
Towards Requirements Engineering for Mashups:
State of the Art and Research Challenges

Vincent Tietz, Andreas Rümpel, Christian Liebing, and Klaus Meißner
Faculty of Computer Science

Technische Universität Dresden
Dresden, Germany

{vincent.tietz,andreas.ruempel,christian.liebing,klaus.meissner}@tu-dresden.de

Abstract—Mashups have become popular in the modern Web
providing a lightweight development approach for mainly small
and situational applications. Visual composition metaphors
and loosely coupled widgets encourage the fast implementa-
tion of changing requirements. However, domain experts and
mashup composers are poorly supported in expressing and
formalizing their needs, leading to time-consuming and error-
prone component discovery and composition. Methods and
techniques of traditional requirements engineering (RE) are not
transferable out of the box due to targeted user groups, isolated
development phases, insufficient tool support, and different
models. Therefore, we investigate characteristics of software
engineering in mashup approaches compared to similar devel-
opment paradigms revealing and discussing challenges when
applying RE to mashups.

Keywords-Web mashups; requirements engineering; software
development process; application modeling; UI composition

I. INTRODUCTION

Presentation-oriented mashups introduce the user interface
(UI) as a new integration layer for component-based appli-
cations. They have become a prominent approach for the
lightweight integration of distributed and decoupled Web re-
sources. Originally, mashups have been developed by script-
based assembly of heterogeneous application programming
interfaces (APIs). However, incorporating UI fragments, the
heterogeneity of mashup building parts and the composition
effort increases. Thus, more powerful mashups are possible
to be built at the expense of a simple development approach.
Since there is no widely accepted understanding about a
general mashup development process, also the manifestation
of RE remains uncertain. Beside available work regarding
traditional, component-based and Web-based RE, at least the
necessity of a structured development process for enterprise
mashups is recognized [1].

Mashups promise less expensive and faster application
development of long tail applications integrating existing
components and services customized by users. Apart from
very simple, situational mashups, the explicit specification
of functional and non-functional application requirements
is essential. Driving factors are the reuse of pre-existing
business processes or task models (cf. [2]), the growing ap-
plication complexity, and business plans of service providers

considering mainly non-functional requirements. However,
the requirements elicitation and specification in mashups
is neglected so far, making the quality-aware discovery
and integration of components difficult. Moreover, missing
model-based development approaches impede platform in-
dependence, adaptation, reusability, and maintainability.

To identify research challenges when applying RE to
mashups in Section IV, we initially introduce the principles
of RE, its core activities, and the characteristics of the
application type Web mashup in Section II. Selected ap-
proaches are evaluated based on a catalog of criteria defined
in Section III. Finally, Section V concludes this paper.

II. PRINCIPLES

This section gives a brief overview of the principles of
RE, the related core activities, and techniques. Further, we
introduce Web mashups as our target application type.

A. Requirements Engineering

Software RE is the process of discovering the purpose of a
software system by identifying and documenting stakehold-
ers and their needs in order to achieve a satisfying software
system for which it was intended [3]. Therefore, RE is multi-
disciplinary and human-centered, whereas the communica-
tion of requirements (implying readability, validity, and com-
prehensibility) and the management of requirements (imply-
ing traceability, searchability, and changeability) are critical
success factors. The development process is considered as
the instance of a process model defining roles, artifacts, and
activities. The technique defines how to perform an activity,
while the method combines both activities and techniques.

Traditionally, the first activity in RE is a feasibility study
often coupled with a risk analysis. If the project effort
is estimated to be adequate, the elicitation and analysis
phase follows. There are a plenty of techniques available
for requirements elicitation, such as interviewing, brain-
storming, analyzing existing documentation, data mining,
and prototyping [3]–[5]. In general, these techniques can be
applied to different kinds of development processes. They
are rather independent of the target application type applying
social, psychological, and analytic strategies.

123Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

In contrast, the next activity, elaboration and specification
of requirements, is intended to reveal the requirements in
order to specify functional and non-functional product de-
scriptions for subsequent development activities. The objec-
tive of structured requirements elicitation and specification
is to achieve completeness and consistency, covering all
requirements, and getting non-ambiguous specifications. The
specified requirements constitute a contract, which forms the
basis for later validation and iteratively making compro-
mises within the negotiation phase. The validation phase
is based on previously specified requirements. Depending
on the domain and type of a software product, require-
ments change over time. Typically, requirements change
management cares about additional or belated requirements
or changes in previously taken decisions, also regarding
potentially increasing costs or development effort.

The formalization degree of requirements artifacts affects
the degree of automation for refinement or validation, e. g.,
using automated test cases, model checking or monitor-
ing. To increase transferability and reusability, modeling
techniques have been established to specify requirements
in a formal way. One widely used modeling facility for
object-oriented software is the Unified Modeling Language
(UML). Formal specifications enable the refinement and
transformation of models covering separate concerns of the
development process and the final product [6]. The chance
for model-driven refinement of computation-independent
requirement models to technological independent conceptual
models in the design phase is one major incentive for
the application of model-driven RE. Ideally, the generation
of executable code from these models leads to low-error
software products fulfilling the specified requirements.

B. Web Mashups

Mashups evolved from simple data-driven aggregation of
feeds to complex applications composing Web- and UI-
based building parts. In general, tools like Yahoo! Pipes1,
JackBe Presto2, and IBM Mashup Center3 support the visual
composition of technology-independent Web services, APIs,
and UI components by dragging components on a canvas and
wiring output and input channels in order to create new ap-
plications. Compared to other software systems, mashups are
rather small applications with only few stakeholders, such
as component developer, mashup composer, and mashup
user. Regarding methods, patterns, and tools, simplicity and
reusability are important demands, since mashup develop-
ment by users with low programming skills, also referred to
as end user development, is getting popular.

In general, mashup components can be considered as self-
contained entities solving user tasks. Figure 1 shows an ex-
ample Web mashup, which allows planning of a conference

1http://pipes.yahoo.com/
2http://jackbe.com/products/
3http://ibm.com/software/info/mashup-center/

participation. In order to receive suggestions for routes of the
public transportation services, a participant needs to define
start and destination locations as well as corresponding tem-
poral constraints. In addition, the user requires information
about available hotels and the weather near the conference
location. Therefore, the task plan conference participation is
decomposed into get travel info, get weather, and find hotel.
These tasks are supported by appropriate components (e. g.,
a map) that need to be selected and composed.

Figure 1. Conference participation mashup with tasks

Despite the simplicity of composition metaphors in
current tools, the component discovery remains difficult.
Searching is occasionally facilitated by keywords, inter-
face descriptions, and community feedback. However, in
the light of growing repositories and ambiguous tags, the
identification of proper search criteria becomes an increasing
challenge for inexperienced users. Further, mapping of com-
ponent interfaces, e. g., originating from different providers,
that should communicate within the same application, is not
trivial. Thus, we argue that this should be addressed by a
model-driven and semantics-based development approach.

III. STATE OF THE ART

To support RE, a wide range of development processes,
methods, and tools have emerged. In the following, we
especially evaluate model-driven development approaches
for Web applications to review the state of the art and to
reveal research challenges when applying RE to mashups.

A. Evaluation Criteria

As a foundation for our evaluation criteria, we adopted
the evaluation framework in [7] for a survey of RE in Web-
and service-based development approaches, facing mashup-
relevant aspects regarding requirements model, component-
aware development process, model-driven development, and
adequate tooling support.

1) Requirements Model: Requirements, which should be
provided by a software, are specified in a requirements
model. Commonly, they are divided into non-functional,
functional, and domain-related requirements [3]. Functional
requirements define functions of a software system or parts
of it. They are intended to accomplish calculations, data

124Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

manipulation, or other processing consisting of inputs, be-
havior, and outputs. From the user’s point of view, mashups
and their constituent components support the user in solving
his or her specific tasks. Technical details and system
characteristics are usually hidden by black-box components
externalizing their functionality by their interfaces only.
Therefore, we evaluate how functions (FR1), their sequence
(FR2), their input and output (FR3), and the relationships of
outputs and inputs (FR4) are specified.

Functional requirements are supported by non-functional
requirements (NFRs), or quality requirements, which im-
pose constraints on the design or implementation [3]. Pro-
duct quality criteria in common development processes
are mainly guided by the international standards for the
evaluation of software quality ISO/IEC 9126 and ISO/IEC
25000. Internal and external metrics specify different quality
criteria such as availability, efficiency, or security, defined
in a quality model. If regarded, they are usually specified in
poorly structured documents making it very hard to reuse
them or automatically check and monitor their violations.
Since NFRs imply a destination or association point, cf.
[8], we evaluate, whether the method allows the specification
of related objects in a suitable granularity. Such associated
objects can be functional requirements, system artifacts such
as components, resources, or the project context (NFR1).
Further, specification possibilities of how a NFR is scaled
or measured within the target system is evaluated as inte-
grability or operationalization (NFR2).

Software is developed and used within an application
domain. This includes, for example, the organization’s struc-
ture, business rules, goals, tasks and responsibilities of
its members, and the data that is needed, generated, and
manipulated [3]. A comprehensive domain model provides
an abstract description of the world in which an envisioned
system will operate. It provides also knowledge structures
and therefore allows reasoning on facts, as well as oppor-
tunities for reuse within a domain [3]. Because the domain
model is an integral part of any requirements specification,
we evaluate how domain models are supported describing
data structures (DM1), roles and stakeholders (DM2) and
how existing domain models can be reused (DM3).

2) Development Process: The development process needs
to be adopted to the target user group in order to provide a
lightweight and efficient development approach, wherein the
knowledge about available components needs to be consid-
ered in the requirements phase. If requirements are identified
at an early stage and components are chosen at a later stage,
there is a bigger chance that components do not support the
required features [9]. The main advantage of applying RE to
mashups is that requirements can be matched to predefined
components [10] and to support the development process by
prototype generation, providing instant feedback. Therefore,
we evaluate how the requirements phase is embedded in the
whole development process, including the support of round-

trip engineering (DP1) to automate model synchronization.
Since we consider composite mashups, we evaluate whether
the development process is component-based (DP2) and
whether component recommendation is supported (DP3).
Finally, we evaluate how the decomposition of requirements
is supported (DP4). This also applies to NFRs, which are
likely to be decomposed into NFRs or FRs.

3) Model-driven Development: We argue that model-
driven development (MDD) [6] needs to be applied in order
to benefit from traceability, usability, and platform indepen-
dence in mashups [11]. Therefore, we evaluate existing work
considering the provision of precise metamodels (MD1) and
mappings and transformations into conceptual models based
on the requirements model (MD2). Moreover, this implies
some kind of component discovery (MD3) that may be
facilitated by the use of semantic knowledge (MD4) [12].

4) Tool Support: Since mashup development is rather
user- and prototype-driven, adequate tools are needed to sup-
port requirements elicitation and specification. Regarding the
tool support we evaluate the provision of visual requirements
modeling (TS1) and of managing development artifacts
(TS2). We further try to identify the target user group of
these tools to decide whether they are applicable to mashup
composers (TS3) and how they are guided through the
development process. To this end, we specified the following
user groups: requirements engineer (RE), modeling expert
(ME), software developer (SD), and end user (EU).

Since we regard model-driven development as a key
demand and mashups as Web-based applications, we focus
on corresponding development methods in our evaluation.
Initially, we discuss traditional software engineering, as it
provides the most comprehensive and mature approaches
for RE and MDD. Finally, we consider current mashup
approaches illustrating the lack of RE support.

B. Traditional methods and techniques

The notion traditional software development is used here
to describe mature and well elaborated methods and tech-
niques usually applied in industrial software projects and
object-oriented development processes. Amongst industrial
practitioners, the requirements elicitation phase is most often
realized with the help of scenarios and use cases followed
by focus groups and informal modeling [4]. Since object-
oriented analysis is the most popular modeling method, we
consider Rational Unified Process (RUP) [13] in conjunction
with UML and related development tools, such as IBM
Rational Software Architect (RSA)4, as one representative
of traditional software development methods.

1) Requirements Model: Regarding the requirements
model, we observe that all functional (FR1–FR4) and non-
functional requirements can be expressed with the help of
use cases and textual supplements. Role assignments are

4http://www-01.ibm.com/software/awdtools/systemarchitect/

125Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

supported within the NFR questionnaire (NFR1) that can
be enriched by textual impact descriptions (NFR2). Domain
requirements (DM1) are described with the help of use cases
and class diagrams. Stakeholder analysis is also supported
by business analysis models (DM2). Principally, reuse of
domain models is achieved by importing existing class
diagrams. However, domain models tend to be application
specific. Established repositories or standardized schemas as
well as semantic mappings are usually not applied.

2) Development Process: RUP provides the disciplines
business modeling, requirements, analysis and design, im-
plementation, test, and deployment that all pass iteratively
the phases inception, elaboration, construction, and transi-
tion. Within the business modeling discipline the system
context is analyzed to capture structure and dynamics of
the organization. Business requirements are captured by use
case and analysis models that structure information about the
organization and the relations to external stakeholders. In the
requirements discipline, functional and non-functional re-
quirements are refined by business use case models to system
use cases and class diagrams. As round-trip engineering and
the usage of component-based architectures are promoted
practices in RUP we consider DP1 and DP2 as supported.
However, the focus of round-trip engineering is on UML
and Java. Components correspond rather to object-oriented
artifacts that tend to be tightly coupled. The recommendation
of components (DP3) based on the requirements analysis is
not explicitly proposed. The decomposition of requirements
(DP4) is partially supported by use cases, documents, and
interactive refinement, because use cases are not intended
for detailed functional decomposition.

3) Model-Driven Development: RUP provides no specific
guidance on how to apply MDD, but offers an appropriate
basis for it [14]. Although, the usually applied UML use
cases provide a graphical notation, the metamodel is limited
(MD1). Many aspects such as linking use cases by pre-
and post-condition relations are not supported [15]. This
leads to the use of text-based templates that do not provide
formal precision, tend to be ambiguous and impede auto-
mated model transformations. Therefore, the transformation
from computation independent model (CIM) to platform
independent model (PIM) is limited (MD3). In general,
the automatic discovery of components based on semantic
knowledge (MD4) is not supported.

4) Tool Support: RSA is one example for the application
of RUP for model-driven and object-oriented development.
Since it provides visual modeling for use cases and do-
main models, we consider TS1 as supported. However, the
tool is intended to be used by requirement engineers and
modeling experts that should be experienced in using UML
(TS3). IBM Rational Requirements Composer5 is proposed
to bring all stakeholders together for eliciting and man-

5http://www-01.ibm.com/software/awdtools/rrc/

aging requirements (TS2). Supported techniques comprise
documents, storyboards, process diagrams, and use cases.
Resulting use cases can be integrated in RSA providing
traceability throughout the development process. However,
detailed formal representations are rarely used and informal
representations such as natural languages are still preferred.

C. Web Engineering Methods

In the past, the Web engineering community pro-
posed several model-driven development methods. Promi-
nent examples are OOHDM [16], OOWS [17], UWE [18],
WSDM [19], and WebML [20]. The main purpose is the
explicit support of Web-specific concerns such as navigation,
presentation and personalization by providing conceptual
models, and the generation of code. Although, the focus
is mainly on the design phase, it is recognized that require-
ments analysis and specification need to be considered [5, 7].

1) Requirements Model: Regarding requirements analysis
and specification usually existing techniques are adopted.
For example, the functional requirements of OOHDM,
UWE, and WebML are represented by use cases whereas
functions (FR1), their sequence (FR2), input and output
(FR3), and their relations (FR4) are mainly defined with the
help of text-based templates. WSDM and OOWS propose
textual templates and task descriptions such as ConcurTask-
Tree (CTT) notation implying a lack of semantic clarity.
Data requirements (DM1) are not explicitly supported by
OOHDM, UWE, and WSDM [7]. Only OOWS uses in-
formation templates and WebML uses a data dictionary
and entity relationship models to support data requirements
explicitly. With the help of use cases or task models, all
methods cover some kind of role specification (DM2). How-
ever, the reuse of existing models (DM3) is limited, because
the development processes start with use cases leading to
new and application-specific domain models.

2) Development Process: Regarding the development
process, all methods apply some kind of requirements,
design and generation phases, whereas round-trip engineer-
ing is not supported (DP1). The design phase is usually
divided into conceptual, navigational, and functional model-
ing. Only OOHDM, its extension OOH4RIA [21], OOWS,
and WebML are partly component-based (DP2) by using
functionality that is provided by Web services. However,
component recommendation is not available in any method
(DP3). Web applications are usually generated with the help
of templates or manually selected components. Further, the
requirements decomposition (DP4) is completely supported
in OOWS by using task trees and otherwise supported by
use cases or textual descriptions.

3) Model-Driven Development: From the model-driven
point of view (MD1–MD2), the specification of application
requirements is not considered adequately in order to en-
able model-based transformations into conceptual models,
because traditional Web engineering methods, except OOWS

126Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

and UWE, do not provide a metamodel for requirements
analysis [7]. Therefore, the automatic transformation to sub-
sequent artifacts is not available. Since there is no consistent
use of components, their discovery (MD3) using semantic
knowledge (MD4) is not supported sufficiently.

4) Tool Support: OOHDM has been supported by Hy-
perDE6, but the development seems to be discontinued
since 2009. In principal, UWE can be used in any tool
supporting UML stereotypes, but there is also the specialized
tool MagicUWE7 available. WebML is supported by Web-
Ratio8 that allows business process modeling, application
modeling, generation, and deployment. OOWS provides a
CASE tool based on the Eclipse platform [7]. There is
no dedicated tool for WSDM available, however CTTE9

can be applied for task modeling. Overall, only WebRatio
and MagicUWE appear to be maintained continuously. Tool
support for managing created models or components (TS2)
is currently not available. Regarding the target user group
(TS3), users need to have knowledge about the associated
requirement and modeling techniques. Therefore, model-
driven Web engineering tools require similar skills as in
traditional methods.

D. Service-Based Engineering

Building applications upon Web services provides simpli-
fication of application development by reducing the need for
specific code. However, the black-box character of services
impedes the prediction of the whole application behavior,
which makes quality handling difficult [9] and leads to de-
pendencies on vendors and less flexibilities in requirements.
Various approaches for service composition at technical data
integration level, e. g., BPEL, have been proposed, whereby
the composition is realized using structured programming
constructs without considering the interaction with users. To
integrate human tasks, BPEL4People has been introduced.
However, the problem of service composition at presentation
layer is still not supported adequately. The most prominent
approaches in this context are ServFace [22], MARIA [23],
Achilleos et al. [24], and Tsai et al. [25].

1) Requirements Model: In general, these approaches do
not support specific requirements modeling (FR1–NFR2),
since their development is achieved by modeling directly on
functional interfaces. They are represented by visual service
front ends, generated dynamically. Only MARIA supports
some kind of RE by task modeling in order to specify
functions (FR1), their sequence (FR2), and input and output
(FR3) including their relations (FR4). Analogous to Web
engineering approaches, service-based engineering does not
support entities and relations (DM1) explicitly. In MARIA,

6http://www.tecweb.inf.puc-rio.br/hyperde/wiki
7http://uwe.pst.ifi.lmu.de/toolMagicUWE.html
8http://www.webratio.com
9http://giove.isti.cnr.it/ctte.html

roles and stakeholders (DM2) can be associated with differ-
ent task trees. Finally, the reuse of existing models (DM3) is
partly supported in MARIA, while in other approaches the
development process starts from the scratch at any time.

2) Development Process: The development process pro-
vides mainly design and generation phases. Round-trip en-
gineering (DP1) is not supported, since the approaches are
based on only one application model or apply sequential
processes, whereby the models involved cannot be synchro-
nized. All approaches are partly component-based due to
the use of Web services. Because in general the UIs are
generated dynamically, only Tsai et al. support UI services
(DP2) and provide recommendation (DP3). Finally, except
MARIA that uses task models, requirements decomposition
(DP4) is not supported since RE is missing at all.

3) Model-Driven Development: Due to the overall lack of
requirements models (MD1), all approaches do not support
the transformation of user requirements into conceptual
models (MD2). Solely MARIA uses CTTs to specify re-
quirements in a first step, which are transformed into con-
ceptual models. Regarding the component discovery (MD3),
all approaches provide Web service repositories to allow a
simple search by keywords. Since the approach of Tsai et al.
is based on UI services, the corresponding registry supports
discovery using semantic knowledge (MD4).

4) Tool Support: Regarding the tool support (TS1) and
target user group (TS2), ServFace offers a visual and Web-
based authoring tool10 mainly for end users. MARIAE11

supports task modeling in the context of MARIA and
is mainly intended for requirements engineers. The other
two approaches also address application developers with
appropriate skills, whereby only the tool of Achilleos et
al. provides visual modeling. The management of artifacts
(TS2) is limited to Web service components and solely in
Tsai et al. UI services may be managed within a repository.

E. Mashup Development Methods

Originally, mashups have been developed by manual,
script-based integration of heterogeneous APIs. Addressing
non-programmers, mashup tools like Yahoo! Pipes and IBM
Mashup Center have emerged to support the visual compo-
sition of technology-independent Web services, APIs, and
UI components. Since these tools do not provide model-
based composition, we consider model-based integration
platforms, providing component and composition models
such as mashArt [26] and CRUISe [27].

1) Requirements Model: In general, there is no explicit
requirements model in mashups available. Usually, the
mashup composer is able to search for components by
keywords or other criteria without being supported explicitly
in expressing requirements. At the level of implementa-
tion, composition models or integration templates can be

10http://www.servface.org/index.php?view=article&id=117
11http://giove.isti.cnr.it/tools/MARIAE/home

127Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

considered as requirements for automated matching pur-
poses. Thus, functional specification is only achieved by
manually selecting suitable mashup components using their
interface descriptions (FR1, FR3). Sequences and workflow-
structuring elements can be modeled using application-
internal communication paradigms (FR2, FR4). However,
this blends into design and implementation activities and
does not produce user requirements directly (FR1–FR4).
Although first mashup-specific quality modeling approaches
exist [28] and prototypically extend mashArt, non-functional
user requirements specification is not supported (NFR1,
NFR2). Data structures (DM1) are predefined and limited
to mashup component interface type definitions. Typically,
a mashup application is made for one specific consumer
role or end user, thus yielding to few variability in roles
(DM2). The tripartite mashup role model applies mashup
component developer, mashup composer, and end user.
In existing mashup approaches, prevalent models, such as
business processes, task models, or domain models cannot
be reused as input for mashup development (DM3), but
would be possible by adding model transformation engines
to provide richer input facilities.

2) Development Process: By adding and rewiring new
mashup components, a composition can be easily extended
or changed, allowing evolutionary development. However,
round-trip engineering is not supported due to single appli-
cation models. The existing approaches are fully component-
based (DP2), whereby in CRUISe and mashArt a recom-
mendation mechanism (DP3) supports the integration of
suitable mashup components. Using flat hierarchies, require-
ments can only be matched to component capabilities or
the application logic provided by composing them. Thus,
requirements decomposition is very limited (DP4).

3) Model-Driven Development: In CRUISe, formalized
domain models are used by semantically enriched mashup
component descriptions [12] (MD1). However, the model-
based requirement specification and derivation of conceptual
models is neglected so far. Different model transformations
(MD2) are available in CRUISe, but there is no transforma-
tion or mapping of user requirements to conceptual models.
Similar approaches are not able to cover them as well.
Discovery (MD4) is supported via a component repository
making use of semantic component descriptions [12]. It
is used for interface query for component implementations
facilitating integration and exchange (MD3).

4) Tool support: Visual composition tooling is currently
not supported in CRUISe, but mashArt provides a user-
scoped mashArt editor [26] (TS1). Beside the management
of mashup components in a repository, included Web-based
resources are managed via URI addressing and may be het-
erogeneously hosted. There is no unified facility of hosting
composite applications (TS2). At least people with medium
modeling skills and knowledge of component communi-
cation paradigms are required throughout all model-based

mashup development approaches without appropriate visual
tooling support (TS3). To this end, model-based mashup
development platforms require advanced modeling skills,
while providing fast application results by selecting pre-
existing mashup components.

IV. DISCUSSION AND RESEARCH CHALLENGES

The results of our evaluation are summarized in Table I,
whereas it is obvious that all mashup approaches do not con-
sider any kind of RE. In fact, the mashup composer is still
constrained to decompose requirements mentally or with the
help of other methods. This impedes component recommen-
dation and composition based on user requirements. Apart
from that, model-driven Web engineering methods propose
several techniques, such as use cases, text templates, and
task trees to document requirements. However, over 30 %
of practitioners state that they do not model requirements at
all [4]. The avoidance of formal representations during the
requirements specification phase emphasizes their opinion,
that the formalization effort does not pan out. Therefore, we
argue that specialized RE for mashups is needed. Based on
this, we identified the following main research challenges to
apply RE to mashups:

1) How can essential mashup-specific requirements be
sufficiently described by formal models? The requirements
for mashups differ from the requirements in other devel-
opment processes, because mashups are built upon compo-
nents at a characteristic level of granularity and incorporate
user interface parameters. In contrast to existing methods
and techniques, semantic clarity needs to be achieved in
order to enable model-driven and recommendation-based
development support. This implies the shift of pragmatic
mashup composition to semantic mashup composition and
the incorporation of ontologies. While quality requirements
are covered in traditional RE methods mainly in textual
form, they are hardly observed in mashup approaches. At
least, many non-functional requirements with great impor-
tance in distributed mashup application scenarios, such as
performance constraints or communication security restric-
tions, can be formalized and measured very well. Therefore,
NFRs should be part of the requirements model, specified
together with violation consequences, making use of formal-
ized model connections. Also, workflow aspects need to be
integrated in such a requirements model to support more
complex scenarios in enterprise mashups.

2) How can a requirements model support the composition
phase? In fact, mashup development is currently reduced
to the design and implementation phase. However, having
appropriate requirements models available, the composi-
tion can be significantly improved by applying MDD and
requirements-based component recommendation. The bene-
fit of MDD for traditional software systems is relatively low,
because the refinement steps are still performed manually. In
contrast, mashups allow for aligning specified requirements

128Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

Table I
REQUIREMENTS ENGINEERING FOR MASHUPS AND RELATED DEVELOPMENT PARADIGMS: EVALUATION RESULTS

RUP OOHDM OOWS UWE WSDM WebML OOH4RIA Servface MARIA Achilleos Tsai CRUISe mashArt

Requirements Model

FR1 Functions Use cases,

Scenarios

Use cases, Text

templates

Task charact.

templates

Functional use

cases

Natural

language, Task

models

Use cases, Text

templates

No No Task models No No No No

FR2 Sequence of

functions

Scenarios,

Activity diagrams

Use cases, Text

templates

Activity

diagrams

Activity

diagrams

Natural

language, Task

models

Activity

diagrams

No No Task models No No No No

FR3 Input and output Scenarios, Use

cases (Pre- and

post-conditions)

Use cases (Pre-

and post-

conditions),

Text templates

Task

characterization

templates

Use cases (Pre-

and post-

conditions)

Natural

language, Task

models

Use cases (Pre-

and post-

conditions)

No No Task models No No No No

FR4 Relation between

output and input

Scenarios,

Activity diagrams

Use cases (Pre-

and post-

conditions),

Text templates

Task

characterization

templates

Use cases (Pre-

and post-

conditions)

Natural

language, Task

models

Use cases (Pre-

and post-

conditions)

No No Task models No No No No

NFR1 Assoc. point model. Questionnaire No No No No No No No No No No No No

NFR2 Operationalization Partly (Textual

impact descr.)

No No No No No No No No No No No No

DM1 Entities and relations UML class

diagram,

Business object

model, Glossary

Information

types

Information

Templates

Not explicitly

(Content

elements)

Not explicitly

(Textual

descriptions)

Data

Dictionairy, Text

Templates

Domain models Not explicitly Partially (No

domain

modelling)

Not explicitly Not explicitly Predefined by

component

interface

Predefined by

component

interface

DM2 Roles and

stakeholders

Use cases,

Scenarios,

Documents

Access

capabilities

Task Descr.,

Interaction

Points

Not explicitly

(Roles in use

cases)

Audience

Modeling and

Classification

User groups No No Collaboration

Tree

No No No No

DM3 Reuse of existing

models

Yes Partly (Design

Patterns)

No No No Partly (BP

models)

Partly (Domain

model)

No Partly (Task

model)

Partly (PML

model)

No No No

Development Process

DP1 Round-trip

engineering

Partly (UML,

Java)

No No No No No No One model No No No One model One model

DP2 Component-based

development

Partly (Object-

oriented)

Partly (Object-

oriented)

Partly (Service

widgets)

No Partly (Service

model)

Partly (By

extension)

Yes Partly (Web

services)

Partly (Web

services)

Partly (Web

services)

Yes Yes Yes

DP3 Component

recommendation

No No No No No No No Partly (UI

widgets)

No No Yes (UI

services)

Yes Yes

DP4 Requirements

decomposition

Partly (Use

cases)

Partly (Use

cases)

Task trees Partly (Use

cases)

Partly (Textual

descriptions)

Partly (Use

cases)

No No Task trees No No No No

Model-Driven Development

MD1 Precise req.

metamodel

Partly (Use

cases)

Partly (Use

cases)

Yes Yes (WebRE) No Partly No No No No No No No

MD2 Mappings and

transformations

Partly

(Guidelines)

No Yes Yes No Partly

(Guidelines)

Yes Yes Yes Yes Yes No No

MD3 Component

discovery

No No No No No No No Web service

repository

Web service

repository

No UI service

repository

Component

repository

Component

repository

MD4 Usage of semantics No No No No No No No No No No UI ontology SMCDL No

Tool Support

TS1 Visual modeling Yes No Yes Yes Partly Yes Yes Yes Yes Yes No No Yes

TS2 Artifact management Yes No No No No No No No No No Yes Components Components

TS3 Target user group RE, ME RE, ME RE RE, ME RE RE, ME ME EU RE, ME ME SD ME EU

with those pre-specified in components. However, since
mashups are usually fast developed for situational needs, fur-
ther development steps need to be robust concerning incon-
sistent and incomplete requirements. Additionally, round-
trip engineering is a necessary prerequisite to make model-
driven application development practicable that is currently
not provided in any Web-based engineering approach.

3) How can the mashup composer be supported in identi-
fying and formalizing his or her needs? In general, mashups
are intended to be created by end users or domain experts.
Therefore, appropriate tools are needed to hide complexity
and to guide mashup composers in expressing their re-
quirements. This implies visual modeling of requirements
and compositions as well as fast application generation. In
fact, tools should provide concrete requirements activities
which blend into the existing design activities, e. g., by
drawing required tasks and dynamic refinement. At the
same time, semantic modeling needs to be supported easily,
incorporating established ontologies. Application generation
and fast prototyping needs to be provided to support users
in reviewing and adjusting their requirements.

V. CONCLUSION

This paper presents an evaluation framework consisting
of several criteria to analyze RE in software development
paradigms, facing relevant aspects of building Web mashups.
To this end, we analyzed prominent approaches in detail
that may be used to develop our target application type. By
applying our criteria, it turned out that each of the develop-
ment approaches provides a distinctive development method,
while none is supported at all in existing mashup platforms.
However, RE is crucial for mashup development as well to
achieve an efficient and requirements-aware development.
To substantiate this, we identified three main research chal-
lenges. We propose the specification of requirements in
formal models to increase reusability, the establishment of
a requirements model to support the composition phase
and finally an adequate visual authoring tool that supports
the mashup composer in identifying and formalizing his or
her needs. Thus, we are convinced that addressing these
challenges will yield to a more efficient, user-friendly, and
quality-aware mashup development process.

129Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

ACKNOWLEDGMENT

The work of Vincent Tietz is funded by the European
Social Fund (ESF), Free State of Saxony and Saxonia Sys-
tems AG (Germany, Dresden), filed under ESF-080939514.
Christian Liebing is funded by the ESF and Free State of
Saxony (Germany), filed under ESF-100088145.

REFERENCES

[1] W. Ketter, M. Banjanin, R. Guikers, and A. Kayser, “Intro-
ducing an agile method for enterprise mash-up component
development,” in IEEE Conf. on Commerce and Enterprise
Computing, Jul. 2009, pp. 293–300.

[2] V. Tietz, S. Pietschmann, G. Blichmann, K. Meißner,
A. Casall, and B. Grams, “Towards task-based development
of enterprise mashups,” in Proc. of the 13th Intl. Conf.
on Information Integration and Web-based Applications &
Services, Dec. 2011.

[3] B. Nuseibeh and S. Easterbrook, “Requirements engineering:
a roadmap,” in Proc. of the Conf. on The Future of Software
Engineering, ser. ICSE ’00, 2000, pp. 35–46.

[4] C. Neill and P. Laplante, “Requirements engineering: the state
of the practice,” Software, IEEE, vol. 20, no. 6, pp. 40–45,
Nov.–Dec. 2003.

[5] J. Escalona and N. Koch, “Requirements engineering for
web applications – a comparative study,” Journal of Web
Engineering, vol. 2, no. 3, pp. 193–212, 2004.

[6] B. Selic, “The pragmatics of model-driven development,”
IEEE Softw., vol. 20, no. 5, pp. 19–25, 2003.

[7] P. Valderas and V. Pelechano, “A survey of requirements spec-
ification in model-driven development of web applications,”
ACM Trans. on the Web, vol. 5, no. 2, pp. 1–51, May 2011.

[8] M. Kassab, O. Ormandjieva, and M. Daneva, A Metamodel
for Tracing Non-functional Requirements. IEEE Computer
Society, Apr. 2009, vol. 7, pp. 687–694.

[9] G. Kotonya, J. Hutchinson, and B. Bloin, Service-oriented
software system engineering: challenges and practices. Idea
Group, 2005, ch. A Method for Formulating and Architecting
Component and Service-oriented Systems, pp. 155–181.

[10] V. Tietz, G. Blichmann, S. Pietschmann, and K. Meißner,
“Task-based recommendation of mashup components,” in
Proc. of the 3rd International Workshop on Lightweight
Integration on the Web. Springer, Jun. 2011.

[11] S. Pietschmann, “A model-driven development process and
runtime platform for adaptive composite web applications,”
International Journal On Advances in Internet Technology,
vol. 4, 2010.

[12] S. Pietschmann, C. Radeck, and K. Meißner, “Semantics-
based discovery, selection and mediation for presentation-
oriented mashups,” in Proc. of the 5th International Workshop
on Web APIs and Service Mashups, 2011.

[13] P. Kruchten, The rational unified process: An introduction.
Pearson Education Limited, 2004.

[14] A. Brown and J. Conallen, “An introduction to model-driven
architecture (Part III): How MDA affects the iterative develop-
ment process,” http://www.ibm.com/developerworks/rational/
library/may05/brown/, 2005.

[15] G. Génova, J. Llorens, P. Metz, R. Prieto-Dı́az, and H. As-
tudillo, “Open issues in industrial use case modeling,” in UML
Modeling Languages and Applications, ser. Lecture Notes in
Computer Science. Springer, 2005, vol. 3297, pp. 52–61.

[16] D. Schwabe, G. Rossi, and S. D. J. Barbosa, “Systematic
hypermedia application design with OOHDM,” in Proc. of the
7th ACM Conf. on Hypertext, ser. HYPERTEXT ’96. New
York, NY, USA: ACM, 1996, pp. 116–128.

[17] J. Fons, V. Pelechano, M. Albert, and Óscar Pastor, “Devel-
opment of web applications from web enhanced conceptual
schemas,” in Conceptual Modeling – ER 2003, ser. Lecture
Notes in Computer Science, vol. 2813, 2003, pp. 232–245.

[18] A. Kraus, A. Knapp, and N. Koch, “Model-driven generation
of web applications in UWE,” in Proc. of 3rd Intl. Workshop
on Model-Driven Web Engineering, 2007.

[19] O. Troyer and C. J. Leune, “WSDM: a user centered design
method for web sites,” in Proc. of the 7th Intl. WWW Conf.,
1998, pp. 85–94.

[20] S. Ceri, P. Fraternali, and A. Bongio, “Web modeling lan-
guage (WebML): a modeling language for designing web
sites,” Comput. Netw., vol. 33, pp. 137–157, June 2000.

[21] S. Melia, J. Gomez, S. Perez, and O. Diaz, “A model-driven
development for GWT-based rich internet applications with
ooh4ria,” in Intl. Conf. on Web Eng., 2008, pp. 13–23.

[22] M. Feldmann, T. Nestler, K. Muthmann, U. Jugel, G. Hübsch,
and A. Schill, “Overview of an end-user enabled model-driven
development approach for interactive applications based on
annotated services,” Proc. of the 4th Workshop on Emerging
Web Services Technology, pp. 19–28, 2009.

[23] F. Paternò, C. Santoro, and L. D. Spano, “Exploiting web
service annotations in model-based user interface develop-
ment,” in Proceedings of the 2nd ACM SIGCHI symposium
on Engineering interactive computing systems, ser. EICS ’10.
New York, NY, USA: ACM, 2010, pp. 219–224.

[24] A. Achilleos, G. M. Kapitsaki, and G. A. Papadopoulos,
“A Model-Driven Framework for Developing Web Service
Oriented Applications,” in ICWE’11, 2011.

[25] W.-T. Tsai, Q. Huang, J. Elston, and Y. Chen, “Service-
Oriented User Interface Modeling and Composition,” IEEE
Intl. Conf. on e-Business Engineering, pp. 21–28, 2008.

[26] F. Daniel, F. Casati, B. Benatallah, and M.-C. Shan, “Hosted
universal composition: Models, languages and infrastructure
in mashart,” in Conceptual Modeling – ER 2009. Springer,
2009, vol. 5829, pp. 428–443.

[27] S. Pietschmann, V. Tietz, J. Reimann, C. Liebing, M. Pohle,
and K. Meißner, “A metamodel for context-aware component-
based mashup applications,” in Proc. of the 12th Intl. Conf. on
Information Integration and Web-based Applications, 2010.

[28] M. Picozzi, M. Rodolfi, C. Cappiello, and M. Matera,
“Quality-based Recommendations for Mashup Composition,”
in Proc. of the ComposableWeb Workshop, 2010.

130Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

