
Mashing up the Learning Environment
Evaluating a widget-based approach to Personal Learning Environments

Fredrik Paulsson
Interactive Media and Learning (TUV/IML)

Umeå University
Umeå, Sweden

fredrik.paulsson@edusci.umu.se

Abstract — Different types of Virtual Learning
Environments (VLE) have evolved and there is a steady
ongoing progression of different concepts. During the last
10-15 years Learning Management Systems have dominated.
Learning Management Systems are often presented as the
solution for a range of educational needs. This paper
presents a study of a mashup approach to the VLE using
web widgets. A prototype was developed and discussed,
covering technological aspects such as modularity,
integration and adaptability as well as some pedagogical
aspects, such as pedagogical flexibility and technological
responsiveness. An alternative modular approach to the
implementation of VLEs is suggested based on recent
developments within web technology, stressing the use of
standards and simplicity in order to address common
problems of complexity and inflexibility resulting in poor
conformance to pedagogical requirements.

Keywords – LMS; MUPPLE; web widgets; mashup; VLE;
PLE; e-learning.

I. INTRODUCTION
Different types of Virtual Learning Environments

(VLE) have evolved over the years and there is a steady
ongoing change and progression of different ideas and
concepts for the VLE. During the last 10-15 years much
has revolved around concepts Learning Platforms, such as
Learning Management Systems (LMS). These systems are
often presented as a common solution for a range of
educational needs – much like a “Business System” for
learning and education. However, the LMS have been
criticized for being too inflexible and hard to adapt to
different pedagogical contexts and needs (see, e.g., [1], [2]
and [3]). The LMS are also criticized for having too much
focus on the administrative aspects of learning with little
support for pedagogical activities and pedagogical
processes. Hence, having a strong focus on Learning
Management rather than on actual learning and
pedagogical activities per se - as the name actually
suggests. From a system perspective LMS are commonly
criticized for being designed and implemented in a silo-
like fashion, contributing to lock-in effects of information
and processes - very similar to the critique that is often
heard about business systems in general. There is also a
built-in conflict between the development and
implementation of systems like LMS on the one hand and
the development of social software and Web 2.0 on the
other hand. While many LMS that are currently in use try
to create a well-defined kind of “shielded community” for
learning, web 2.0 is associated with open communities,
global social interaction and open information services that

can be used as building blocks for new services - such as
for a Personal Learning Environment (PLE). However,
observe that the notion of services for Web 2.0 refer to
services that targets users and are not equivalent to
services as in Service Oriented Architectures (SOA),
which is to be regarded as a software design paradigm [4].
While the technology platform underlying Web 2.0
services may very well be a SOA platform, there is an
unfortunate mix-up of those two rather different notions of
services when discussing Web 2.0.

In order for services to be used as building blocks in
such compositions (i.e., a mashup) the building blocks
need to be well defined and with well-defined interfaces.
Many web 2.0 services use proprietary interfaces such as
the Twitter API, the Facebook API or APIs from Google
and/or they use lightweight interfaces and protocols, such
as RSS or Atom. This works well in many cases, but in
order to build more sophisticated services and service
compositions there is a need for more sophisticated
interfaces and concepts for interaction [1]. This can
obviously be accomplished by using advanced proprietary
APIs, as illustrated in [5], but from a wider perspective,
common open standards are preferable. This is also one of
the issues the study discussed in this paper is set out to
examine. The next section describes the state of the art,
followed by a brief discussion of some central concepts
and ideas related to some previous work, followed by a
description of the presented study and the experimental
implementation of a Mashed-up PLE. Finally the results of
the study are discussed in the light of the ongoing progress
and previous research in the field.

A. State of the art
While LMS-like system are typically implemented by

most educational institutions, the movement within the
teaching community as well in the research community is
towards adaptive and responsive learning environments,
similar to PLEs, see e.g., [3][6][7][15][28]. However,
while pedagogical concepts like responsive learning
environments are attractive, the technology currently in
use doesn’t support it very well. At the same time,
education needs specialized services for dealing with
pedagogical requirements, such as Personal Development
Plans (PDP), digital portfolio, services for discovery and
integration of digital learning resources, and so forth,
which are resulting in several good and useful tools for
learning, but they are not well integrated with the rest of
the VLE [1][19][28]. These and similar issues are often
addressed through different approaches to system
integration, such as using proprietary APIs or more general
integration by Web Service technology [1][4][5][14].

253Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

However, such approaches to building the Learning
Infrastructure has turned out to be problematic for several
reasons. Firstly, it becomes expensive to integrate “per
system”, using proprietary APIs. API integration also
makes the systems hard coupled, which supresses
flexibility [1][10]. Secondly, using (commonly SOAP-
based) Web Service technology tend to become very
complex as well as expensive, adding an cost, as well as
technical, overhead [1][10][13], which is also illustrated in
the VWE case discussed in section B. And thirdly, by
mixing a monolithic concept, like the LMS with a modular
service based approach some of the technical flexibility
needed for dealing with some of the pedagogical
requirements is lost [1][3][6]. In recent years there has
been a general development on the Internet towards
modularity and an alternative kind of loosely couple
services driven by less complex and more web friendly
service integration, such as using RESTFul APIs [21] and
lightweight APIs and protocols, such RSS and Atom
combined with widget and mashup technologies
[16][17][20], which are described in detail in section C.
This development stands out as exceedingly suitable for
the next generation of learning environments, fulfilling the
flexibility requirements for personal and responsive
learning environments by providing a standardized
framework for modularity and loose integration on the web
that is now being studies by the research community in
general and in an education context [25][28][30][31].

B. The Personal Learning Environment
Simply put, a PLE can be described as a learning

environment where the learner is in focus as well as in
control of the learning environment. However, the main
objective of the PLE is to put the learner in control of his
own learning rather than in control of the learning
environment, even though these two are obviously related.
Learning is regarded as a constant, ongoing process, as is
the evolvement and change of the learning environment.
The learning environment needs to be responsive and
adapted to different contexts, needs and pedagogical
requirements. These are qualities that are commonly
emphasized, such as in [1], [3], [6] and [7], to give just a
few examples. One of the ideas that are often emphasized
in relation to PLEs is that personal “tools”, such as blogs,
twitter, etc., that are personal and used in other contexts
can also be used as components of the PLE.

1) The Virtual Workspace Environment
The concept of a PLE is very similar (if not identical)

to the idea underlying the Virtual Workspace Environment
(VWE) that was first outlined in 1998, described in [2],
even though the means to accomplish it were different.
Simply put the VWE can be described as a component
based VLE where users (i.e., teachers and students) can
construct personal or shared learning spaces using a web
browser.

In recent studies [1][5], it was shown that using
modular approaches for the design and implementation of
learning environments can address some of the LMS
related issues, that were described in the previous section.
A common modular taxonomy (The VWE Learning Object
Taxonomy) for use with both VLEs and Digital Learning
Resources (DLR) was presented in [2]. The taxonomy was
compatible with the widely referenced Learning Object

Taxonomy by Wiley [8] and demonstrated how the VLE
and DLR could be implemented using a common modular,
conceptual and architectural model that allowed for a
common composition of both the VLE and learning
content. Altogether this work resulted in two prototypes
for composing and assembling modular VLEs; called the
Virtual Workspace Environment (VWE). The VWE was
presented in [9], where the two different implementation
approaches were compared. One using a JAVA RMI based
approach and the other using a Web Service (SOAP) based
approach. Both prototypes made it possible for teachers
and/or learners to compose shared or personal learning
environments by picking and choosing from a set of
functional (software) components (called VWE tools). The
VWE tools acted as building blocks providing the
functionality for the learning environment. The ideas
underlying the VWE were to a great extent inspired by the
development of component-based software, as well as the
fundamentals of Service Oriented Architectures (SOA),
described in, e.g., [4][10][11][12].

A “proof of concept” was established, and by
developing the prototypes using two different
implementation approaches it was possible to isolate a
couple of issues resulting from the taxonomy versus the
model and the implementation approaches [9]. One of the
problems that were identified was that, even though the
use of standards was extensive (such as standards for Web
Services, communication protocols etc.), the prototypes
(and thereby the modular approach) only worked within
the isolated context of the prototype environments and
could not be generalized without new standards. This
problem was mainly caused by a lack of standards
supporting modularity for the creation of Rich Internet
Applications (RIA) (see, e.g., [13]). In recent years, things
have changed and standards have evolved and matured.
Among the most interesting directions, from a modularity
and RIA perspective, is the idea of Web Widgets and
Mashups, see, e.g., [14][15][16][17]. The study presented
in this paper starts out from the hypothesis that widget
technology and widget mashups have the potential of
overcoming many of the problems encountered during the
VWE project [9], while still providing full support for the
underlying ideas of modularity and the shift of central
functionality and software from the desktop to the web,
allowing for collaboration and social interaction with
typical desktop functionality in ways that are only possible
on the web. Furthermore, the creation of mashup learning
environments can be adapted to different pedagogical
scenarios and approaches in a dynamic and transparent
way. Such transfer of functionality with its built-in
potential has already been proven by services like Google
Apps and other similar (web/cloud) services, see, e.g., [18]
and [19]. However, the kind of rich functionality that is
provided by such services needs to be put into context as
an integrated part of the learning environment. Mashup
Learning Environments (MUPPLE) are a step in this
direction and it is also where the study presented in this
paper and the WiMUPPLE project come in to play.

In retrospect, it can be said that the PLE concept is
more Web 2.0 friendly and as such more flexible in terms
of interpretation and implementation - with reference to
choice and use (as well as “misuse”) of technology,
whereas the VWE concept provides a more explicit

254Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

architecture model for the technology platform in relation
to modularity and composition of mashup environments
[9]. However, those features have also made VWE
proprietary as only components that follow the VWE
conceptual model and architecture can be used as building
blocks. As a result, the VWE has also become too complex
and dependent on VWE services and APIs as shown in
Figure 1.

Figure 1. The figure shows an overview of the VWE architecture, the
VWE Kernel and the VWE services used by tools to interact with the
workspace.

In order for a component to work in the context of a
VWE workspace, it needed to implement the VWE
Service APIs, and all interactions with the workspace and
other tools were via those server-side services. These were
dependencies that severely limited the flexibility and
usefulness of VWE from a Web 2.0 point of view.

For those reasons, one of the objectives of the
WiMUPPLE project is to illustrate a third implementation
strategy that addresses those problems and that makes the
learning environment more generic, which is likely to be a
characteristic needed in order for the concept of MUPPLEs
to gain wider acceptance.

C. Mashups and Widgets
There are several (but similar) definitions of a mashup.

A mashup is commonly defined as being a combination of
different services on the web in a way that create a new
composite application (or service) with added value. A
widget-based mashup obviously uses widget technology
and is currently typically constructed using a mashup
environment such as Netwibes, iGoogle or our
WiMUPPLE-environment [20]. A mashup can also be
created by very simple means, using simple web tools that
allow users to combine services on the web by matching
and mixing information using lightweight interfaces such
as RSS or Atom. However, in such cases it is mainly about
mashing up information and not about mashing up
functionality and services in a way that goes beyond the
delivery and consumption of information. However,
information mashups can be valuable in many cases, as
part of a PLE.

Even so, if you are a developer or an experienced user
you might want to use one of the more sophisticated
approaches that are available for the development of web-
based applications, or RIA as it is sometimes referred to.

The widget landscape is somewhat complex and can be
roughly divided into three main categories: widgets for
cellular phones (such as widgets for Android phones),
desktop widgets (such as the widgets in OS X or gadgets
in Windows) and finally web widgets, which are basically

widgets that are distributed in the web browser [20]. The
widgets referred to in this paper are solely web widgets.
Even though these are three rather distinct categories there
are several important similarities. One of the most
significant similarities is that their implementations are
based on web technology (or at least technologies that are
commonly used on the web), such as html, JavaScript and
XML (and AJAX). This is also an important property for
sharing and reusing information and functionality since
web technology relies on well-established standards.
Besides the commonly used web standards there are
widget-specific standards as well. However, widget
standards are still rather untested and/or under
development and there is still some way to go before it is
possible to say that there are well established standards for
widgets in the same sense as for the web. This means that
there is always a trade off between the use of standards and
proprietary widget technology when developing widgets
that need sophisticated functionality.

The remainder of this paper presents and discusses a
study that illustrates how widget technology can be applied
to a modular concept, like the one previously described [2]
and how a modular and web based learning environment
can be implemented and assembled “on the fly” by
learners and/or teachers. Both PLEs and LMS-like learning
environments can be constructed in similar ways
depending on the type of widgets, and supporting backend
systems that are available. The same underlying SOA
based server-side architecture that was used in the VWE
project could in fact be used to support a client
implementation using widgets, even though a REST based
architectural model is preferred in order to avoid some of
the complexity and limitations of the previous prototypes
that were discussed above and in [9][21]. A RESTful
approach also contributes to making integration with third

Figure 2. An overview of the WiMUPPLE-prototype architecture and its
different parts with the Widget Container in the browser, interacting with
the server layer via the REST API using JSONP.

 wi

255Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

party services easier and generally less complex and is
more “web friendly”, even though not all problems can be
solved in a RESTful way.

II. OBJECTIVES
The main objective of the research presented in this

paper is to explore how widget-based mashups can be used
as a basis for constructing a PLE or Mashup Personal
Learning Environments (MUPPLE) as PLEs are referred
to when implemented as mashups. The mashup approach
can be compared to the two approaches used in the VWE
project that was briefly described above.

In addition, the widget based MUPPLE approach is
applied to a similar modular concept that was presented by
Paulsson and Berglund in [9], where it was illustrated how
the modular concept of Learning Objects can be extended
to also become a modular concept for the whole VLE (i.e.,
a PLE or an LMS) by adding some basic software
architectural rules and principles that conjures a number of
essential properties to the otherwise content centred
concept of Learning Objects, see [22][2][1].

Another objective is to illustrate that the concept of a
modular framework, such as the VWE Learning Object
Taxonomy, can be applied using more Web 2.0 friendly
and generic approaches. Therefore the work presented in
this paper will be discussed and compared to the work
presented in [2], where the VWE Learning Object
Taxonomy was introduced and in [1][9], where the two
VWE prototypes were discussed (also discussed above) in
relation to pedagogical requirements and learning theories.

III. METHODOLOGY
Besides surveying the literature in the field, this study

is based on an experimental approach where a prototype
was developed and tested. It should be emphasized that
even though this study addresses issues and requirements
that emanate from a pedagogical standpoint, i.e., creating
conditions for pedagogical adaptability and responsiveness
in technology, the objective is not to evaluate the
pedagogical implications at this point. The purpose is
instead, which is also discussed above, to evaluate how the
concept of a more generic and web friendly approach,
using widgets and mashups, can be utilized from a
technological standpoint to build MUPPLE, in comparison
to earlier less generic implementations, such as the VWE.
And furthermore - how to do this by applying existing
concepts. However, in the discussion section of the paper
the results are also discussed in relation to some
pedagogical issues and implications based on experience
from other studies, in order to better illustrate how
modularity, technology implementations and pedagogical
issues are linked.

1) Technology settings
An important starting point was to avoid developing

everything from scratch. There are a multitude of ongoing
development and project addressing widgets and mashups
and whenever it has been possible existing work has been
used.

The prototype architecture follows common design
paradigms and patterns, illustrated by Figure 2, which also
illustrates how widgets are handled on the client using a
widget container that renders the widgets. The inner
working of the widget container is illustrated in Figure 3

and described in more detail below. Even though Figure 2
illustrates a schematic architecture using a web browser as
the client, the client could in fact be any other widget
platform, such as a handheld device or dashboard widget.
The widgets used for the purpose of the prototype are
described from the point of view of being used in the
context of a VLE, but in theory most of the widgets could
be used in other contexts as well as they are often generic
functional components that have been contextualized by
the mashup and the pedagogical context.

JavaScript Object Notation (JSON) [23] is used for
communication and data interchange between widgets and
servers. As illustrated by Figure 2 and Figure 3, widgets
that run on the WiMUPPLE platform can interact with a
widget server, a widget engine or any other external server
using JASON (or JSONP for managing cross domain
interaction). This creates a flexibility that goes beyond the
“local” ICT infrastructure and makes it possible for
widgets to potentially interact with any servers that are of
interest, acting as lightweight clients for other systems that
may be relevant in the context of a learning environment.
This differs from the previous VWE implementations in
that it provides a transparent and generic infrastructure
rather than a proprietary and platform dependent API.

This creates flexibility in terms of making the learning
environment adaptable to different and chancing
requirements. Furthermore, it makes the learning
environment independent of a specific LMS vendor to
implement certain functionality. It has proven to be quite
straightforward to develop simple widgets that can act as
clients to different legacy (as well as to other) systems.

Flexibility, in terms of being adaptable and distributed,
is an essential property of a modular environment since it
allows for the learning environment to be distributed
(service-wise) over the Internet and at the same time it
makes it possible to personalize and adapt the learning
environment at the service level for group preferences as
well as for personal preferences. It also creates the
characteristics needed for responsive VLEs. These are
important differences compared to the concept of an LMS,
which has a centralized approach with clear system
borders limiting the ability to interact with the surrounding
world to the interactions that are countered by the LMS
vendor or (in some cases) plug-ins and suchlike developed
by third-parties, This also means that the functionality is
limited to what is supported by the LMS, while
functionality can be added and removed dynamically in the
mashup PLE.

B. The Widget Container
The client hosts the widgets within the widget

container (see Figure 2), which is loaded into the browser
and rendered. Each widget has the possibility to
communicate and interact with external servers as well as
“internal” widget specific servers that are specifically
developed to serve the widget. The widget container can
actually be compared to the “kernel” in the VWE
implementation. However, the kernel was implemented as
a Java Applet, while the widget container relies on the
JavaScript capabilities of the web browser and the
standards associated with widgets and is therefore a more
generic solution. Figure 1 illustrates the VWE kernel
implementation, while Figure 2 illustrates the role of the
Widget Container.

256Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

Figure 3. Illustrates the design and inner works of the Widget
Container and how widgets interact with the widget server and/or
external servers using JSONP.

Technically, the widgets used by the system consist of
JavaScript that is loaded into the widget container where
they are rendered and executed. The Widget Server keeps
track of what widgets are available and the Widget
Container communicates with the Widget Server using
JSONP and the predefined RESTful API. Thanks to the
Widget Container, it is possible to move the widgets
around in the browser’s workspace. Hence, the Widget
Container also serves as the “glue” that holds the browser
representation of the learning environment together and
creates the feeling of an integrated environment in the
same sense as the LMS. There is however an essential
difference in the philosophy and approach underlying the
integration. While the LMS relies on a strong, silo-like
strategy for integration, the MUPPLE relies on loose
integration of freestanding services and components.

C. The Widget Server and the Widgets
As previously mentioned, widgets are basically

JavaScript uploaded to the Widget Container via the
Widget Server. Besides the communication with the
Widget Server, widgets can communicate with other
external servers using JSONP. In the case of WiMUPPLE
a choice was made to use Yahoo Querying Language
(YQL) [24] for the implementation of the widget server in
order to avoid unnecessary in-house development.
However, it is fully possible to use other approaches as
well, such as Google or other servers that are widget

specific, with similar results. This is actually not a big
issue and is illustrated by Figure 2. Besides YQL, the
WiMUPPLE Widget Server was built using the Python-
based Django framework and a traditional MVC pattern.

IV. RESULTS AND DISCUSSION
The experimental implementation and the resulting

prototype show that it is quite possible to implement a
modular VLE using widgets and mashup technology. Or in
the WiMUPPLE case, a framework for composing and
administrating mashup learning environments in a way
that can be managed by teachers and students (shown by
Figure 4) and in which functionality can easily be added
and removed. With the right set of widgets, a complete
LMS could theoretically be built using the WiMUPPLE,
even though an LMS is probably not what is wanted or
needed.

The WiMUPPLE implementation makes it quite clear
that it is less complex using a widget approach compared
to the Java RMI and/or SOAP approaches used in the
VWE-project [5]. However, the widget mashup approach
is in general less powerful in terms of building
sophisticated functionality. One of the main issues in this
respect is the internal communication, i.e., inter-widgets
communication. In an LMS everything is closely
integrated, which is also what causes the main problem
with the LMS concept, but at the same time it is a strength
in terms of inter-system communication. All parts within
the system can easily be made aware of all other parts in
the system. In a mashup everything is loosely coupled and
different widgets are normally completely self-standing
and self-contained and not “aware” of the context in which
they are used. This makes it harder to maintain the feeling
of a well-integrated learning environment. The VWE
implementation had similar problems that were solved by
implementing a “Message Service” (see Figure 1) that
managed the interaction between components and different
parts of the learning environment, including other
components (tools). The drawback with this solution,
besides being proprietary, was that all the components
became dependent on a common server side infrastructure
in order to function in the context of an integrated learning
environment. When working with widget-based mashups
such solutions become a problem, as we want to be able to
use any kind of widgets that follow the widget standards,
i.e., not depending on a common server side infrastructure.
An alternative solution would therefore be to make the
widgets aware of each other within the web browser and
allow widgets to interact and communicate with each other
directly. This is technically possible and Sire et al. have
described an example of such interaction in [25], where
they discuss the implementation of drag and drop between
widgets in the browser. There is currently no standardized
or obvious way of implementing direct widget interaction
and it will demand some tweaking to work. However, this
is one of the issues that are likely to be solved by html5.

There has been some tweaking in order to get
everything to work as expected, which was mainly caused
by the immature nature of the widget technology concept
compared to the maturity of Java RMI and SOAP.
However, it is highly likely that the adoption of html5 will
solve many of the problems and issues encountered here as
well. Figure 4. Screenshot of a learning environment created using WiMUPPLE

with a number of widgets for different purposes.

257Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

The fact that the principle of modular VLEs is realistic
was shown in [1][9] it was discussed how modularity
contributes to creating important pedagogical advantages
related to flexibility and adaptability, which are qualities
needed to create learning environments that are responsive
and adaptive to users needs and to changing pedagogical
requirements. The WiMUPPLE add to those
characteristics by using generic and web friendly
technology that open up for a much wider range of
components to choose from.

Furthermore, modular learning environments are better
adapted to suit different learning theories and pedagogical
approaches as well as to changing pedagogical scenarios.
Such features are beneficial, even essential, in many
learning scenarios, especially when working with
pedagogical methods and approaches like Learning, where
it is hard (if not impossible) to foresee the learning path
from start to finish beforehand – and thereby also to
foresee the needs of the learning environment. These are
also the main reasons why it is important to continue the
research and development of modular concepts for VLEs -
like the WiMuPPLE. Taken as a whole, the project also
illustrates potential business cases where market
competition is opened up for smaller actors to compete
with LMS vendors by providing small and specialized
components acting as building blocks in a mashup learning
environment.

It has already been shown that modular learning
environments hold an interesting pedagogical potential. In
[1], it was illustrated that there is a correlation between
modular environments and adaptability and responsiveness
and that such features create pedagogical flexibility. The
experimental study presented in this article shows that, not
only is it possible to build modular learning environments,
but it can be done using web based standard technology
that bears the potential of almost endless flexibility in
terms of access to functional components – in this case
widgets. In the long run, this means that generic
components (i.e., widgets) can be integrated as a part of a
modular VLE without the need of adding learning specific
code or support for certain APIs, even though such APIs
may be beneficial in many cases, something that is
discussed below. Even though the experiments showed
that this can be technically accomplished (even if the
technology is still somewhat immature) there is still a need
for a better “glue” to tie mashup learning environments
together and to create pedagogical context.

A. 3.2 Future work and developments
There are some very intriguing progresses around the

corner that are likely to benefit the development of mashup
learning environments. On the one hand there is the
general development, such as the gradual evolvement of
html5 and standards for widgets and mashups. On the
other hand there are developments within the field of
learning technology standards that, at least on paper, look
very promising from a modular learning environment
perspective. Among the most interesting developments are
the new specifications from IMS: IMS Common Cartridge
(IMS CC) [26] and especially the IMS Learning Tools
Interoperability (IMS LTI) [27]. We are currently in the
process of examining whether IMS CC can be used as a
packaging format for our widget-based MUPPLE and
furthermore, if IMS LTI can be used as a standard for

widget communication and interactions within a widget-
based VLE. Severance et al. have already described some
experiments in [28] where IMS LTI was tested in a
mashup environment and the results seem promising and
could be taken even further in the WiMUPPLE
environment.

Another direction, that has already started, is the
integration of the Spider and the WiMUPPLE
environment. The Spider is a national search service for
digital learning resources that connects a number of
repositories, using either metadata harvesting or search
federation, in a way that makes it possible to search for
learning resources from several sources from a single point
[29]. The idea is to use the Spider to search for Widgets
and learning content that can be included in a mashup
learning environment and then use IMS CC to package
them into a “package” that, when unwrapped, constitutes a
mashup learning environment. In conjunction to this it
seems reasonable to start discussing digital learning
resources from a broader perspective – not just being about
learning content, but also functional components, such as
widgets.

In parallel with the developments described in the
previous section, another project will start where some
pedagogical experiments will be carried out using the
WiMUPPLE environment, where the idea of mashup
learning environments will be tested in real pedagogical
situations with students and teachers.

REFERENCES
[1] F. Paulsson. Modularization of the Learning Architecture:

Supporting Learning Theories by Learning Technologies. Royal
Institute for Technology (KTH): Stockholm, 2008. 121.

[2] F. Paulsson and A. Naeve. "Virtual Workspace Environment
(VWE): A Taxonomy and Service Oriented Architecture
Framework for Modularized Virtual Learning Environments -
Applying the Learning Object Concept to the VLE". International
Journal on E-Learning, 2006, vol. 5, no. 1, pp. 45-57.

[3] G. Atwell. Personal Learning Environments - the future of
eLearning? [online]. 2007, [Retrieved: April, 2012]. Available
from World Wide Web:
www.elearningeuropa.info/files/media/media11561.pdf

[4] T. Erl. SOA Principles of Service Design. 1 ed. Prentice Hall:
Boston, MA, 2007.

[5] F. Paulsson. "A Service Oriented Architecture-framework for
modularized Virtual Learning Environments," In A. Mendes-Vilas,
A. Solano Martin, J. Mesa Gonzáles, and J.A. Mesa Gonzáles,
Current Developments in Technology-Assisted Education.
FORMATEX, 2006, pp. 21-62.

[6] S. Wilson, O. Liber, M. Johnson, P. Beauvoir, P. Sharples, and C.
Milligan. "Personal Learning Environments: Challenging the
dominant design of educational systems," First European
Conference on Technology Enhanced Learning (ECTEL), 2006,

[7] D. Jones. "PLES: FRAMING ONE FUTURE FOR LIFELONG
LEARNING, E-LEARNING AND UNIVERSITIES". Lifelong
Learning Conference, 2008,

[8] D.A. Wiley. "Connecting learning objects to instructional design
theory: A definition, a metaphor, and a taxonomy". In D.A. Wiley,
The Instructional Use of Learning Objects. Bloominton: Agency
for Instructional Technology and Association for Educational
Communications & Technology, 2002, pp. 3-23.

[9] F. Paulsson and M. Berglund. "Suggesting a SOA-framework for
modular virtual learning environments: comparing two
implementation approaches," International Journal of Web-Based
Learning and Teaching Technologies, 2008, vol. 3, no. 1, pp. 43-
57.

258Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

[10] P. Brereton and D. Budgen. "Component-based systems: a
classification of issues. Computer", 2000, vol. 33, no. 11, pp. 54-
62.

[11] O. Nierstrasz and L. Dami. "Component-Oriented Software
Technology," In O. Nierstrasz and D. Tsichritzis, Object-Oriented
Software Composition. Hertfordshire: Prentice Hall International
(UK) Ltd, 1995, pp. 3-28.

[12] C. Szyperski. Component Software - Beyond Object-Oriented
Programming. Translated by C. Szyperski; 2 ed. ACM Press: New
York, 2002. 229.

[13] J. Preciado, S. Comai, and C. Sánchez-Figueroa. "Necessity of
methodologies to model Rich Internet Applications,". In the
proceedings of the Seventh IEEE International Symposium on Web
Site Evolution (WSE’05), 2005.

[14] M. Ogrinz. Mashup Patterns Designs and Examples for the Modern
Enterprise. Addison Wesley: 2009.

[15] S. Sire and A. Vagner. "Increasing Widgets Interoperability at the
Portal Level," The First International Workshop on Mashup
Personal Learning Environments (MUPPLE-2008), 2008.

[16] J. Yu, B. Benatallah, F. Casati, and F. Daniel. "Understanding
Mashup Development," IEEE Internet Computing, 2008, vol. 12,
no. 5, pp. 44-52.

[17] J. Wong and J. Hong. "What do we ”mashup” when we make
mashups?" In the proceedings of the 4th international workshop on
End-user software engineering, 2008.

[18] D.R. Herrick. "Google this!: using Google apps for collaboration
and productivity," SIGUCCS '09 Proceedings of the 37th annual
ACM SIGUCCS fall conference, 2009, pp. 55-64.

[19] N. Sultan. "Cloud computing for education: A new dawn?"
International Journal of Information Management, 2010, vol. 30,
no. 2, pp. 109-116.

[20] V. Hoyer and M. Fischer. "Market Overview of Enterprise Mashup
Tools," Service-Oriented Computing‚ ICSOC 2008. In Lecture
Notes in Computer Science, 2008, vol. 5364, pp. 708-721.

[21] Fielding, R. T. 2000. Architectural Styles and the Design of
Network-based Software Architectures. Information and Computer
Science. Doctor of philosophy, 76-106.

[22] F. Paulsson and A. Naeve. "Establishing technical quality criteria
for Learning Objects,". in the proceedings of eChallenges 2006,
2006, vol. 2, pp. 451-462.

[23] D. Crockford. The application/json Media Type for JavaScript
Object Notation (JSON) [online]. 2006, [Retrieved: April, 2012]
Available from World Wide Web:
https://tools.ietf.org/html/rfc4627

[24] Yahoo! Query Language [online]. 2011, [Retrieved: March, 2012]
Available from World Wide Web: http://developer.yahoo.com/yql/

[25] S. Sire, M. Paquier, A. Vagner, and J. Bogaerts. "A messaging API
for inter-widgets communication,". In the proceedings of the 18th
international conference on World Wide Web, 2009,

[26] IMS Common Cartridge Specification [online]. 2008, [Retrieved:
April, 2012]. Available from World Wide Web:
http://www.imsglobal.org/cc/index.html

[27] IMS GLC Learning Tools Interoperability Basic LTI
Implementation Guide. 2010, vol. Version 1.0 Final Specification.

[28] C. Severance, T. Hanss, and J. Hardin. "IMS Learning Tools
Interoperability: Enabling a Mash-up Approach to Teaching and
Learning Tools," Techn, Inst, Cognition and Learning, 2010, vol.
7, pp. 245-262.

[29] F. Paulsson. "Connecting learning object repositories - strategies,
technologies and issues". In the proceedings of the Fourth
International Conference on Internet and Web Applications and
Services (ICIW09), 2009 pp. 583-589.

[30] Weber, N., Nelkner, T., Schoefegger, K., and Lindstaedt, S. N.
2010. SIMPLE - a social interactive mashup PLE. the Third
International Workshop on Mashup Personal Learning
Environments (MUPPLE09), in conjunction with the 5th European
Conference on Technology Enhanced Learning (EC-TEL2010).

[31] Wheeler, S. 2009. Learning Space Mashups: Combining Web 2.0
Tools to Create Collaborative and Reflective Learning Spaces.
Future Internet. 1, 1, 3–13. DOI=10.3390/fi1010003.

259Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

