
Towards Mobile Energy-Adaptive Rich Internet Applications

Johannes Waltsgott
Faculty of Computer Science

Technische Universität Dresden, Germany
johannes.waltsgott@tu-dresden.de

Klaus Meißner
Faculty of Computer Science

Technische Universität Dresden, Germany
klaus.meissner@tu-dresden.de

Abstract—Composite web applications built from reusable
components are replacing traditional, monolithic Rich Inter-
net Applications (RIAs). Based on the rising number of
smartphones and the increasing usage of mobile applications,
composite web applications arrive on mobile devices. While
the computing power of the latter rapidly grows, an unsolved
problem persists: the limited energy resources of mobile de-
vices. We propose an architecture for mobile energy-adaptive
RIAs, which allows for energy optimization by adapting the
distribution of components between the server and the device
and minimizing the data communication.

Keywords-composite applications, mobile applications, en-
ergy efficiency, component migration, mashups

I. INTRODUCTION

Service-oriented architectures are current practice to build
reusable and agile composite applications from loosely
coupled services and resources. Lately, this composition
paradigm has been deployed to the presentation layer as
well. This paved the way for mashups, or composite web
applications, as an alternative to former, monolithic RIAs.
Mashups have gained acceptance for consumers as well as
enterprises [1].

At the same time, the number of smartphones sold has
risen tremendously. A Gartner survey shows that, compared
to the same period of 2010, smartphone sales increased by
42 % in the third quarter of 2011, with an even higher
estimation for Q4 and early 2012 [2]. Not only has the
number of devices been growing, but also the usage of mo-
bile applications. Today, emailing, web browsing, personal
navigation and social media applications are used by many
smartphone users. In the future, new usage scenarios will
arise, making excessive use of the device’s sensors [3]. In
parallel, mobile applications rely heavily on remote data and
cloud storage to overcome limitations regarding storage on
the device and to support collaborative scenarios. However,
there exists one thing, which does not even rudimentarily
keep pace with the increasing distribution, performance and
usage of smartphones: the device’s battery capacity (cf. [4]).
Since mobile devices are generally required to last as long
as possible, the limited energy budget and severe energy
consumers are ongoing issues for smartphone users.

In this paper, we introduce our approach towards mobile
energy-adaptive RIAs, in which we capitalize on the mobile

communication management at application layer. We focus
on composite applications based on CRUISe [5], a universal
composition platform for mashups.

The paper is structured as follows. In Section II, we
give a brief overview of the CRUISe composition platform.
Section III summarizes the challenges and related work
regarding energy-aware mobile applications. In Section IV,
we introduce our proposal and describe its respective parts.
Finally, we discuss our findings and outline future work in
Section V.

II. THE CRUISE COMPOSITION PLATFORM

Our approach towards energy-efficient RIAs is based on
the CRUISe Platform for universal mashup composition,
whose principles have been introduced in [6]. CRUISe
extends the known service-oriented paradigm to include the
presentation layer. Applications consist of universal parts,
which provide data access, business logic and UI. These
CRUISe components share a generic component model and
a platform-independent description language, the Semantic
Mashup Component Description Language (SMCDL, see
[7] for more details). The inner workings of a component
are encapsulated by an interface consisting of three abstract
concepts, namely property, operation and event (cf. [8]). The
public state of a component is represented by its proper-
ties, while changes of the inner state result in publishing
events, which could be consumed by the runtime or other
components. The functionality provided by a component is
accessible by calling its operations. This allows for a loose
coupling of components, where an event-based communi-
cation architecture routes event messages from publishing
components to the respective subscribers via event channels.

A composite application is described by a generic com-
position model [8], referencing the involved components’
IDs, the required event channels and layout information. A
service-oriented infrastructure supports the dynamic execu-
tion of CRUISe applications at runtime, as depicted in Figure
1. The composition model (upper left of figure) is interpreted
by a CRUISe runtime environment, shown in the middle, that
brings the composition to life, using universal components
provided by the service layer at the bottom.

The runtime environment receives the component code
of every component from a component repository, shown

184Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

component
repository

register

bind

runtime environment

composite application

composition model

web services, feeds, widgets, databases, ...

universal description (SMCDL)

Figure 1. Architectural overview of the CRUISe composition platform [6]

on right, where all components are registered. Finally, the
runtime integrates and instantiates the components and es-
tablishes the specified event channels.

Thus far, CRUISe provides a mature platform for universal
mashup composition, which allows for dynamic component
integration at runtime and is already in practical use in
industry. However, the existing capabilities of the CRUISe
runtime lack support for energy-aware execution of CRUISe
applications. This is of high importance, especially when
used on mobile devices, as motivated before.

III. CHALLENGES AND RELATED WORK

First of all, it is crucial to determine the main en-
ergy consumers of current smartphones. Carrol and Heiser
performed a detailed analysis of a mobile phone’s power
consumption [9], identifying the display and graphics as the
main consumers, followed by the GSM radio while the CPU,
generally, is of lower relevance. They profiled phone com-
ponents isolated by several benchmarks and measured the
energy consumption for various usage scenarios, e. g., audio
and video playback, text messaging, phone calls, emailing
and web browsing. The results show that the display (LCD
panel, touchscreen, graphics and backlight) head the power
consumption of all none-GSM-intensive scenarios. Other-
wise, e. g., phone calls, emailing and web browsing, the
GSM radio respectively the WiFi system consumed the most
of power, while WiFi showed a noticeable higher energy
efficiency for data transfer. Since the backlight of the display
is either automatically dimmed by the operating system or
explicitly set to a user-specified value, optimizing a device’s
communication behavior provides the most promising ap-
proach for energy optimization at application level.

A specialized analysis of energy consumption of mobile
communication (GSM, 3G and WiFi) was performed by
Balasubramanian et al. [10]. Their results show a fair energy
efficiency for smaller data size (10 KB) using GSM and
for bigger data size (>100 KB) using WiFi. 3G consumes
significantly more energy for data transfer, according to
the high tail energy, which covers the energy consumed
while remaining in a high power transmitting state even
after the actual data transfer is completed. Based on their
measurements, they derived a power model for all three
communication technologies covering ramp, transition and
tail energy as well as the tail time. Besides, they proposed
TailEnder, a network protocol to be integrated in mobile

operating systems, which schedules data transfer for delay-
tolerant applications or prefetches data (e. g., search results)
for suitable usage scenarios. It has to be surveyed, whether
TailEnder could be used in addition to our approach, since it
is a very data-centric view. Besides, its suitability for highly
interactive RIAs has to be proven yet.

Based on the understanding of mobile communication
as relevant energy consumer, it is of high importance to
influence the communication behavior and distribution of
mobile applications. MAUI [4] is an approach to optimize
the device runtime by energy-aware distribution of mobile
code. It relies on special attributes in the code, marking
methods to be (potentially) executed on remote hosts. A
profiler collects context information on the device, the
network and the program state at runtime. A solver processes
the information and decides whether a method should be
invoked locally or remote, taking the overhead (transfer time
and cost, processing cost) into account. Since we focus on
component-based RIAs, where the components act as black
boxes and are handled by their interface description only,
MAUI seems not suitable.

A more coarse-grained approach proposes a method for
energy-efficient workflow distribution [11], in which a work-
flow model is enhanced by a network model and a data
model. The network model describes valid environments
(mobile or hosted) for a workflow’s activity. The data model
describes the transmission costs between two activities,
which are derived from the data size to be transmitted
and the power model presented in [10]. The most efficient
distribution of the activities is calculated by a minimal
cut algorithm, applied to a cost graph. Afterwards, the
workflow is deployed accordingly. Their evaluation showed
average energy savings up to 37 % for optimized distribution.
However, since their approach focuses on workflows with
determined size of data transmitted between activities, it
does not suit highly interactive RIAs. Moreover, we strive
for energy optimization at runtime rather than at application
deployment.

Flinn proposed remote execution for mobile applications
[12], focusing on energy-aware adaptation of application
quality to optimize energy consumption by delivering appli-
cation performance to meet user requirements. However, he
did not account for communication costs while distributing
application code but concentrated on network bandwidth and
latency as performance parameters only.

In summary, it can be stated, that relevant energy con-
sumers in current smartphones, which could be controlled
by system or application level, have been identified clearly:
the mobile communication devices. Thus, research focuses
on optimizing mobile communication: from fine-grain code
level to coarse-grain approaches. Nevertheless, there are
shortcomings regarding energy optimization for highly in-
teractive, component-based RIAs, whose communication
behavior could not easily be predicted prior to runtime.

185Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

IV. PROPOSAL FOR SOLUTION

Facing the afore mentioned drawbacks, we introduce
energy-adaptive Rich Internet Applications (eRIAs): an ar-
chitecture and runtime environment for composite mobile
web applications, which allows for energy-efficient recon-
figuration of applications and migration of components
between client and server. It consists of three main parts,
as depicted in Figure 2: (1) a context monitor, collecting

runtime environment (3)

composite application

context monitor (1) migration manager (2)

composition
model

services
component
repository

Figure 2. Architectural overview of the eRIA proposal

information on the application and device state and on user
requirements at runtime; (2) a migration manager, deciding,
which reconfiguration of a component distribution between
server and mobile device is the most energy-efficient one
for a given context and migrating the affected components
accordingly; (3) a runtime environment, supporting the dy-
namic execution of application components on the server
as well as on the client. In the following, we discuss the
respective parts of our proposal in detail.

A. Context Monitor

CRUISe-based composite web applications consists of UI
and service components, loosely coupled by an event bus.
Components are encapsulated by an interface, describing
properties, operations and events by the SMCDL. Thus,
their inner state is unknown to the runtime environment,
which requires monitoring their behavior externally. The
Context Monitor shall collect information on the compo-
nent’s communication traffic to allow for a calculation of
the energy cost. Communication between components can
be measured at the Event Manager (EM), which is part of
the CRUISe runtime environment (cf. [13]), since the EM
is responsible for wiring components by delivering event
messages to operation calls according to the definition of the
composition model. Communication with external services
can be measured at the Service Access (SA, also part of the
CRUISe runtime environment), which acts as a global proxy
for external requests due to client-side security restrictions
(cf. [13]). The SA delivers the received data via a given
callback method to the component.

Besides, the Context Monitor shall gather information on
the energy context of the mobile device. These information
involve the current battery state, whether the device is just
charging, what kind of mobile communication technology is
used and basic parameters for signal strength and bandwidth.
Finally, the Context Monitor shall be able to collect user
requirements, e. g., a user forces a high-performance mode

of an application approving a higher energy consumption
knowing he will soon be able to recharge the device.

B. Migration Manager

Based on the information collected by the Context Mon-
itor, the Migration Manager derives energy costs for data
communication. Given the data size and the specific commu-
nication technology used, the required energy for a transmis-
sion can be calculated with the energy model presented
in [10]. Based on the composition model, which describes
all integral components and their type (UI / none-UI), the
Migration Manager identifies which components could be
migrated in general. At this time, we assume, that UI
components remain unchanged on the mobile device and
will not be replaced adaptively.

Analyzing the calculated energy costs for communication
and the given device’s context information as well as the
user requirements, the Migration Manager determines which
components have to be migrated to or from the server. The
component’s state has to be serialized, transferred to the
server, de-serialized and the component has to be instantiated
with the former state on the server. To lower the transfer
overhead between client and server, the component’s code
itself is not moved to the server. Instead, the server fetches
the component code from the repository via the component’s
ID, known from the composition model. If a component
should be migrated from the server to the mobile device, the
savings of the communication costs must exceed the transfer
costs of the component and its state, if the component has not
been instantiated on the client earlier. Thus, the Migration
Manager holds information on the components’ migration
history. Main parts of the Migration Manager shall run on
the client to avoid transmitting great quantities of context
data to the server for processing.

C. Runtime Environment

The runtime environment is responsible for interpreting
the composition model, contacting the component repository,
receiving the component code, integrating the components
and establishing the needed event channels between the
components according to the composition model. Imple-
mentations of a CRUISe runtime environment have been
developed for server or client side only, recently as a Thin-
Server-Runtime [13], running completely within the web
browser. However, our approach requires a runtime environ-
ment on both the server and the client side, which allows
for the dynamic execution of none-UI components on both
sides. Thus, a dynamic Client-Server-Runtime is currently
under development, which provides component integration
and instantiation on both the server and the client as well
as an event bus (embedding the needed event channels)
between server and client to allow for communication among
migrated components. Initially, we will utilize a server-
side JavaScript executor to run CRUISe components (which

186Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

typically are JavaScript-based) on the server, supporting
further platforms in the future. Access to external services
(cf. SA) will be provided in the same manner on server and
client, to make the actual location of execution transparent
to the components.

V. CONCLUSION AND FUTURE WORK

In this paper, we have introduced our proposal for mobile
energy-adaptive RIAs briefly. Based on collected context
information on the application and the device at runtime, the
Migration Manager decides whether to migrate components
between server and client to minimize data transfer and, thus,
to save energy and lengthen the device’s uptime.

We neglect energy optimization on server side within
our approach, as we focus on mobile devices. Optimizing
energy consumption of component-based applications on
servers has been studied within the CoolSoftware project
[14], introducing Energy Auto Tuning [15].

Our approach has also some limitations. Due to the focus
on communication behavior, CPU-intense applications with
minor external communication will not benefit much from
this proposal. Moreover, it could be difficult to derive a
migration strategy for components that consume and publish
data of equal quantity, as they will cause high communica-
tion costs regardless of where they are executed. Frequent
migration of components could result in high overhead
costs. This can be addressed by migration policies and
initial distribution suggestions for components, derived from
experiments run prior to application deployment.

To achieve our aim, we will face the following challenges
next: We will survey, whether the Context Monitor could
also use prediction technologies (besides runtime monitor-
ing) to determine data traffic or if methods and work from
machine learning could be useful as well. Further research
is required with regards to migration strategies, clarifying
where components should be integrated initially: on the
server or on the client, as this impacts the initial data traffic.
Finally, we have to complete the implementation of the
dynamic Client-Server-Runtime.

To evaluate our approach, we plan a representative user
study, which allows us to measure energy consumption for
several usage scenarios and communication technologies
on current smartphones and to compare our solution with
classical mobile RIAs.

ACKNOWLEDGMENT

The work of Johannes Waltsgott is founded by the German
Federal Ministry of Education and Research under promo-
tional reference number 13N10782.

REFERENCES

[1] V. Tietz, S. Pietschmann, G. Blichmann, K. Meißner,
A. Casall, and B. Grams, “Towards Task-Based Development
of Enterprise Mashups,” in Proc. of the 13th Intl. Conf.
on Information Integration and Web-based Applications &
Services. ACM, 2011, pp. 325–328.

[2] Gartner Inc., “Gartner Says Sales of Mobile Devices Grew 5.6
Percent in Third Quarter of 2011,” 2012, Mar 22th. [Online].
Available: http://www.gartner.com/it/page.jsp?id=1848514

[3] M. Satyanarayanan, “Mobile Computing: the Next Decade,”
SIGMOBILE Mob. Comput. Commun. Rev., vol. 15, no. 2, pp.
2–10, 2011.

[4] E. Cuervo, A. Balasubramanian, D.-K. Cho, A. Wolman,
S. Saroiu, R. Chandra, and P. Bahl, “MAUI: Making Smart-
phones Last Longer with Code Offload,” in Proc. of the 8th
Intl. Conf. on Mobile Systems, Applications, and Services.
ACM, 2010, pp. 49–62.

[5] CRUISe Consortium, “CRUISe project,” 2012, Mar 22th.
[Online]. Available: http://www.mmt.inf.tu-dresden.de/cruise/

[6] S. Pietschmann, “A Model-Driven Development Process and
Runtime Platform for Adaptive Composite Web Applica-
tions,” Intl. Journal On Advances in Internet Technology,
vol. 2, no. 4, pp. 277–288, 2009.

[7] CRUISe Consortium, “CRUISe Mashup Component
Description Language MCDL,” 2012, Mar 22th. [Online].
Available: http://www.mmt.inf.tu-dresden.de/cruise/mcdl/

[8] S. Pietschmann, V. Tietz, J. Reimann, C. Liebing,
M. Pohle, and K. Meißner, “A Metamodel for Context-Aware
Component-Based Mashup Applications,” in Proc. of the
12th Intl. Conf. on Information Integration and Web-based
Applications & Services. ACM, 2010, pp. 413–420.

[9] A. Carroll and G. Heiser, “An Analysis of Power Consump-
tion in a Smartphone,” in Proc. of the 2010 USENIX Annual
Technical Conf. USENIX, 2010, pp. 21–34.

[10] N. Balasubramanian, A. Balasubramanian, and A. Venkatara-
mani, “Energy Consumption in Mobile Phones: A Measure-
ment Study and Implications for Network Applications,” in
Proc. of the 9th ACM SIGCOMM Conf. on Internet Measure-
ment Conference. ACM, 2009, pp. 280–293.

[11] D. Fischer, S. Föll, K. Herrmann, and K. Rothermel, “Energy-
efficient Workflow Distribution,” in Proc. of the 5th Intl. Conf.
on Communication System Software and Middleware. ACM,
2011, pp. 2:1–2:8.

[12] J. Flinn, “Extending Mobile Computer Battery Life through
Energy-Aware Adaptation,” Ph.D. dissertation, Carnegie Mel-
lon University, December 2001.

[13] S. Pietschmann, J. Waltsgott, and K. Meißner, “A Thin-Server
Runtime Platform for Composite Web Applications,” in Proc.
of the 5th Intl. Conf. on Internet and Web Applications and
Services. IEEE, 2010, pp. 390–395.

[14] CoolSoftware Consortium, “CoolSoftware project,” 2012,
Mar 22th. [Online]. Available: http://www.cool-software.org/

[15] S. Götz, C. Wilke, M. Schmidt, S. Cech, and U. Aßmann,
“Towards Energy Auto Tuning,” in Proc. of 1st Annual Intl.
Conf. on Green Information Technology, 2010, pp. 122–129.

187Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

