application as shown in
Figure 13.

The layout name appears after the layout keyword. The
layout specifies a template property that will be parsed by the
M2T engine, and will produce the file defined by the path
property. A small section for the specified template is shown
in Figure 14.

This template defines some markup instructions and
delegates the layout subsections parsing to another template
called parseLayoutSections. Each section defined by the
main layout element is a composition of URLs, templates
and libraries. For example, the head section shown in Figure
12, defines a template to be parsed before and other after the
main template, for this section (which will be by default the
section name if the template attribute is not defined). This
information is just stored in the model, not hardcoded in the
solution, so they can be used by the templates and M2T
components as they find applicable.

Figure 13. Partial Layout definition

Figure 14. Section Layout template

VI. RELATED WORK
Several works have been proposed for modeling and

specification of Web systems. WebML [16] and WebDSL
[17] are examples. This work starts from these approaches to
specify a textual and declarative form of describing the
various aspects involved in this type of application.
However, none of them is based in an independently defined
standard like IFML.

The WebML proposed in Ceri et al [16], also defines a
model that uses other work as the basis for the definition of
Web applications. WebML uses UML and XML in the data
dimensions (structural model), pages (composition model),
topology of links between pages (navigation model), the
graphics and layout requirements for the pages (presentation
model) and customization needs (customization model) for
delivering content to the user.

Visser proposal [17] is more similar to the one presented
in this work, called WebDSL. It defines a language for
describing web applications, covering its various aspects.
However, in a different direction than the one presented in
this article, the language goes beyond the simple statement of
these concepts to specify conditional structures, functions
and methods, including algorithms, which are used to define

33Copyright (c) IARIA, 2015. ISBN: 978-1-61208-412-1

ICIW 2015 : The Tenth International Conference on Internet and Web Applications and Services

the behavior of certain parts of the application architectural
structure and components. While this approach has some
advantages, it possibly creates a greater complexity in the
development process.

VII. CONCLUSION AND FUTURE WORK
Domain Specific Languages are a technological trend. Its

application in Web systems is perfectly feasible and even
recommended. Not only because of productivity that this
application can achieve, but also by all other benefits that a
development approach based on models and automatic
generation of artifacts can bring to Web Systems
Engineering. The benefits include rapid construction and
prototyping, the reduction of failures, standard architecture
and solutions, suitable and adaptable technology approach, in
addition to allow a safe evolution between different
technologies and frameworks that constantly arise for this
type of application.

This work demonstrated a DSL, developed for web
specific domain, in consonance with an adopted OMG
standard for defining user interactions – IFML. This can
improve reusability of models, view interactions modeling
understanding and collaboration since the text nature of the
solution, enables better handling of models, inclusive when
related to version control repositories and tools.

We are now looking into Business Rule integration into
the DSL to allow advanced rules verification, along with the
basic constraint based rules. We also intend to implement a
visualization interface to the model using standard IFML
notation.

REFERENCES

[1] J. Bettin, “Best Practices for Component-Based Development
and Model-Driven Architecture”, 2003. Available from:
http://s23m.com/publicwhitepapers/best-practices-for-cbd-
and-mda.pdf. [retrieved: May, 2015]

[2] K. Czarnecki and S. Helsen. “Classification of Model
Transformation Approaches". OOPSLA’03 Workshop on
Generative Techniques in the Context of Model-Driven
Architecture. 2003, pp. 1–17. Available from:
http://s23m.com/oopsla2003/czarnecki.pdf. [retrieved: May,
2015].

[3] A. V. Deursen, P. Klint and J. Visser. “Domain-Specific
Languages: An Annotated Bibliography.”. ACM SIGPLAN
Notices. Volume 35, Issue 6. 2000, pp 26-36.
http://www.st.ewi.tudelft.nl/~arie/papers/dslbib.pdf.

[4] Engen, 2015. “Engen Project Site.” Available at
https://gitlab.com/engen/public/wikis/home [retrieved: May,
2015].

[5] V. Estêvão, S. Souza, R. D. A. Falbo, and G. Guizzardi. “A
UML Profile for Modeling Framework-Based Web
Information Systems.” In Proc of the 12th International
Workshop on Exploring Modeling Methods in Systems
Analysis and Design. 2007, pp. 149–58.

[6] JM. Favre. “Towards a Basic Theory to Model Model Driven
Engineering.” In Procs. of the 3rd Int. Workshop in Software
Model Engineering (WiSME). 2004, pp. 262-271.

[7] F. Fondement and R. Silaghi. "Defining Model Driven
Engineering Processes". Third International Workshop in
Software Model Engineering (WiSME). held at the 7th
International Conference on the Unified Modeling Language
(UML), 2004.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. "Design
Patterns: Elements of Reusable Object-Oriented Software".
2nd ed. Boston - 1995.

[9] M. Mernik, J. Heering and A. M. Sloane. “When and How to
Develop Domain-Specific Languages.” Journal ACM
Computing Surveys (CSUR), Volume 37, issue 4, 2005, pp.
316–44. DOI:10.1145/1118890.1118892.

[10] N. Moreno, J. R. Romero and A. Vallecillo. “An Overview of
Model-Driven Web Engineering and the MDA". Web
Engineering: Modelling and Implementing Web Applications
Human-Computer Interaction Series 2008, pp. 353-382.

[11] OMG 2014. Interaction Flow Modeling Language. Available
from: http://www.ifml.org. [retrieved: May, 2015].

[12] C. E. Purificação and P. C. Da Silva. “EngenDSL - A Domain
Specific Language for Web Applications". 10th International
Conference on Information Systems and Technology
Management – CONTECSI 10. 2013. pp. 879–99.
doi:10.5748/9788599693094-10CONTECSI/PS-474.

[13] T. Stahl, M. Voelter and K. Czarnecki. "Model-Driven
Software Development: Technology, Engineering,
Management". 2006, John Wiley & Sons. ISBN:0470025700.

[14] M. Völter. “Model-Driven Software Development", 2006.
Available from: http://www.voelter.de/data/books/mdsd-
en.pdf. [retrieved: May, 2015].

[15] Apache Velocity, 2009. Available from:
http://velocity.apache.org. [retrieved: May, 2015].

[16] S. Ceri, P. Fraternali and A. Bongio, "Web Modeling
Language (WebML): a modeling language for designing web
sites". Computer Networks 33 (1-6), 2000, pp. 137-157.

[17] E. Visser. "WebDSL: A case study in domain-specific
language engineering, generative and transformational
techniques in software engineering". GTTSE, Lecture Notes
in Computer Science, Springer (2008). Tutorial for
International Summer School GTTSE, 2008, pp. 1-60.

[18] K. Czarnecki. "Overview of generative software development.
In J.-P. Bantre et al,, Ed., Unconventional Programming
Paradigms (UPP’04), Lecture Notes in Computer Science,
vol. 3566, 2004, pp. 313–328, Mont Saint-Michel, France.

[19] XText, 2009. Available from: http:// www.xtext. org.
[retrieved: May, 2015].

34Copyright (c) IARIA, 2015. ISBN: 978-1-61208-412-1

ICIW 2015 : The Tenth International Conference on Internet and Web Applications and Services

