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Abstract—Obtaining the expected performance from a work-
flow would be easier if every task included its own specifications.
However, normally only global performance requirements are
provided, forcing designers to infer individual requirements
by hand. In previous work we presented two algorithms that
automatically inferred local performance constraints in Unified
Modelling Language activity diagrams annotated with the Mod-
elling and Analysis of Real-Time and Embedded Systems profile.
In this work, we present an approach to use these annotations
to generate performance test cases for multiple technologies,
linking a performance model and an implementation model with
a weaving model. We describe how it can be applied to Java
code and to Web Service compositions, using existing open source
technologies and discussing the challenges involved. The resulting
processes follow a meet-in-the-middle approach, allowing the user
to write their software according to their needs.

Keywords-software performance; Web Services; MARTE; model
weaving; model driven engineering.

I. INTRODUCTION

Software needs to meet both functional and non-functional
requirements. Performance requirements are among the most
commonly used non-functional requirements, and in some
contexts they can be just as important as functional re-
quirements. In addition to soft and hard real-time systems,
Service Oriented Architectures (SOAs) must be considered
as well. Within SOAs, it is common practice to sign Service
Level Agreement (SLAs) with external services, to compensate
consumers in case of problems. It is also quite common to
create “service compositions”, which are services that integrate
several lower level services (normally, Web Services from
external providers). However, it may be difficult to establish
what performance level should be required from the composed
services. Too little, and the performance requirements for the
composition will not be met. Too much, and the provider may
charge more than desired. In addition, developers must test the
external services to ensure that they can provide the required
performance levels.

There is a large variety of proposals for estimating the
required level of performance and measuring the actual per-
formance of a system [1]. Measurements can be used for

detecting performance degradations over time, identifying load
patterns or checking the SLAs. However, the requirements set
by the SLA are usually broad and cover a large amount of
functionality: when violated, it might be hard to pinpoint the
original cause. Ideally, we should have performance require-
ments for every part of the system, but that would be too
expensive for all but the most trivial systems.

In our previous work [2], we presented two inference
algorithms for performance annotations in workflow models.
These algorithms can “fill in the blanks” for the response time
and throughput requirements of every activity in the model,
starting from a global annotation and some optional local
annotations set by the user. Users would then write the actual
performance tests manually, taking the results produced by
these algorithms as a reference. However, writing these tests
for every part of a reasonably-sized system could incur in a
considerable cost: ideally, it should be partly automated.

In this work, we will outline how to reduce the effort
involved in using the results produced by these algorithms
by assisting the user in producing concrete performance tests.
The models will be used to generate partial test plans and to
wrap existing functional test cases as performance tests. To do
so, we will weave the existing performance models with de-
sign and/or implementation models, relating the performance
requirements with the appropriate software artefacts.

The rest of this work is structured as follows: after introduc-
ing the models used, we will describe our general approach for
generating tests. We will then show two applications, linking
the performance requirements to several kinds of software
artefacts, and select several candidate technologies. Finally,
we will offer several conclusions to this work, and list some
future lines of work.

II. PERFORMANCE MODELS

This section will present the notation used by the perfor-
mance algorithms described in [2]. We use standard UML
activity diagrams, annotated with a small subset of the OMG
Modelling and Analysis of Real-Time and Embedded Systems
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(MARTE) profile [3]. MARTE provides both a set of prede-
fined performance metrics and some mechanisms to define
new ones. In our case, we are using the predefined perfor-
mance metrics defined in the Generic Quantitative Analysis
Modelling (GQAM) subprofile. GQAM is the basic analysis
subprofile in MARTE: the Schedulability Analysis Modelling
(SAM) and Performance Analysis Model (PAM) subprofiles
are based on it. However, SAM and PAM are outside the scope
of our approach.

Figure 1 shows a simple example. Inferred annotations are
highlighted in bold:

1) The activity is annotated with a�GaScenario� stereo-
type, in which respT specifies that every request is
completed within 1 second, and throughput specifies
that 1 request per second needs to be handled.

2) In addition, the activity declares a set of con-
text parameters in the contextParam field of the
�GaAnalysisContext� stereotype. These variables rep-
resent the time per unit of weight that must be allocated
to their corresponding activity in addition to the mini-
mum required time. Their values are computed by the
time limit inference algorithm.

3) Each action in the activity is annotated with
�GaStep�, using in hostDemand an expression
of the form m + ws, where m is the minimum time
limit, w is the weight of the action for distributing the
remaining time, and s is the context parameter linked
to that action.
The time limit inference algorithm adds a new constraint
to hostDemand, indicating the exact time limit to be
enforced. The throughput inference algorithm extends
throughput with a constraint that lists how many
requests per second should be handled. As these con-
straints have been automatically inferred, their source
attribute is set to calc (calculated).

4) Outgoing edges from condition nodes also use
�GaStep� but only for the prob attribute, which is set
by the user to the estimated probability it is traversed.

III. OVERALL APPROACH

The model shown in the previous section is entirely abstract:
at that level of detail, it cannot be executed automatically. It
will have to be implemented through other means.

After it has been implemented, it would be useful to take
advantage of the original model to generate the performance
test cases. However, the model lacks the required design and
implementation details to produce executable artefacts. To
solve this issue, several approaches could be considered:

1) The abstract model could be extended with additional
information, but that would clutter it and make it harder
to understand.

2) On the other hand, the implementation models could be
annotated with performance requirements, but this would
also pollute their original intent.

3) Finally, a separate model that links the abstract and con-
crete models could be used. This is commonly known

as a weaving model. Several technologies already exist
for implementing these, such as AMW [4] or Epsilon
ModeLink [5].

In order to preserve the cohesiveness of the abstract perfor-
mance model and the design and implementation models, we
have chosen the third approach.

After establishing the required links, the next step is gener-
ating the tests themselves. To do so, a regular Model-to-Text
(M2T) transformation could be used, written in a specialised
language such as the Epsilon Generation Language [6]. In case
it were necessary to slightly refine or validate the weaving
model before, an intermediate Model-to-Model (M2M) trans-
formation could be added. Figure 2 illustrates the models and
steps involved in our overall approach.

IV. APPLICATIONS

We will now show several instances of the overall approach
in Figure 2, using different technologies to assist in generating
performance test artefacts in different environments.

A. Reusing functional tests as performance tests

Generating executable performance test cases from scratch
automatically will usually require many detailed models and
complex transformations, which are expensive to produce
and maintain. The initial effort required may deter potential
adopters. An alternative inexpensive approach is to repurpose
existing functional tests as performance tests. This is the aim
of libraries such as JUnitPerf [7] or ContiPerf [8]: we will
target these libraries in order to simplify the transformations
involved and make the generated code more readable.

Listing 1 shows how JUnitPerf is normally used. The
original TFunctional functional test suite is wrapped into a
TimedTest (implemented by JUnitPerf) that checks that every
test case in TFunctional does not take any longer than 1000
milliseconds. The wrapped test case is wrapped once again
with a LoadTest (also implemented by JUnitPerf) that emulates
10 users running the test at the same time. In combination, the
resulting test checks that each of the 10 concurrent executions
of the wrapped test finishes within 1 second.

Listing 2 shows a similar fragment for ContiPerf. Instead of
using Java objects, ContiPerf uses Java 6 annotations, which
would be easier to generate automatically. The @PerfTest
annotation indicates that the test will be run 100 times using
10 threads, so each thread will perform 10 invocations. @Re-
quired indicates that each of these invocations should finish
within 1000 milliseconds at most. @SuiteClasses points to the
JUnit 4 test suites to be reused for performance testing, and
@RunWith tells JUnit 4 to use the ContiPerf test runner.

In both cases, the code itself is straightforward to generate.
However, the generated code must integrate correctly with the
existing code. If the code was not produced using a model-
driven approach, there will not be a design or implementation
model to link to. Instead, we will derive a model of the
structure of the existing code using a model discovery tool
such as Eclipse MoDisco [9]. Eclipse MoDisco can generate
models from Java code such as that shown in Figure 3.
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<<GaStep>>
{hostDemand={(expr=0.4+0*swEP, unit=s, source=req),

(value=0.4, unit=s, source=calc)}, throughput=
{(value=1.0, unit=Hz, source=calc)}}}

Evaluate Order

[acep] <<GaStep>> {prob=0.8}

<<GaStep>>
{hostDemand={(expr=0+1*swCR, unit=s, source=req),

(value=0.2, unit=s, source=calc), throughput=
{(value=0.8, unit=Hz, source=calc)}}}

Create Invoice

<<GaStep>>
{hostDemand={(expr=0+1*swRP, unit=s, source=req),

(value=0.2, unit=s, source=calc), throughput=
{(value=0.8, unit=Hz, source=calc)}}}

Perform Payment

<<GaStep>>
{hostDemand={(expr=0+1*swNP, unit=s, source=req),

(value=0.4, unit=s, source=calc), throughput=
{(value=0.8, unit=Hz, source=calc)}}}

Send Order

[else] <<GaStep>> {prob=0.2}

<<GaStep>>
{hostDemand={(expr=0+1*swCP, unit=s, source=req),

(value=0.2, unit=s, source=calc), throughput=
{(value=1.0, unit=Hz, source=calc)}}}

Close Order

<<GaScenario>> {respT = {(value = 1.0, unit = s, source = req)}, throughput={(value = 1.0, unit = Hz, source = req)}}
<<GaAnalysisContext>> {contextParams = {$swEP=0, $swCR=0.2, $swRP=0.4, $swNP=0.2, $swCP=0.2}}
Manage Order

Fig. 1. Simple example model annotated by the performance inference algorithms

Performance
model

Design/impl.
model

Model discovery

Code

Weaving model

M2M refinement
transformation

Refined
weaving model

M2T
transformation

Test artefacts

Fig. 2. Overall approach for generating performance test artefacts from
abstract performance models

final int users = 10;
final int tlimit ms = 1000;
Test testCase = new TFunctional();
Test test1User = new TimedTest(testCase, tlimit ms );
Test testAllUsers = new LoadTest(test1User , users );

Listing 1. Java code for wrapping the TFunctional JUnit 3 test case using
JUnitPerf

@RunWith(ContiPerfSuiteRunner.class)
@SuiteClasses(TFunctionalJUnit4 . class )
@PerfTest( invocations = 100, threads = 10)
@Required(max=1000)
public class InferredLoadTest {}

Listing 2. Java code for decorating the TFunctionalJUnit4 JUnit 4 test suite
using ContiPerf

Once we have the performance and the implementation
models, the next step is to link them using a new weaving
model. Each model consists of an instance of WeavingModel,
which contains a set of Links between a �GaStep� stereo-
type of the MARTE performance model, and a MethodDecla-
ration of the MoDisco model. We can populate the weaving
model using the standard Epsilon Modeling Framework (EMF)
editors or using Epsilon ModeLink (as in Figure 4).

After linking both models with the weaving model, the
last step is running a M2T transformation to produce the
actual performance test artefacts. The generated code would
be similar to that in Listings 1 or 2.
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Fig. 3. MoDisco model browser showing a model generated from an Eclipse Java project

Fig. 4. Screenshot of the Epsilon ModeLink editor weaving the MARTE performance model and the MoDisco model

@WebService
public class HelloWorld {

@WebMethod
public String greet (@WebParam(name=”name”)
String name)
{

return ”Hello ” + name;
}
}

Listing 3. Java code using JAX-WS to implement a “HelloWorld” Web
Service

B. Partial test plan generation for Web Services

In the previous section, we applied our approach to existing
JUnit test cases, repurposing them as performance test cases.
In this section we will discuss how to generate performance
test artefacts for a Web Service (WS) [10] in a language
agnostic manner.

Web Services based on the WS-* technology stack are
usually described using a Web Services Description Language
(WSDL) [11] document. This XML-based document is an

abstract and language-independent description of the available
operations for the service and the messages to be exchanged
between the service and its consumers. Existing Web Service
frameworks such as Apache CXF [12] can generate most of
the code required to implement and consume the services
from the WSDL description. Users only need to implement
the business logic of the services. In addition, some frame-
works (CXF included) can work in reverse, generating WSDL
from adequately annotated code. Listing 3 shows an example
fragment of Java code that implements a simple “Hello world”
Web service using standard JAX-WS [13] annotations.

Since a WSDL document is a declarative and language-
independent description of the Web Service itself, we can use
it as our design model. After transforming automatically the
XML Schema description of the WSDL document format into
a regular ECore metamodel [14], we will be able to load
WSDL documents as regular Eclipse Modeling Framework
models, reusing most of the technologies mentioned in Sec-
tion IV-A.

The weaving model needs to relate the �GaStep� stereo-
types with the operations of the services in the WSDL
document. For instance, we might want to ensure that every
invocation of the evaluate operation of the Order processing
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grinder . processes=5
grinder . runs=100
grinder . processIncrement=1
grinder . processIncrementInterval =1000

Listing 4. Example .properties file with configuration parameters for
the workload

class TestRunner:
def call ( self ):

def invoke ():
response = HTTPRequest().POST(

”http :// localhost :8080/ orders” ,
” (... SOAP message ...)”)

stats = grinder . statistics . getForCurrentTest ()
stats . success = (response . statusCode != 200

and stats . time < 150)
test = Test (1, ”Query order by ID”).wrap(invoke)
test ()

Listing 5. Example Jython script for The Grinder with the contents of the
performance test to be run by each simulated client

service finishes within a certain time while handling a certain
number of requests per second.

After weaving the WSDL-based model with the perfor-
mance model, the next step is generating a test plan for a
dedicated performance testing tool such as The Grinder [15].
Using a dedicated tool allows for defining tests with less
cost and in a way that is independent of the implementation
language of the software under test.

In the case of The Grinder, we would need to generate
two different files: a .properties file indicating several
parameters of the workload to be generated, and a Jython
script with the test to be run by each simulated client.
Listings 4 and 5 show simple examples for these two files.
The .properties file in Listing 4 indicates that 5 processes
should each run the test 100 times, starting with 1 process and
adding one more every 1000 milliseconds. On the other hand,
the test itself consists of sending an appropriate SOAP message
to a specific URL and checking that the response has the OK
(200) HTTP status code and that it was received within 150
milliseconds. Since these inputs are quite concise, we deem it
feasible to generate an initial version of both files, letting the
user add a meaningful SOAP message later.

Later iterations of this application could generate larger
parts of the test plan by assisting the user in producing
the messages themselves. Links in the weaving model could
allow the user to specify a certain strategy for generating the
messages to be sent, such as random testing, variations upon a
predefined template or static analysis of the code implementing
the service. The strategy could be applied in the weaving
model refining step showed in Figure 2.

V. RELATED WORK

According to Woodside et al. [1], performance engineering
comprises all the activities required to meet performance
requirements. These activities include defining the require-
ments, analysing early performability models (such as layered
queuing networks [16] or process algebra specifications [17])
or testing the performance of the actual system. Our previous
work in [2] focused on helping the user define the require-
ments using MARTE-annotated [3] UML activity diagrams as
notation. The present work is dedicated to helping the user
create the performance test artefacts.

Our work does not deal directly with the implemented
system, but rather with a simplified representation (a model).
There is a large number of works dealing with model-based
testing, i.e., “the automatable derivation of concrete test cases
from abstract formal models, and their execution” [18]. Most
of them (as evidenced by [18] itself) are dedicated to func-
tional testing: we will focus on those dedicated to model-based
performance testing.

Barna et al. present in [19] a hybrid approach, which uses a
2-layered queuing network (LQN) to derive an initial stress
workload for a website. This workload is used to test the
system and refine the original LQN model in a feedback
loop that searches for the minimum load that would make the
system violate one of its performance constraints. Like our
work, it combines the analysis of a model with the execution
of a set of test cases. However, its goal is completely different:
we intend to define the appropriate quality service levels for
the individual services in order to meet the desired quality
service level of the entire workflow, whereas this approach
would estimate the maximum workload that a workflow could
handle within a certain quality service level.

Di Penta et al. show in [20] another approach with the same
goal of finding workloads that induce service level agreement
violations. However, they use genetic algorithms instead of a
LQN model and test WSDL-based Web Services instead of a
regular website.

Suzuki et al. have developed a model-based approach for
generating testbeds for Web Services [21]. SLA and behaviour
models are used to generate stubs for the external services used
by our own service. This allows users to check that their own
services can work correctly and with the expected level of
performance as long as the external services meet their SLAs.
However, this approach does not generate input messages
for the services themselves. Still, we could use this work to
check the validity of the performance constraints inferred by
our algorithms in [2] in combination with the approach in
Section IV-B, by replacing all services in the workflow with
stubs and testing the performance of the composition.

As illustrated by the above references, there is a wealth of
methods for generating performance test cases and testbeds
for Web Services. However, we have been unable to find
another usage of model weaving for generating performance
test artefacts for multiple technologies. This is in spite of
the fact that model composition using model weaving has
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been used regularly ever since the authors of the original
ATLAS Model Weaver proposed it [4]. For instance, Vara
et al. use model composition to decorate their extended use
case models with additional information required for a later
transformation [22].

VI. CONCLUSION AND FUTURE WORK

In this work, we have described an overall approach for
generating performance test artefacts from the abstract perfor-
mance models produced by our inference algorithms in [2].
To generate concrete test artefacts while keeping the abstract
performance models separated from any design or imple-
mentation details, we propose linking the performance model
to a design or implementation model using an intermediate
weaving model. If a design or implementation model is not
available, it can be extracted from the existing code. The
weaving model can be then optionally refined using a model-
to-model transformation, and finally transformed into the
performance test artefacts with a model-to-text transformation.

We have performed an initial study of the feasibility of the
approach by studying how to apply it in two situations. The
first application will reuse existing JUnit test cases as perfor-
mance test cases with JUnitPerf and ContiPerf. The implemen-
tation model is extracted from the Java code implementing
the test cases using the model discovery tool MoDisco [9],
and the weaving model links the MARTE annotations in our
performance model to the Java test methods in the MoDisco
model.

The second application will generate test plans for an
independent load testing framework, such as The Grinder [15].
In this case, the WSDL description of the service serves
as an explicit design model, and the weaving model links
the MARTE performance requirement to an operation of the
service. Later revisions of this approach may use the weaving
model to specify a strategy for generating the required input
messages, instead of leaving it up to the user.

Our next work is to further these feasibility studies by
implementing the required transformation workflows. We have
implemented a considerable part of the first approach already
using MoDisco and Epsilon ModeLink, and we are currently
implementing the code generation step in the Epsilon Gener-
ation Language.
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