
Return the Data to the Owner:
A Browser-Based Peer-to-Peer Network

Dennis Boldt and Stefan Fischer
Institute of Telematics
University of Lübeck

Lübeck, Germany
Email: {boldt,fischer}@itm.uni-luebeck.de

Abstract—The paper covers the concept of a browser-based peer-
to-peer network, which supports a decentralized, redundant and
encrypted data storage. The core is a JavaScript-based socket
API, which facilitates creating and accepting arbitrary TCP/IP
connections from within a browser. This API builds upon a
WebSocket SOCKS5 Proxy. This is essential, because the sandbox
of a browser does not allow plain socket connections. We used this
Socket API to implement, to the best of our knowledge, the first
Browser-based peer-to-peer network based on the Chord protocol.
Additionally, we implemented the first JavaScript-based forward
error correction based on Reed-Solomon coding to handle the
recovery of lost data. Our network circumvents user-generated
content stored on powerful central servers operated by huge
companies which allows the creation of user profiles, the place-
ment of customized advertisements and a possible interface for
intelligence agencies to access the central stored data. Our results
show, that our approach works with reasonable performance for
files up to 100 KB.

Keywords-Browser-based peer-to-peer network; Berkeley Sockets
API; SOCKS5; Chord; Reed-Solomon.

I. INTRODUCTION

For quite a while now, user-generated content web pages
such as Wikipedia, Youtube, Twitter or Flickr are ubiquitous.
Moreover, plenty of well-known desktop applications such
as several widely-used office suites have been made usable
through the browser interface. This works in a way that the
owner of the web applications provide the platforms and the
users are generating the corresponding content by accessing the
applications through their web browsers (or specialized apps)
and store it on the servers of the web applications’ owners.
Many users see this as the core problem: the server providers
control the data in such a way, that they can create user profiles
and provide customized advertisements. Moreover, they pro-
vide embeddable code snippets for like-buttons (e.g., Facebook
and Google Plus), videos (e.g., Youtube) or messages (e.g.,
Twitter) which are embedded in millions of independent web
pages [1]. Based on this, it is even more easy to generate
perfect customized user profiles, especially if a single company
provides dozens of heterogeneous applications which appear
independent.

In our approach for a solution, we focus on the browser
as an independent platform, because it is one of the most
often used applications spread over all operating systems in
the world. Furthermore, it is not per se necessary to install

an additional runtime environment (e.g., Java or .NET Frame-
work), because browsers support JavaScript out of the box.
Finally the browsers are getting faster from release to release
and new technologies such as HTML5 are better supported.

This paper provides a way to get rid of the dependency
on web applications provided by huge companies. The user-
generated data will be stored in an encrypted format, decen-
tralized and redundant in the browsers of the users. The ar-
chitecture we developed is a browser-based peer-to-peer (P2P)
network based on well-known technologies and protocols such
as Berkeley Sockets, SOCKS5, Chord, Reed-Solomon coding
and HTML5 features like WebSockets.

The rest of this paper is organized as follows. Related
work is introduced in Section II, the core architecture of the
browser-based P2P network is proposed in Section III. The
experimental results are provided in Section IV. Section V
gives an outlook on future work. Section VI concludes the
paper.

II. RELATED WORK

Classical applications in computer networks are based on
client-server architectures, where a central server provides
services which are used by many clients. In contrast there are
peer-to-peer (P2P) networks, in which every participant is both
client and server (peer) at the same time. In the last 15 years,
plenty of P2P systems were developed. Well known examples
are the first generation P2P networks Napster (1999) with a
centralized lookup, or Gnutella (2000) with a decentralized
flooding-based lookup.

Both approaches do not scale well which led to the
development of a second generation of P2P networks like
Tapestry [2] or Chord [3]. These approaches are more struc-
tured and, as a result, much more scalable. Also, P2P-based
distributed storage systems were invented, where systems like
OceanStore [4], Cooperative File System (CFS) or Wuala [5]
were created. The latter is based on Network Coding [6].

A. Chord

A common structured P2P network protocol is Chord [3].
P = {p1, . . . , pN} is the set of N peers within the network.
A hashing function h assigns to every peer p ∈ P an unique
ID h(p) ∈ {0 . . . 2m − 1}, where m should be sufficiently

140Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

WSSP

WSSP

Figure 1: High level architecture: the browser-based
peer-to-peer network based on a Chord-ring

huge. The ID for a peer is calculated by hashing the peer’s IP
address and port number, for example with SHA-1, where m
is 160 bit. Based on these IDs, all peers are placed on a ring
with a corresponding key space {0 . . . 2m − 1}, the so-called
Chord-ring. Based on this ring topology, peer p is in charge
for the key space between the predecessor’s ID and the own
ID: (h(pred(p)), h(p)].

The core operation of a P2P network is to find the node
n which is in charge for a given m-bit key key; in Chord
this can be expressed as n = succ(key). This operation can
easily be implemented by walking along the ring of peers in
O(N) steps. Chord improves this inefficient lookup to log(N)
steps with an additional routing table, the so-called finger table.
Each finger table has m entries (fingers), where each finger(i)
bridges a distance of 2i−1 on the ring. Thus, the first finger
is the successor and the last finger points to a peer which is
at least half the ring away. The Chord protocol also handles
joining and leaving of peers. To join to the network, a peer
must know an existing peer from the network (bootstrapping).
When a peer joins or leaves, the corresponding key spaces are
changing.

All applications must be implemented on top of this routing
protocol. Chord’s core application is a Distributed Hash Table
(DHT) for storing application data in the network. A DHT
supports two operations, where key is a SHA-1 hash and value
is an array of binary data:

1) put(key, value)
2) value = get(key)

Because the DHT and Chord are using the SHA-1 hashing
function, both are using the same key space. Therefore, putting
and getting data yields to the function succ(key) provided by
Chord.

Client Server

SYN

SYN + ACK

ACK

HTTP-Request (GET /server HTTP/1.1)

HTTP-Response (HTTP/1.1 200 OK)

FIN

FIN + ACK

ACK

Figure 2: Schematic sequence diagram showing an
XMLHttpRequest exchange.

B. WebRTC

WebRTC is a JavaScript API which enables web
browsers to have real-time communications (RTC) [7].
WebRTC supports P2P audio and video communications. It
also supports P2P data channels to send binary data between
two peers. To create a P2P connection, WebRTC does a
connection handshake between two peers over a signaling
channel based on XMLHttpRequests or WebSockets using the
Session Description Protocol (SDP) defined in RFC 4566 [8].
The WebRTC specification itself is still work in progress. To
enable P2P connections between peers, some simple WebRTC-
based P2P APIs like PeerJS [9] were developed. Current
research topics on WebRTC are media streaming [10][11][12]
and browser-based Content Delivery Networks (CDN) like
Maygh [13], Tailgate [14] or PeerCDN [15].

III. SYSTEM ARCHITECTURE AND IMPLEMENTATION

The architecture of our browser-based P2P network is
shown in Figure 1. Because we implemented the Chord
protocol, all browser-peers are placed on a ring. To set up the
network, it has to be possible to create a socket connection to
another browser, and to bind a socket to listen for incoming
connections. This leads to the core problem: every browser-
based application runs in a sandbox which has no capability to
handle raw TCP/IP sockets. There are three ways for a browser
to communicate to the world: WebRTC, XMLHttpRequests and
WebSockets. The first was mentioned before, therefore we are
focusing on the last two.

XMLHttpRequest Level 2 [16] (XHR) allows a web ap-
plication to send HTTP requests to a server asynchronously.
It is located on top of HTTP in the TCP/IP protocol stack.
A connection starts with a kind of a HTTP-based handshake.
Because HTTP is on top of TCP, this leads to a TCP handshake
followed by an HTTP request. The HTTP response (typically
containing XML, JSON, HTML, or binary data) from a server
can be embedded in the application without reloading the web
page. Because HTTP is a request-response protocol, a web
application needs to request a resource continuously to get
real time updates (polling). The message sequence for an XHR
exchange is shown in Figure 2.

The WebSocket Protocol is defined in RFC 6455 [17]
and allows real two-way communications. A connection starts

141Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

Client Server

SYN

SYN + ACK

ACK

HTTP-Request (GET /server HTTP/1.1)

HTTP-Response (HTTP/1.1 101 Switching Protocols)

WSFRAME(data)

FIN

FIN + ACK

ACK

Figure 3: Schematic sequence diagram showing a connection
with WebSockets

similar to a XHR connection. The difference is, that the HTTP
response from the server signals that client and server are
switching the protocol to WebSocket Frames (HTTP/1.1
101 Switching Protocols). These frames are similar
to TCP segments. As soon the connection is initiated, client
and server can send binary data, i.e., HTML5 Typed Ar-
rays [18], to each other immediately. A typical WebSocket
connection is shown in Figure 3.

The SOCKS Protocol Version 5 (SOCKS5) is a protocol
defined in RFC 1928 [19] to realize a proxy server. A proxy
forwards connections of clients to servers and vise versa.
SOCKS5 supports TCP/UDP, IPv4/IPv6 and authentication. It
starts with an handshake to exchange the authentication meth-
ods with the identifier/method selection message. Afterwards
a socks request, e.g., CONNECT/BIND request, with a given
IP address and port number is send to the proxy which creates
a connection or binds a socket. In the TCP/IP stack, SOCKS5
operates between the transport layer and the application layer.

A. The WebSocket SOCKS5 Proxy (WSSP)

The WSSP is the core component in our architecture which
is implemented in Java and uses the Netty framework [20].
Netty supports zero-copy and uses New I/O (NIO), which
is a non-blocking I/O based on Buffers and Channels. Netty
perfectly fits in or architecture, because it already provides
handlers for WebSockets. On top of the WebSockets, we
implemented the SOCKS5 protocol to allow arbitrary TCP/IP
connections.

Connect to a socket: To connect to a socket, a WebSocket
connection to the WSSP must be established by a client.
Afterwards, the WebSocket connection is used to send the
method selection message followed by the CONNECT request.
The WSSP connects to the given IP/port and sends a SOCKS5
reply over the WebSocket connection to the client. Finally, the
connection is established.

Bind to a socket: To bind to a socket, a WebSocket
connection to the WSSP must be established by a server.
Afterwards, the WebSocket connection is used to send the
method selection message followed by the BIND request.

Reed-Solomon

DHT (with AES)

Chord

Berkeley Sockets

SOCKS5

WebSockets

Transport (TCP/UDP)

Internet (IP)

Link (Ethernet)

Figure 4: Low level architecture: Technology stack of the
browser-based peer-to-peer network.

The WSSP binds to the given IP/port and sends a SOCKS5
reply over the existing WebSocket connection to the server
and the binding is established. The Chord-ID is calculated
by hashing this IP and port with SHA-1. On an incoming
connection, the WSSP sends a new SOCKS5 reply over the
existing WebSocket connection to the server. The server creates
a new WebSocket connection to WSSP. The WSSP binds this
new WebSocket connection to the incoming connection and a
separate channel for each connection is established.

B. JavaScript APIs

In the following, we are going through the layers of our
technology stack shown in Figure 4. We assume the link,
internet and transport layer to be well-known and we focus
on the application layers on top of the transport layer.

1) The WebSocket API: The WebSocket API [21] imple-
ments the WebSocket Protocol, which is located on top of
HTTP; after switching the protocol on top of TCP/IP. The
WebSocket API is supported by all common browsers.

2) JavaScript SOCKS5 API: Together with the WSSP, we
implemented an appropriate JavaScript SOCKS5 API, which
builds upon WebSocket API. With this API it is possible to
create socket connections and to listen for incoming connec-
tions within sandboxed web applications.

3) JavaScript Berkeley Sockets API: The Berkeley Sockets
API (BSD API) [22] provides well-known functions like
socket(), connect(), bind() or close() to enable
inter-process communication (IPC) for any application via
TCP/IP. Figure 5 shows how this functions can be used by
a server to bind to a socket and for a client to connect to a
socket. The original BSD API is written in C and is part of
every UNIX system. The BSD API is situated in the TCP/IP
stack between the transport layer and the application layer
as well. We adopted the BSD API on top of the JavaScript
SOCKS5 API. With our JavaScript Berkeley Sockets API it is
easy to create IPC within the browser.

142Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

socket()

bind()

listen() socket()

connect()

write()

read()

close()

Client

accept()

read()

write()

close()

Server

request(data)

response(data)

Figure 5: Client and Server with the Berkeley Socket API
(based on [23])

4) JavaScript Chord API: With the JavaScript Chord API
we implemented, to the best of our knowledge, the world-wide
first JavaScript-based P2P network on top of the JavaScript
Berkeley Sockets API. To join the network, we implemented
a simple lookup server where all nodes which have joint are
registered.

5) JavaScript Distributed Hash Table API: Our JavaScript
Distributed Hash Table API uses the JavaScript Chord API
to provide the two DHT operation put and get. It supports
symmetric encryption and decryption of data using AES with
a given key symm, e.g., a password. This symmetric key can
differ from data to data. The encryption and decryption are
calculated on the client side. Therefore, the password never
leaves the computer of the client. The key, which represents
the storage position of the data in the Chord-ring, can be
determined by calculating the SHA-1 hash of the data. The
packet format can be seen in Listing 1. For transferring,
this packet is converted into binary format using the library
binarize.js [24]. The data are stored in-memory by using a
JavaScript object.

{
key : sha1(data),
value : aes_enc(data, key_symm)

}

Listing 1: The DHT packet in JSON format. It contains the
key and the encrypted data.

6) JavaScript Reed-Solomon API: We showed, how we
store the application data in a decentralized and encrypted
way in the users’ browsers. In huge networks, nodes typically
join and leave rather frequently. It is also possible that a node
fails. In this case, all data stored at this node is lost. To
ensure the availability of all data stored in the P2P network,
identical copies located on different nodes, e.g., replicates

located at different hashes, can be used. It is quite unrealistic
to upload the same file multiple times to the network. Even the
probability of losing all replicates is quite high. Therefore, our
JavaScript Reed-Solomon API uses the Reed-Solomon Coding
defined as polynoms on finite fields [25][26][27]. It is a so-
called erasure code, which does forward error corrections on
binary data. A file is split in n data parts. Based on these n
data parts, m linear independent recovery parts are calculated.
The coding uses Galois Fields – GF (28) – for binary data, on
which the mathematical operations +, −, ∗, / are defined. To
recover the whole file, just a subset of n arbitrary parts from
all data and recovery parts is needed. This coding was first
used for CDs.

IV. EXPERIMENTAL RESULTS

Imagine the following use case: an user or a web applica-
tion wants to store/load a file, e.g., a picture, within/from the
DHT (see Figure 6). A password can be selected.

Putting data into the DHT: First of all, the application
calculates a corresponding SHA-1 hash. Afterwards the Reed-
Solomon encoding is called, which splits the file in n data parts
and calculates m recovery parts. If a password is selected, these
parts are encrypted using AES. Otherwise this step is skipped.
Finally all (encrypted) parts are uploaded to the P2P network
using the DHT.

Getting data from the DHT: Obtaining a file works the
opposite way: an application downloads n arbitrary parts from
the P2P network using the DHT. If a password is given, the
AES decryption is called, which returns the decrypted parts.
Then the whole file is decoded using Reed-Solomon. Finally
the SHA-1 hashsum can be calculate to check the integrity.

We ran our experiments in-memory with the browsers
Firefox 27, Chrome 33 and the server-side environment
Node.js 0.10.21. Firefox is based on the JavaScript engine
SpiderMonkey [28], while the last two are based on the V8
JavaScript Engine [29]. Node.js allows to run JavaScript as a
standalone application without the need of a browser. Because
of this, it also provides raw socket access to the application.

For our experiments we used a Dell Latitude E6420 with
an Intel Core i5-2520M CPU with 2.50 GHz and 8 GB RAM.
The file size in the experiments varies from 1 Byte up to 1 GB.

A. Network Independent Evaluation

The calculation of SHA-1 hashing values, AES encryp-
tions or Reed-Solomon encodings for big files is quite CPU-
intensive. This leads to the problem that the browsers are
freezing while an API is working. To remedy this issue, the
Web Worker API [30] was introduced. This API provides
independent threads to JavaScript applications for long-running
calculations. We use Web Worker within the browsers for
the aforementioned APIs, which are computing intensive al-
gorithms. We also use already existing implementations for
SHA-1 [31] and AES [32], the latter is implemented in counter
mode. We implemented the Reed-Solomon coding.

From Figures 7 to 9 we can see, that the duration for almost
all network independent experiments is slowest in Firefox.
Node.js is the fastest for small files, because it does not use
Web Worker. When the file size increases, Chrome becomes

143Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

SHA-1
Reed-Solomon
(encode)

AES
(encrypt)

DHT
(put)

SHA-1
Reed-Solomon
(decode)

AES
(decrypt)

DHT
(get)

Figure 6: Workflow to put/get a file into/from the DHT.

100 101 102 103 104 105 106 107 108

10−1

100

101

102

103

104

File size (Byte)

D
ur

at
io

n
(m

s)

Node.js
Firefox
Chrome

Figure 7: SHA-1 hashsums calculation for 100 files.

faster than Node.js, even though both are using the same
JavaScript engine. Figure 7 shows that Chrome is faster than
Node.js for SHA-1 hashsum calculations for files bigger than
10 MB. The result for AES with key size of 256 bits can be
seen in Figure 8. Up to a file size of 100 KB, encryption and
decryption take almost the same time on all platforms (up to
1,7 seconds). For a file of size 1 MB the decryption varies
from 2 to 6 minutes, which is not acceptable. Therefore, it is
much faster to split a file in smaller parts of maximum 100 KB
before the encryption step, than encoding the whole file. This
fits in our architecture, because the splitting is done by the
Reed-Solomon coding already. Figure 9 shows the result of
the Reed-Solomon coding. With file sizes smaller than 1 MB,
the coding does not need more than one second.

B. Network Evaluation

First of all we measured the round-trip time (RTT) of a
packet with ICMP and afterwards we created a WebSocket
connection to the WSSP. We observed that the duration of
a WebSocket connection just depends on the RTT of the net-
work. For example: the duration for a WebSocket connection is
80ms. Then the RTT is 40ms, because the WebSocket protocol
needs two RTTs to set up a connection: one for the TCP
handshake and one for the HTTP handshake (see Figure 3).
We ran the following experiments just in Node.js, because the
duration does not differ between Firefox, Chrome and Node.js.

100 101 102 103 104 105 106 107 108

10−1

101

103

105

File size (Byte)

D
ur

at
io

n
(m

s)

Node.jsenc
Node.jsdec
Chromeenc
Chromedec
Firefoxenc
Firefoxdec

Figure 8: Encrypt/decrypt AES for 100 files with a key size
of 256 bits.

We evaluated our WSSP-based approach, which is used
in usual browsers, against a version with direct socket access
provided by Node js. For this, we implemented a simple
ECHO-server, which copies and returns the received message.
We created a Chord-ring with two nodes, connected to the
same WSSP with a RTT of 40ms.

WSSP-approach: The binding of a socket by a server
takes 180ms. This results in four RTTs (160ms): two for the
WebSocket connection to the WSSP and two for the SOCKS5
binding. The remaining 20ms are processing time by Node.js
and the WSSP. A connection by the client to the bound socket
takes 360ms. This yields to 8 RTTs (320ms): two to create
the WebSocket connection and two for the SOCKS5 connect
request by the client; two for the new WebSocket connection
and two for the SOCKS5 request by the server to bind the
incoming connection (see Section III-A). The remaining 40ms
are processing time by Node.js and the WSSP. The ECHO
of the data takes 85ms, which corresponds to 2 RTTs: one
between the client and the WSSP and one between the WSSP
and the server.

Raw sockets: With raw sockets we get rid of the WebSocket
connections and the SOCKS5 messages. The binding happens
immediately and the connection needs just one RTT (40ms).

The putting/getting of data with DHT just depends on the

144Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

100 101 102 103 104 105 106 107 108
10−1

100

101

102

103

104

105

File size (Byte)

D
ur

at
io

n
(m

s)
Node.jsenc
Node.jsdec
Chromeenc
Chromedec
Firefoxenc

Firefoxdec

Figure 9: Encode/decode Reed-Solomon for 100 files with
n = 10 and m = 10.

connection duration from our previous experiment and the
network bandwidth. Therefore, we did not run a DHT-based
experiment, because it will just show the maximum network
bandwidth.

V. FUTURE WORK

Future work aims to improve the performance, the boot-
strapping, the maintenance and the security.

Performance: To increase the performance, we are working
on a WebRTC-based P2P network, even if it does not allow
arbitrary TCP/IP connections like our approach. Therefore,
we expect better experimental results, e.g., less RTTs, in the
future.

Bootstrapping of the network: One big challenge is the
bootstrapping of the network, because in the Chord protocol
every node needs an entry node to join the network. The
current implementation uses a simple lookup server where all
active nodes are registered. This obviously does not scale in a
network with millions of nodes.

Security: Currently we are using symmetric encryption of
the data with AES. Thus, sender and receiver must know
the key symm, e.g., the password. An improvement will be
the usage of asymmetric keys, e.g., RSA [33]. With this, we
can update our packet format, where key async can be the
own public key (storage of data for the own purpose) or the
private key (storage of data for public purpose). Like this, the
key symm is stored in the DHT packet itself (see Listing 2).
This allow using random symmetric keys for every data part.

Maintenance of the data: In the current implementation,
data stored at a node (DHT) is moved, if a node joins or leaves
the network. This is a core feature of Chord. This does not
scale, if a user must wait until all data, e.g., some hundred MB,
are moved. Usually this leads to the failure of the node and the
loss of the in-memory stored data (this also include a change
of the IP address). Therefore, a challenge is the maintenance
of the data stored in the P2P network. The network needs

{
key : sha1(data),
value : [

aes_enc(data, key_symm),
rsa_enc(key_symm, key_async)

]
}

}

Listing 2: The improved DHT packet in JSON format. It
contains the key, the encrypted data and the encrypted

symmetric key.

to make sure that all data are always available, especially in
the future, after millions of node joins, leaves and fails. To
handle this, we already use the Reed-Solomon coding. Also
the Reed-Solomon parts are lost over the time. If less than n
parts are available, a Reed-Solomon encoded file cannot be
decoded. Therefore, we need to maintain the Reed-Solomon
parts, if the availability of a file is vulnerable, e.g., recovering
the parts.

VI. CONCLUSION

In this paper, we introduced the approach of a browser-
based P2P network, which is a possible platform to return the
data to the owner. The experiments showed that our approach
works with reasonable performance for files up to 100 KB,
which fits the usual web traffic. Bigger files are split in
smaller parts to keep the performance. The performance of the
JavaScript engines of all browsers is going to be improved,
while the limitation of the computing intensive algorithms
SHA-1, AES and Reed-Solomon is mainly the CPU.

ACKNOWLEDGEMENTS

We would like to thank Philipp Abraham, Tobias Braun,
Florian Burmann, Marvin Frick, Bennet Gerlach, Syavoosh
Khabbazzadeh, Florian Lau and Dennis Pfisterer for helpful
comments, debugging and testing our implementation.

REFERENCES

[1] J. Schmidt, “Das Like-Problem (The like problem),” Heise Security,
04 2011. [Online]. Available: http://heise.de/-1230906 [Retrieved: May,
2014]

[2] B. Zhao, J. Kubiatowicz, and A. D. Joseph, “Tapestry: An infrastruc-
ture for fault-tolerant wide-area location and routing,” University of
California Berkeley, Computer Science Department, Tech. Rep. UCB
Technical Report UCB/CSD-01-1141, 04 2001.

[3] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applica-
tions,” in ACM SIGCOMM Computer Communication Review, vol. 31,
no. 4. ACM, 2001, pp. 149–160.

[4] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton et al.,
“Oceanstore: An architecture for global-scale persistent storage,” in
Proceedings of the Ninth International Conference on Architectural
Support for Programming Languages and Operating Systems, ser.
ASPLOS IX. New York, NY, USA: ACM, 2000, pp. 190–201.

[5] “Wuala - Secure Cloud Storage.” [Online]. Available:
http://www.wuala.com [Retrieved: May, 2014]

[6] M. Martalo, M. Picone, R. Bussandri, and M. Amoretti, “A practical
network coding approach for peer-to-peer distributed storage,” in IEEE
International Symposium on Network Coding (NetCod). IEEE, 2010,
pp. 1–6.

145Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

[7] A. Bergkvist, D. C. Burnett, C. Jennings, and A. Narayanan,
“WebRTC 1.0: Real-time communication between browsers,” W3C
Working Draft, WD-webrtc-20130910, Sep. 2013. [Online]. Available:
http://www.w3.org/TR/webrtc/ [Retrieved: May, 2014]

[8] M. Handley, V. Jacobson, and C. Perkins, “SDP: Session Description
Protocol,” RFC 4566 (Proposed Standard), Internet Engineering Task
Force, Jul. 2006. [Online]. Available: http://www.ietf.org/rfc/rfc4566.txt
[Retrieved: May, 2014]

[9] M. Bu and E. Zhang, “PeerJS - Simple peer-to-peer with WebRTC.”
[Online]. Available: http://peerjs.com [Retrieved: May, 2014]

[10] F. Rhinow, P. P. Veloso, C. Puyelo, S. Barrett, and E. O. Nuallain, “P2p
live video streaming in webrtc.”

[11] J. K. Nurminen, A. J. Meyn, E. Jalonen, Y. Raivio, and R. G.
Marrero, “P2P media streaming with HTML5 and WebRTC,” in IEEE
International Conference on Computer Communications. IEEE, 2013.

[12] A. J. Meyn, “Browser to Browser Media Streaming with HTML5,”
Master’s thesis, Technical University of Denmark, Lyngby, Denmark,
2012.

[13] L. Zhang, F. Zhou, A. Mislove, and R. Sundaram, “Maygh: Building
a cdn from client web browsers,” in Proceedings of the 8th ACM
European Conference on Computer Systems. ACM, 2013, pp. 281–
294.

[14] S. Traverso, K. Huguenin, I. Trestian, V. Erramilli, N. Laoutaris et al.,
“Tailgate: handling long-tail content with a little help from friends,” in
Proceedings of the 21st international conference on World Wide Web.
ACM, 2012, pp. 151–160.

[15] J. Wu, Z. Lu, B. Liu, and S. Zhang, “PeerCDN: A novel p2p network
assisted streaming content delivery network scheme,” in Computer
and Information Technology, 2008. CIT 2008. 8th IEEE International
Conference on. IEEE, 2008, pp. 601–606.

[16] A. van Kesteren, “XMLHttpRequest Level 2,” W3C Working Draft,
WD-XMLHttpRequest-20120117, Mar. 2012, retrieved: May, 2014.
[Online]. Available: http://www.w3.org/TR/XMLHttpRequest2/

[17] I. Fette and A. Melnikov, “The WebSocket Protocol,” RFC 6455
(Proposed Standard), Internet Engineering Task Force, Dec. 2011.
[Online]. Available: http://www.ietf.org/rfc/rfc6455.txt [Retrieved: May,
2014]

[18] D. Herman and K. Russell, “Typed array spec-
ification,” Khronos.org, 07 2011. [Online]. Available:
https://www.khronos.org/registry/typedarray/specs/latest/ [Retrieved:
May, 2014]

[19] M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and L. Jones,
“SOCKS Protocol Version 5,” RFC 1928 (Proposed Standard),
Internet Engineering Task Force, Mar. 1996. [Online]. Available:
http://www.ietf.org/rfc/rfc1928.txt [Retrieved: May, 2014]

[20] “Netty project.” [Online]. Available: http://netty.io/ [Retrieved: May,
2014]

[21] I. Hickson, “The Websocket API,” W3C Candidate Recommen-
dation, CR-websockets-20120920, Sep. 2012. [Online]. Available:
http://www.w3.org/TR/websockets/ [Retrieved: May, 2014]

[22] W. R. Stevens, UNIX network programming. Addison-Wesley Profes-
sional, 2004, vol. 1.

[23] S. Markey, “Manage mobile cloud socket connections,” 01 2013. [On-
line]. Available: http://www.ibm.com/developerworks/cloud/library/cl-
mobilesockconnect [Retrieved: May, 2014]

[24] E. Kitamura, “binarize.js – binarize arbitrary js object into ArrayBuffer.”
[Online]. Available: https://github.com/agektmr/binarize.js [Retrieved:
May, 2014]

[25] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
Journal of the Society for Industrial & Applied Mathematics, vol. 8,
no. 2, 1960, pp. 300–304.

[26] J. S. Plank, “A tutorial on reed-solomon coding for fault-tolerance in
raid-like systems,” Softw., Pract. Exper., vol. 27, no. 9, 1997, pp. 995–
1012.

[27] J. S. Plank and Y. Ding, “Note: Correction to the 1997 tutorial on reed–
solomon coding,” Software: Practice and Experience, vol. 35, no. 2,
2005, pp. 189–194.

[28] “SpiderMonkey.” [Online]. Available: https://developer.mozilla.org/en-
US/docs/Mozilla/Projects/SpiderMonkey [Retrieved: May, 2014]

[29] “V8 JavaScript Engine.” [Online]. Available:
http://code.google.com/p/v8/ [Retrieved: May, 2014]

[30] I. Hickson, “Web Workers,” W3C Candidate Recommenda-
tion, CR-workers-20120501, May 2012. [Online]. Available:
http://www.w3.org/TR/workers/ [Retrieved: May, 2014]

[31] “JavaScript sha1 function.” [Online]. Available:
http://phpjs.org/functions/sha1/ [Retrieved: May, 2014]

[32] C. Veness, “JavaScript Implementation of AES Advanced Encryption
Standard in Counter Mode.” [Online]. Available: http://www.movable-
type.co.uk/scripts/aes.html [Retrieved: May, 2014]

[33] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,” Communications of
the ACM, vol. 21, no. 2, 1978, pp. 120–126.

146Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

