
Online Internet Communication using an XML Compressor

Tomasz Müldner

Jodrey School of Computer Science Acadia University

Wolfville, B4P 2A9 NS, Canada

 e-mail: Tomasz.muldner@acadiau.ca

Jan Krzysztof Miziołek

IBI AL University of Warsaw, Poland

e-mail: jkm@ibi.uw.edu.pl

Christopher Fry

Jodrey School of Computer Science Acadia University
Wolfville, B4P 2A9 NS, Canada

 e-mail: chrisfry99@gmail.com  

Abstract—Online communication and various other Web
applications, such as collaborative systems using XML as
a data representation often suffer from performance
problems caused by the verbose nature of XML. In this
paper, we present an XML-conscious compressor
designed to alleviate these problems, by using it online
and evaluating queries using lazy decompression. Our
XML compressor not only decompresses the data
whenever enough data are available, but it also
compresses them online, it is updateable (i.e., it works
with dynamic XML documents), and its implementation
can be parallelized thereby significantly increasing
performance on multi-core machines.

Keywords - Internet communicat ion; XML;
compression.

I. INTRODUCTION

Online communication is increasingly using the
eXtensible Markup Language (XML) [1] as a data
format. Unfortunately, the XML markup results in
increased size of this representation, often by as much
as ten times as large as alternative formats. This
overhead is particularly concerning for communications
involving large data sets and for memory-constrained
devices participating in online communication. For
applications passing communicating over the Internet,
the network bandwidth is the main bottleneck and this
is why decreasing the size of the information passed is
essential. There has been considerable research on
XML-conscious compressors, which unlike general
data compressors can take advantage of the XML
structure, e.g., [2], [3], [4]. Most recently, there has
been research on queryable XML compressors for
which queries can be answered using lazy
decompression, i.e., decompressing as little as possible,
see, e.g., [5], [6]. Also, there has been research for
updateable XML compressors, for which updates can be
saved without full decompression, see, e.g., [7], [8].
Online XML compressors are typically defined as
compressors, which decompress chunks of compressed
data whenever possible rather than doing it offline when
the entire compressed file is available, see [9], [10].
These compressors are particularly useful for Internet
applications, used on networks with limited bandwidth.

Clearly, for a compressor to be online means that it
must have only one pass through the document is
required to compress it. In this paper, we present an
online compression based on XSAQCT, an XML
compressor, see [11]. There are other online
compressors, e.g., TREECHOP [12], but XSAQCT has
a number of distinctive features, as it is queryable using
lazy decompression (i.e., with minimal decompression)
and updateable [7], and finally it can be parallelized to
execute faster on multi-core machines [13]. Various
possible educational applications of XSAQCT are
described in [14]. Similarly to TREECHOP, XSAQCT
suppor t s bo th the compress ion where the
decompressor’s output is exactly the same as the
original input (including the white space), and
generating a canonicalized [15] XML document.

Contributions. We present a novel online XML
compressor su i t ab le fo r improv ing on l ine
communication on Internet. Our initial experiments
indicate that XSAQCT’s performance is comparable to
TREECHOP, but unlike TREECHOP, XSAQCT not
only decompresses the data whenever enough data are
available, but it also compresses them online, which is
essential for the case of a network node N1 receiving
streamed XML data from one or more sources, which
are to be stored in a compressed form. In such cases,
instead of waiting for the entire set of XML data, N1
may compress incoming data online thereby increasing
the efficiency of the compression. In addition,
XSAQCT is updateable (i.e., it works with dynamic
XML documents) and its implementation can be
parallelized thereby significantly machines. increasing
performance on multi-core This paper is organized as
follows. Section II gives a short introduction to the
design and functionality of the previous version of
XSAQCT, which is offline, and Section III describes its
current extension, i.e., the online XSAQCT. Section IV
describes applications of XSAQCT to an online
communication, and finally, Section V provides
conclusions and describes future work.

II. OUTLINE OF OFFLINE XSAQCT

Given an XML document D, we perform a single

SAX (specifically using Xerces [16]) traversal of D to

131Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

encode it, thereby creating an annotated tree TA,D n
which all similar paths (i.e., paths that are identical,
possibly with the exception of the last component,
which is the data value) are merged into a single path
and each node is annotated with a sequence of integers;
see Fig. 1. When the annotated tree is being created,

data values are output to the appropriate data
containers. Next, TA,D is compressed by writing its
annotations to one container and finally all containers
are compressed using a selected back-end compressors,
e.g., gzip [17]. For more details on XSAQCT, see [11]
and [7].

 Fig.1 XML document (a) and its annotated tree (b)

 III. ONLINE XSAQCT

 A. Notations and Assumptions

In this version, we assume that a leaf of an XML
tree stores exactly one text child. By SN we denote a
sending node and by RN we denote a receiving node.
SN and RN communicate using message passing; here
SN is a producer and RN is a consumer using
receive(packet); a synchronization is taken care of by
these procedures. A packet may have binary contents or
it can be a sequence of integer values. By the skeleton
tree TD we denote the tree labeled by tag names, and by
we denote an annotated tree. By ANN we denote the
sequence of all annotations. Annotations for a node of
TA,D may be stored with this node, or the node may
store a (logical) pointer to ANN (e.g., the offset within
ANN). We assume that an annotated tree TA,D is
implemented so that following functions are available:

• Node ADD_RC(Node n, Tag p, annotation a)
creates and returns a new rightmost child of n with the
tag p and the annotation a;

• Node create_Root(Tag p) creates a new root with
tag p;

• Node get_LC(Node n) returns the leftmost child
of n or a null node;

• Node get_RS(Node n) returns the right sibling of
n or a null node;

• bool function is_Text(Node n) returns true iff n is
a special tree node to store text;

• Node get_Parent(n) returns the parent of n; text
get_Tag(n) returns the tag of n;

• text get_Text(n) returns the only text child of n.

We also assume that a data structure Path stores tags

or text value, with the operations append_Path(Path p,
Node n) which appends n to the path p, clear_Path(Path
p) which sets the path p to empty, length_Path(Path p)
which returns the length of p, and set_Path(Path p)
which stores length_Path(p) as the first element of p.
Finally, we use the following notations:

• a(n) annotation of the node n

• a(n)+=j increase the last annotation of n  

 by j

• a(n)+=“,0” add “, 0” to the annotation of n;  

 e.g. if a(n)=[1] then it becomes [1,0]

• [0a(m),1] if a(m) is [1], then [0a(m),1] is  

 [0,1] otherwise [0a(m),1] is  
 [0,…,0, 1] where 0a(m) is the sum of all  
 annotations in a(m), minus 1; e.g., if  
 a(m) = [2,1], then [0a(m),1] is [0, 0, 1].

B. Online Compression

SN parses XML data using the SAX parser, and sends
packets to RN, which first creates an annotated tree (as
described below) and then follows the compression
process as in XSAQCT [11]. At the same time, the
parser creates a dictionary of tags. Each packet is of the
form: (integer k, followed by N indices into the
dictionary, followed by the uncompressed text) where

132Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

N>=0. We assume that when the SAX parser terminates
(i.e., completes parsing) it sends the packet (-2,
dictionary). Therefore, RN creates an annotated tree
labeled by indices rather than tags. For the sake of

readability, in the description provided in this paper, we
consider sending and receiving tags rather than indices
but our implementation operates on indices.

int k = -1;

Path p;

//initially stores only the tag of the root of the XML tree

void SN_send(Node n) {

 if (n is a leaf) {

 // a leaf must have a text child

 append_Path(p, getText(n));

 set_Path(p);

 send(p);

 clear_Path(p);

 k=0;

 } else

 for every child m of n {

 append_Path(p, getTag(m));

 SN_send(m);

 k++;

 }

} // SN_send()

Now, we’ll explain the actions executed by RN. By the
leftmost path of the labeled tree T rooted at node n1 we
mean a path of labels (p1,…,pk) s.t. get_Tag(n1) = p1,
and for i = 1,…,k-1 get_LC(ni) = ni+1, get_Tag(ni) = pi,
get_LC(nk) is null. The first time send() is called, it will
send a packet (-1, the path of the leftmost path rooted at
the root of the tree). At this time the value of the current
node c will be set to nk. To explain the meaning of
sending the consecutive packet (k, p1,…,pN) let’s
assume that SN_send() is visiting nodes (which are
initially non-visited) in a dfs-order and c is current
node. Then the value of k is found as follows. Let n1,
…,nk be the shortest path of nodes s.t. n1 = c, for i=1,…
k-1 get_Parent(ni) = ni+1 and there exists a child m of nk
which has not been visited. Next, let m1,…,mN be a
path of nodes s.t. m1=m, for i=1,…,N-1 mi+1 is the
leftmost unvisited child of mi, mN has only a text child.
Then, for i=1,…,N get_tag(mi)=pi.

void RN_receive(Node n) {

bool flag;

Node c; // current node

Node m;

Text t;

receive(k, p1,…,pN , t);

if(k==-1) { // initialization

c = create_Root(p1);

for(i=2; i<N; ++i)

 c = ADD_RC(c, pi, [1]);

}

while (true) { // until the final packet

 receive(k, p1,…,pN , t);

 if(k == -2)

return; // done

 // move current based on the value of c

 for(i=1; i<=k; ++i) // set the current

 c = get_Parent(c);

// check every tag in the received path

for(i=1; i<=N; ++i) {

flag = false;

for (every child m of c)

if(get_Tag(m) == pi) {

a(m)+=1;

c = m;

flag = true;

for (every child m of c)

 a(m) += “,0”;

break;

} // end of if

// for every child

if(!flag)

 c = ADD_RC(c, pi, [0a(c),1]);

add text to the container for c;

} // for i=1…

} // while(true)

} // RN_receive()

C. Online Decompression

We assume that the sending node SN can decompress
all annotations, restore the skeleton tree and send it to
RN, then re-annotate it as well as run a procedure
SN_dfs(AnnotationTreeNode) shown below. As far as
the receiving node RN is concerned, we assume that it
can run a procedure RN_restore(SkeletonTreeNode)
shown below. We also assume that RN implements the
AA Abstract Data Type (ADT), which stores sequences
of annotations with the following operations (initially,
the annotations for every node are un-initialized):

- void AA_delete(Node n) removes the first element

of the annotations for n

- void AA_store(Node n, sequence of integers seq)

stores seq as the annotations for n

- void AA_init(Node n) initializes the annotations for

n

- bool AA_isInit(Node n) returns true iff the

annotation for n has been initialized

- int AA_getFirst(Node n) returns the first element

from the annotations for n

- AA_get_Text(Node n, binary b) where b contains a

compressed text, performs the following actions: b
is decompressed, stored into a container, and then
the iteration AA_nextIter(Node n) is started, this
iteration returns the next text in the container

- bool AA_hasReceivedText(Node n) returns true iff
the text for n has been received

D.Initialization

SN restores the skeleton tree TD and then the annotated
tree TA,D (but it does not decompress text containers),
then it sends the skeleton tree to RN:

SN: send(TD)

RN: receive(TD)

133Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

After the initialization, RN runs the following
procedure:

SN_dfs(AnnotationTreeNode f) {

for (every child c of f)

if(isText(c))

 send(c, text of c);

else {

 send(ANN(c));

 SN_dfs(c);

}

} // SN_dfs()

For the RN, we show the recursive version:

RN_restore_recursive(SkeletonTreeNode f) {

 for (every child c of f) //from left to right siblings

 if (is_Text(c)) {

 if (!AA_hasReceivedText(c))

 AA_getText(c);

 output(AA_nextTextIter(c));

 return;

 } else {

 if (!AA_isInit(c)) {

 receive(ann);

 AA_init(c);

 AA_store(c,ann);

}

 while (AA_getFirst(c) > 0) {

 output("<" + tag(c) + ">");

 a(c)+=-1;

 RN_restore_recursive(c);

 output("</" + tag(c) + ">");

 }

 AA_delete(c);

 }

} // RN_restore()

For the XML file from Fig. 1 (a), in Fig. 3 we show
packets that will be sent by SN_send() and the state of
the annotated tree after each packet has been processed
by RN_restore(), (the current node is bold, un-
annotated nodes have annotation [1]). Note the last
state (in the right bottom corner) shows the same
annotated tree as in Fig 1 (b).

E. Querying Strategy

For queries formulated using a subset of XPath, the
network node receiving a compressed data can query
this data as it is being processed. Specifically, XSAQCT
decompresses the skeleton tree, and annotations, and
then decorates the tree with annotations. Depending on
a type of the query, it can be immediately answered (for
exact-match queries involving only tag names, e.g. /a/
b/) or (for example to find the location of some text
data) XSAQCT finds the location of the data,

decompresses the appropriate data container, and
completes the evaluation of the query. This type of lazy
decompression makes the evaluation of queries more
efficient.

IV. EXAMPLES OF APPLICATIONS

To consider possible applications of online

XSAQCT, see Fig. 2, consider the network node N1,
which produces XML data, to be sent to the network
node N2, where they are compressed online by
XSAQCT. N2 stores compressed data, which can be
queried by the network node N3 sending queries. They
can also be decompressed online by XSAQCT and sent
to the network node N4. This node can either store
uncompressed data, or they can be piped into any
WWW application. Therefore, this figure shows the
general architecture of our system. For example, for
online decompression, input data may be piped into the
compressor and sent over the Internet. On the receiving
end, the data may be piped into two programs; one that
collects the entire compressed document, and a second
program which performs on-the-fly decompression. The
decompressed data can be piped into any WWW
application, such as a SOAP processor. The complete
compressed data can be stored, and queried without
having to decompress it.

Fig. 2. Applications

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an online XML
compressor/decompressor XSAQCT suited for efficient

134Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

implementation of online communication. We provided
the brief outline of the implementation and results of
the implementation.

In this version we did not attempt to handle XML
mixed content or cycles, e.g., nodes with the
consecutive children b, c and b. In the future version,
we will remove these limitations. In addition, the future
version will add more querying and updating facilities.
Finally, we will add parallelization to the online
compressor, based on [13]. To evaluate the effectiveness
of online XSAQCT; specifically its compression and
decompression and compression ratios, we will use
three files of varying sizes: shakespeare.xml, dblp.xml
and 1gig.xml. The first two files are taken from the
Wratislavia corpus [18], while the last file is a randomly
generated XML file, using xmlgen [19]. We will test our
code by recording: (a) time to send a single
uncompressed XML file D over the network from node

N1 to node N2 and then compressing offline in N2, and
(b) time to compress D online while sending from N1 to
N2. Similarly, we will record (a) time to send a single
compressed XML file D over the network from node
N1 to node N2 and then decompressing offline.

Example.

For the XML file from Fig. 1 (a), in Fig. 3 we show
packets that will be sent by SN_send() and the state of
the annotated tree after each packet has been processed
by RN_restore(), (the current node is bold, un-
annotated nodes have annotation [1]). Note the last
state (in the right bottom corner) shows the same
annotated tree as in Fig 1 (b).

Fig.3 The state of the annotated tree after sending each packet 

 (-1,a,x,y,z)
 (2,y)

 (2,x,y,w)

 (1,w,t)

 (4,x,y,z)

 (2,y)

 (2,u)

135Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

REFERENCES

[1]
 W3C, Extensible Markup Language (XML) 1.0 (Fifth

Edition). http://www.w3.org/TR/REC-xml/, 2011.
Retrieved on January 20, 2012.

[2]
 H. Liefke and D. Suciu, “XMill: an efficient
compressor for XML data,” in Proceedings of the 2000
ACM SIGMOD International Conference on
Management of Data, 2000, pp. 153-164.

[3]
 P. Tolani and J. Haritsa, “XGRIND: a query-friendly
XML compressor,” in Proceedings of the 2002
International Conference. on Database Engineering,
2002, pp. 225-34.

[4]
 A. Arion, A. Bonifati, G. Costa, S. D’Aguanno, I.
Manolescu, and A. Pugliese, “XQueC: pushing queries
to compressed XML data,” in Proceedings of the 29th
international conference on Very large data bases,
2010.

 Volume 29, Berlin, Germany, 2003, pp. 1065–1068.

[5]
 P. Skibiński and J. Swacha, “Combining efficient XML

compression with query processing,” in Advances in
Databases and Information Systems, 2007, pp. 330–
342.

[6]
 Y. Lin, Y. Zhang, Q. Li, and J. Yang, “Supporting
Efficient Query Processing on Compressed XML Files,”
2005.

[7]
 T. Müldner, C. Fry, J. K. Miziołek, and T. Corbin,
“Updates of Compressed Dynamic XML Documents,”
in Eight International Network Conference, 2010, pp.
315–324.

[8]
 I. Tatarinov, Z. G. Ives, A. Y. Halevy, and D. S. Weld,
“Updating XML,” in Proceedings of the 2001 ACM
SIGMOD international conference on Management of
data, Santa Barbara, California, United States, 2001, pp.
413–424.

[9]
 S. Sakr, “An Experimental Investigation of XML
Compression Tools,” CoRR, vol. abs/0806.0075, 2008.

[10]
 Müldner, T., Leighton, G., and Diamond, J., “Using
XML Compression for WWW Communication,”
presented at the IADIS International Conference
WWW/Internet, 2005, pp. 459-466.

[11]
 T. Müldner, C. Fry, J. K. Miziołek, and S. Durno,
“XSAQCT: XML Queryable Compressor,” Montréal,
Canada, 2009.

[12]
 G. Leighton, T. Müldner, and J. Diamond,
“TREECHOP: A Tree-based Query-able Compressor for
XML,” The Ninth Canadian Workshop on Information
Theory, Jun. 2005.

[13]
 T. Müldner, C. Fry, T. Corbin, and J. K. Miziolek,
“Parallelization of an XML Data Compressor on Multi-
cores,” presented at the PPAM, Torun, Poland, 2011.

[14]
 T. Müldner, J. K. Miziolek, and C. Fry, “Updateable
Educational Applications based on Compressed XML
Documents,” in CSEDU (1), 2011, pp. 369-371.

[15]
 W3C, Canonical XML. http://www.w3.org/TR/xml-
c14n, 2001. Retrieved on January 20, 2012.

[16]
 “Xerces,” http://xerces.apache.org/xerces-j/. [Online].
Available: http://xerces.apache.org/xerces-j/. Retrieved
on January 20, 2012.

[17]
 The gzip home page. http://www.gzip.org/. Retrieved
on January 20, 2012.

[18]
 Wratislavia XML Corpus. http://www.ii.uni.wroc.pl/
\textasciitildeinikep/research/Wratislavia/. Retrieved on
January 20, 2012.

[19]
 xmlgen - The Benchmark Data Generator. http://
www.xml-benchmark.org/generator.html. Retrieved on
January 20, 2012.

[20]
 T. Müldner, G. Leighton, and J. Diamond, “Using xml
compression for www communication,” in Proceedings
of the International Association for Developement of the
Information Society (IADIS) International Conference
WWW/Internet 2005 (ICWI 2005), 2005, pp. 459–466.

136Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

