
A Generic Testing Framework for the Internet of Services

Senol Arikan, Aneta Kabzeva, Joachim Götze, Paul Müller

ICSY - Integrated Communication Systems

TU Kaiserslautern

Germany

{arikan, kabzeva, j_goetze, pmueller}@informatik.uni-kl.de

Abstract— A widespread approach of the design and

development of heterogeneous distributed software systems is

the use of an interacting group of services. This approach uses

the concepts of Service-oriented architectures to realize a

dynamic adaptive communication system among service

provider, service consumer and service broker. Today, the

Internet, as the largest heterogeneous distributed software

system, uses the ideas of service orientation more and more,

thus it is extended to the Internet of Services. In the Internet of

Services, autonomous services can be deployed by different

service providers on service platforms; thereby they are

available via the Internet for a large number of service

consumers. Service providers can change their service

implementation at any time without notifying the service’s

consumers; therefore, no guarantees can be made about the

adherence of these services to the specification the consumers

expect. In order to ensure the compliance of the services to

their specifications and provide a certain level of quality

assurance for service consumers and platform providers, a

service platform needs to provide comprehensive testing

mechanisms which support the quality needs of all actors on

the platform. In this paper, we propose a generic testing

framework which can be used during design and run-time for

the automated verification of distributed services.

Keywords- SOA; Internet of Service; run-time testing; black-

box testing; verification

I. INTRODUCTION

The quality of large software systems is one of the most

important goals of software development. Balzert [8]

defines software quality as the sum of the following

characteristics: functionality, usability, reliability,

performance, maintainability. All these characteristics

define the degree to which a software product fulfills its

functional and non-functional requirements.

One fundamental prerequisite for software quality is the

software’s robustness to possible faults. This can, for

example, be achieved through early identification and

correction of failures [12]. In general, a failure in a system

means that a wanted behavior is not achievable (i.e., a

behavior which does not conform to the requirements has

occurred. In order to detect such a system behavior,

different testing strategies can be performed. A fundamental

classification divides testing strategies into black-box and

white-box testing.

The complexity of software testing reaches a new level

with the need to test heterogeneous distributed software

systems. A widespread approach for the design and

development of heterogeneous distributed software systems

is the use of an interacting group of services. This concept is

based on the architectural principle “separation of

concerns”, which focuses on one simple, well-known idea: a

large problem is more effectively solved if it can be broken

down into a set of smaller problems [11]. Service-oriented

architectures (SOAs) solve complex concerns using service

orientation. It is important to have loosely coupled services

so that failures or changes in one service do not cause

failures in other services. Service-oriented architectures

realize a dynamic-adaptive communication system among

service providers, service consumers, and service brokers.

In the Internet of Services (IoS) [9], loosely coupled,

reusable, autonomous services can be deployed by different

service providers on service platforms. These services are

distributed by the platform provider and, as such, are

reachable over the Internet by a huge number of service

consumers. Since services are offered by different service

providers, no guarantees can be made about the functional

adherence of these services’ implementations to their

previously defined specifications. Providers can change

their service implementations and introduce new bugs at any

time without notifying the service consumers [14].

Additionally, platform providers cannot be sure about the

performance of their services. In order to test the services’

compliance to their specifications and provide a certain

level of quality assurance for service consumers and

platform providers, service platforms need to provide

comprehensive testing mechanisms which support the

quality needs of all actors on the platform.

Unfortunately, platform providers typically do not have

access to the services’ source code as a standard service

design principle, abstraction, is that no information about

the internal realization of a service has to be published for

other actors of the distributed system. Hence, the

implementation of a service is unknown for a service

consumer and platform provider. This fundamental

characteristic along with the need for service providers and

platform providers to ensure the quality of their services

forces service testing to focus on black-box testing

approaches in the Internet of Services. The service tester,

59Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

independent of his role on the platform, should be able to

invoke a service with a specific test case to check the

response of the service. If the service output doesn’t

conform to the expected value, then the service does not

meet the expected quality for that test case.

To ensure the conformity of a service implementation

with its service specification during its complete lifetime, a

service must be tested not only during development but also

at run-time. We propose a generic testing framework which

can be used for the automated verification of services during

their complete life cycle. The proposed solution is based on

black-box testing. An evaluation of the concept is provided

by a prototype implementation of the framework in an

existing SOA-based infrastructure. The framework takes as

input user-defined valid test cases and generates test clients,

which are executed to try out the desired service

functionalities for suitable parameters. Analysis of the test

results and notification of affected actors are also important

requirements to address the challenges of a testing

framework for the Internet of Services.

In order to address the quality requirements of all

relevant stakeholders at any time in the service lifetime, the

framework supports stress tests, scalability tests and parallel

tests. To be able to support the testing of the potentially

large number of resources offered on a service platform and

the dynamic number of testing requests coming from

consumers, the proposed solution considers asynchronous

and synchronous communication models.

The paper is structured as follows. In the next section, we

present some related work. In Section III, we explain the

basics needed for understanding the work. Section IV

describes the challenges for testing in the context of Internet

of Services in more detail. Section V presents the

architecture of the testing framework proposed as a solution

addressing these challenges followed by an implementation

approach. Section VI concludes the paper and discusses

identified future work.

II. RELATED WORK

In this section, we give an overview regarding the

different solution proposals from other researchers for

testing service-based distributed systems. The approach of

Looker, Munro and Xu [1] concentrates on measurement

techniques to test the robustness of Web services using

network level fault injection to manipulate the expected

parameters of a service at run-time. This approach has the

disadvantage of requiring the service’s source code in order

to make required modifications. A service tester who does

not have access to the service’s implementation cannot use

this approach to test a service. Our framework uses a black-

box technique, thus it enables testing of a service for each

stakeholder involved in the life cycle of a service. Frantzen,

Tretmans, and Vries [2] apply a model-based testing

technique to experiment with a Web service, which aims at

either finding faults or gaining confidence in the service.

Model-based techniques have been developed for reactive

systems. In order to apply techniques for MBT (Model-

Based Testing) of reactive systems in SOA-based systems,

some additional requirements must be satisfied. These

additional requirements can increase the complexity of the

realization of the proposed approach.

Most of the solutions for testing of service-based distributed

software systems have experimented with SOAP-RPC based

Web Services. Chakrabarti and Kumar [3] have developed a

black-box approach for testing RESTful Web Services

which uses a test specification language for better

automation in test execution. This approach is limited to

testing RESTfull services.
To the best of our knowledge, the only works which

address issues close to ours are [4] and [5]. Martin, Basu,
Xie [4] presents a unit testing framework for Web services
based on JUnit. This framework uses the test generation tool
JCrasher in order to generate corresponding JUnit tests. WS-
TAXI [5] is a WSDL-based testing tool for Web Services,
which is obtained by soapUI [6], an industrial testing tool,
and TAXI [7], which automatically generates XML-based
test cases from a corresponding XML schema. This
framework is based on the idea of automatic generation of
SOAP envelopes by using data instances from WSDL
descriptions, which are used for service invocation. Our
framework does not use any external tools for the generation
of test cases. With only minimal amount of input data, which
are given by service testers in XML-format, and with use of
WSDL descriptions, the test clients will be automatically
generated and executed at run time. We concentrate on the
quality of the testing process and developing an efficient and
dependable framework, which is highly performant and
supports service testers during the whole testing process.
Finally, the testers will be notified about analyzed test
results. In next section, we go into details and present some
basic terms and strategies for testing.

III. TESTING BASICS

In this section we will first define some of the terms that

are commonly used when discussing testing. Then we will

discuss the details of the two basic testing approaches -

white-box and black-box testing, which were mentioned

above.

A. Error, Fault, and Failure

There is considerable confusion regarding definitions of

error, fault, and failure in the literature. We use the

definitions from Jalote for these terms [14]. The term error

is used to refer to any activity of a programmer which

results in software containing a defect or fault. A fault is a

condition that causes a system to fail in performing its

required function. A failure is the inability of a system or

component to perform a required function according to its

specification.

B. Validation and Verification

In general, there are two important evaluation methods

to check software against its specification: verification and

60Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

validation. As defined by the IEEE [16], verification is a

process of evaluating a system or component to determine

whether the products of a given development phase satisfy

the conditions imposed at the start of that phase; validation

is the process of evaluating a system or component during

or at the end of the development process to determine

whether it satisfies specified requirements. Using these

definitions, validation is a process to demonstrate that the

software implements each of the functional requirements

correctly and completely; verification is the process to

ensure the software product of a given phase fully

implements the inputs to that phase. The framework

proposed in this work can be used in any service life cycle

stage and therefore supports both the verification and

validation of services.

C. Software testing approaches

Software testing approaches traditionally divide into

black-box and white-box testing.

White-box testing approaches consider the internal data

flow and logic of the system under test. This approach is

also known as glass-box testing or structural testing. The

internal working of the software is visible for the tester.

Because the implementation of the software product is

known, white-box-testing enables a tester to design test

cases that exercise the independent paths within a module or

unit, check logical decisions on both their true and false

side, execute loops at their boundaries and test the

validation of the internal data structure [13]. White-box

testing gives a tester a certain amount of control during the

testing process. If a fault is detected, the tester knows which

lines of code to look at based on the corresponding test case.

Because of this control, defining and removing faults in the

tested object is more economical and successful than with

other testing approaches. The internal data and logic flow of

a service is known only to the service developer in the

context of Internet of Services. A service provider is not

necessarily a service developer and therefore will have no

knowledge of the details needed for specifying white-box

test cases. This is also the case for consumers of these

services.

Black-box testing approaches, also called behavioral

testing, consider the tested system as a whole and ignore

internal structure details. In contrast to white-box testing,

black-box testing is usually used when the implementation

of the software is not known to the tester. Black-box testing

uses the functional requirements and specifications of the

software to define test cases that should fully exercise all the

functional requirements [14]. These resources are available

for platform actors in IoS: each service has to provide a

specification of its functionality which an interested actor

can use to define a desirable test case. After generation of

the test cases from a specification, some valid and invalid

input data are provided for test execution, and then the

testing method calls the corresponding software to verify

whether the test results are compatible with the expected

outputs. Black-box testing terminates when all test cases are

executed. According to Pressman [13], black-box testing

techniques are applied to find errors in the following

categories: incorrect or missing functions, interface errors,

errors in data structures or external database access,

behavior or performance errors, and initialization and

termination errors. An important disadvantage of black-box

testing is that it does not help in finding the reason of the

failure. Testing the code (implementation) quality is not

possible.

Another well known problem of black-box testing is the

selection of test cases. In order to deal with this problem,

some black-box strategies were defined; they differ

according to test case selection criteria [12]. The first

strategy is Equivalence Class Partitioning. The idea behind

this strategy is to reduce the complexity of selecting test

cases by dividing the set of all possible inputs for a function

into a set of equivalence classes so that if any test in an

equivalence class succeeds, then every test in that class will

succeed [14]. Experience shows that faults often occur on

the boundaries of equivalent classes [12]. Boundary Value

Analysis is based on the experiences gained through

Equivalence Class Partitioning and selects test cases which

lie on the boundaries of equivalence classes. The goal is to

reach a maximal number of tests with as few test cases as

possible. Thus the complexity of the testing process can be

reduced. Another strategy for black-box testing is Cause-

Effect Graphing [14]. This strategy attempts to combine

inputs from different input classes through the use of the

Boolean operators “and”, “or”, and “not” in order to

exercise some special test cases. The disadvantage of this

approach is that it can result in a large number of test cases,

many of which will not be useful for detecting new faults.

The prototype implementation of the proposed testing

framework uses a randomized algorithm which gets random

service relevant test cases from a database and executes

them. As part of our future work we will specify algorithms

based on the Boundary Value Analysis strategy.

In conclusion, black-box testing is not an alternative to

white-box techniques. It can be considered as a

complementary approach that returns a different class of

errors than white-box testing [13]. It means we can also

combine both strategies to test a software system, if the

corresponding requirements (i.e., availability of source

code) can be met.

IV. INTERNET OF SERVICES

In this section we will first introduce concept Internet of

Services and then we will define some challenges which

should be considered by the testing framework.

A. Introduction

With the adoption of the SOA paradigm for the design

of distributed business processes [11] and the introduction

of Cloud infrastructures that allow on-demand delivery of

IT resources [21], the offering, discovery, and usage of

61Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

technical services over the Internet is not a vision anymore,

but a fact. Considering services as tradable goods over the

Internet is the main concern of the Internet of Services

community [9]. Yet, the opportunity to offer services

reachable by a wide range of potential customers on

platforms provided by third parties gives rise to some new

roles. Each of these roles has its own requirements for the

quality of service provided by the services offered on such a

platform. Thus, a generic testing framework, used as a

major quality control mechanism, should be able to address

some of the new role-specific requirements.

Besides the typical software engineering roles of

provider and consumer, the SOA paradigm introduces the

role of a service broker, which serves as an intermediary

between the provider and consumer [11]. In the Internet of

Services, the three classical SOA roles are considered

insufficient [18][19]. Additionally, the platform provider

and service developer roles have to be considered.

In the Internet of Services, the service broker role is

taken by the platform controlling the life-cycle of the

services it offers [18]. A platform does not only manage a

catalogue of offered services and their descriptions, but has

also takes care of platform-wide security and quality

standards. Stakeholders carrying these responsibilities in the

Internet of Services are referred to as platform providers.

The platform provider is responsible for providing

qualitative infrastructure whose customers are the service

providers.

Compared to traditional mainframe applications where

the operating organization is normally also the supplier of

the software, the Internet of Services makes a distinction

between service developer and service provider [19].

Nevertheless, these two roles are not mutually exclusive. A

service developer concentrates only on writing the

executable code behind a service. This is the only role that

has knowledge of the internal logic and data flow within the

code. The rest of the stakeholders only have access to the

service through its interface description. A service

developer has to guarantee the quality of the code only

against the service provider. Service providers are

responsible for the deployment of services on a platform and

the specification of service level agreements (SLAs) [22].

They provide services that offer some value to the service

consumers and use the resources of the platform to

communicate with their customers. A service provider is

accountable for granting the quality of service specified in

the SLAs and for compensations in case of violations.

The service consumer uses the platform to find one or

more services which can fulfill his needs. The product

which is of interest for the service consumer is the real-

world effect provided by the functionality of a service. Once

a suitable service is identified, a contract has to be

negotiated between the consumer and the provider of the

service [20]. Since a selected service will probably be

integrated in the consumer’s operational environment, the

consumer has to be given the possibility to test if the service

quality still fits the requirements of his own environment at

any time.

In addition to the extended number of roles in the

Internet of Services, the dynamic organization of service-

based distributed systems also introduces some challenges

to the execution of tests in such an environment. The

changing number of stakeholders acting on a Cloud

platform may lead to a large number of test cases that

should be covered by the platform testing framework. Since

some of the stakeholder roles, like the service developer and

the service provider, are interested in design-time tests, and

all roles have to be able to check the compliance of the

resources to the negotiated contracts at any time, tests

should be executable at both design and run time. Some test

cases would be executable on demand (i.e., after changes or

failure corrections). Others, like tests checking the

compliance with SLA terms, should be executable on a

regular basis. When quality violations are discovered in the

testing process, the testing framework should be able to

send the right information to all affected stakeholders;

which requires the integration of a notification mechanism

within the framework.

In the following section, we present a list of challenges

for testing SOA-based distributed software systems from an

IoS perspective.

B. List of challenges

Considering the relationships, responsibilities, and

organization of a service platform in an IoS environment,

we identified the following challenges that should be

addressed by a testing framework:

 Large number of test cases: the number of
stakeholders interacting on the platform is variable.
Any number of users can join the platform; any
number of services can be deployed on the platform.
As a consequence, the platform must be able to
provide for the execution of the continuously
growing number of test cases by making scaling the
framework a core part of the implementation.

 Lack of knowledge on service structure: for all
stakeholders except for service developers, services
are only known through their interfaces, the service
implementation and structure are intentionally
hidden. This makes white-box testing impossible and
forces black-box testing.

 Service life-cycle: once deployed a service should be
always available and cannot be taken offline for
maintenance. Thus it is important to provide testing
support during service development as well as
during service run-time.

 Different responsibilities: depending on their role on
the platform, different stakeholders have different
responsibilities, as explained in the previous section.
A testing framework for the Internet of Services
should be able to support different kinds of testing in
order to cover all role-specific needs.

62Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

 Different requirements: different stakeholders have
different perspectives on the platform, requiring
support for a variety of use cases. On-demand testing
and periodic testing should be supported in order to
address the different needs of the service tester for
the separate test cases.

 Large amount of data: the execution of a large
number of test cases will produce a large quantity of
data. The platform must be able to provide storage
and analysis for a large quantity of test results.

 Lack of trust: access to testing data and results is a
trust issues in the open environment of the Internet
of Services. Stakeholders should be granted proper
handling of the data they provide for testing
purposes. Security mechanisms regulating the access
to this data should be assured.

 Lack of evolution control: a service provider can
change the functionalities of a running service at any
time. This can result in an unexpected change for
some of its users. In order to prevent this situation,
service users affected by a change must be informed
about service modifications.

 Dynamicity: the dynamic character of SOAs enables
new services to be deployed on the platform,
existing services to change, or removal of unused or
defective services from the platform. The framework
must automatically perform acceptance testing [8]
on deployment of new services to ensure the quality
of the resources offered on the platform. Regression
tests [12] must be executed on every change of
existing services to ensure compliance with existing
SLAs and contract terms. Deactivation of test cases
for deleted services should also happen
automatically in order to prevent unnecessary
resources usage.

V. SOLUTION ARCHITECTURE

The proposed testing framework enables Web service

developers and other stakeholders to automatically and fully

test services during development and run time. If an error

occurs during the actual service execution (e.g., a service

cannot be reached, or its output does not correspond to

expected values) all participants of the testing process will

be notified about this error.

For the usage of the testing framework two use-cases can

be defined. A service developer can use the framework to

check the functionalities of a service during development

time. The framework also can be used to test the services at

run-time. This use case scenario is useful especially for

platform providers and service consumers. A monitoring

service can navigate the testing framework to execute test

cases on the basis of a predefined test schedule. Services can

be tested on-demand or periodically.

The architecture of the framework is shown in Figure 1.

The framework is composed of several components -

TestManager, TestCaseValidator, DataGenerator,

TestGenerator, a database, and a repository for test

resources – which, in combination, execute the framework

functionalities. It uses also the Notification Service of the

Venice Framework [10] to keep all participants informed of

test results.

A. Testing life-cycle

The framework supports all four phases of the defined

testing life-cycle: test specification, test organization, test

execution, test analysis. In the following, we describe

functionalities of the framework components on the basis of

these life-cycle phases.

1) Test specification

In order to execute a functional test, the testing

framework needs some input data. This information should

be defined by a service developer in XML. Our framework

offers a XML schema to support the tester during the

description of the test cases.

Figure 1. Architectural Layout of the Venice Testing Framework.

63Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

Figure 2 presents the test case XML schema. A test case

must have a unique name (caseID). The corresponding test

case will be stored in the database with this name. Further

important information in test cases are the Domain

Information Service (dis) and port type (portType) fields.

The dis provides meta-data for the service domain and

enables service interaction in the Venice environment [10].

The portType defines an abstract name for a set of

operations and messages. A test case has to define which

operations will be tested along with its input and expected

output. Each operation can also have a fault element, which

should demonstrate a service call for an invalid input.

The framework offers operations to add test cases into a

database, to get them and to delete them. Before storing into

the database, the test cases have to be checked for their

validity by the component TestCaseValidator (see Figure 1).

Only valid test cases will be used.

2) Test organization

Different options for testing are offered to the tester. The

tester can test all the functionalities of a service, meaning

that all the port types implemented by the service will be

tested. Platform providers can use this operation before the

deployment of the new service on the platform for

acceptance testing. Service consumer can test the entire

functionality of a service through this operation.

The tester can also test all the services which implement a

certain port type. This operation is useful for a platform

provider to perform automated tests for the complete

platform. This also allows service consumers and platform

provider to run performance tests or stress tests. Another

useful operation is for creating a new test, which a service

consumer can use to define a test case and then execute it.

3) Test execution

After a successfully validation of a test case against the

test case schema (passing a syntax check), the test case will

be parsed by the DataGenerator component of the

framework, which also uses the WSDL description of the

service to get more data. All test data (from the test case and

the corresponding WSDL) will be encapsulated in a

TestCase object and sent to the TestGenerator. The

TestGenerator generates and compile a JUnit-based Java

test. The resources are stored in a repository, which is

created at the beginning of the testing process and deleted at

the end of the testing process. After compilation, the newly

generated test case will be executed.

4) Test analysis

If an exception is captured during the execution of the

tests, this will be stored in a TestResult object. All test

results will be written into the TestResults database (see

Figure 3). These test results can be retrieved with the

getTestResult operation of the Testing Service.

Figure 3. An example to present the testing results for Add-

Service.

Figure 2. XML-Schema to define test cases.

64Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

B. Implementation Prototype

We implemented a prototype of the testing framework

for the Venice (see Figure 4) platform. Venice is a SOA-

based framework for building secure and dependable

distributed applications; it supports service developers

during developing, deployment, maintenance, and usage of

Web services. Different service providers can use the

Venice infrastructure to offer their services for service

consumers. Figure 4 shows how the testing framework is

used in the Venice environment. In order to use the testing

framework, the tester first needs to initialize the Service

Abstraction Layer (SAL) of Venice. The SAL accesses to

additional functionalities like authentication and

authorization, which are provided by the Venice Single

Sign-On Service (SSO Service). To use the testing service,

service consumers have to authenticate one time to the

SSOService, which returns a service token (ST). The ST

contains the authorization information that allows the user

to prove his identity and to prove his right to access the

testing service. All necessary operation invocations are

made transparently for the service consumer. The next step

is calling the desired operation of the testing service. After

the testing process is finished, the tested service returns a

unique uuid, which is used to request test results from the

database. Service consumers will be informed of the test

results through the notification service provided by Venice.

Finally, test results are fetched from the database.

The testing framework is implemented in Java and uses

the JUnit libraries. Figure 5 shows the implemented classes

of the framework and their relationships.

The Testing class uses the InputGenerator to get input

data as a TestCase object. The InputGenerator uses

DOMParser to parse a test case, which was created by

service developer in XML. The DOMParser class reads

XML files and generates the corresponding input, output

and fault objects, which will be added to a TestCase object.

A TestCase object will be given back to the Testing class. It

uses the WriteUniTest class to generate java test classes.

These will be compiled, and then executed by MyTestSuite.

Figure 4. Use case diagram to demonstrate using of the Testing Service

Figure 5. Static structure of the Testing Framework.

65Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

Test results will be added to a MyTestResult object and

stored in the database. The clients will be notified through

Venice’s notification system. To perform incoming tasks

more efficiently, we implemented a thread pool. Tests are

temporarily stored in the IncomingRequests queue and are

executed by worker threads in the thread pool.

VI. CONCLUSION AND FUTURE WORK

In order to meet new quality requirements in software

development, software testing has been researched for

several years. With the application of SOA as a concept for

development of distributed services on the internet –Internet

of Services - new challenges for testing infrastructures were

defined. In order to satisfy these challenges, we designed

and implemented a generic testing framework. Our

proposed framework is based on black-box testing and

supports the whole testing life-cycle; from generation and

checking of the test cases to compiling and execution of test

cases.

This paper presented a generic testing solution and its

prototype implementation for testing of IoS service

platforms. In future, the functionality of the framework will

be extended; we plan to enable the test result analysis and

present statistics for executed test cases. Furthermore, in

order to provide better performance and scalability, an

asynchronous communication pattern will be implemented

and integrated into the prototype. A graphical user interface

is planned in order to increase usability.

VII. ACKNOWLEDGEMENTS

This work was funded by the German Ministry for

Education and Research (BMBF project “iGreen”

01IA08005G). The authors are responsible for the content.

REFERENCES

[1] N. Looker, M. Munro, and J. Xu, “ Testing Web Services,”

the 16th IFIP International Conference On Testing of
Communicationg Systems, Oxford, 2004, unpublished.

[2] L. Frantzen, J. Tretmans, and R. Vries, “Towards Model-
Based Testing of Web Services,” Inter. Workshop on WS. -
Modeling and Testing (WS-MaTe2006), Palermo, 2006, pp.
67-82.

[3] S. K. Chakrabarti, and P. Kumar, “Test-the-Rest: An
Approach to Testing RESTful Web-Services,” IEEE
COMPUTATIONWORLD’09, Athens, 2009, pp. 302 – 308.

[4] E. Martin, S. Basu, and T. Xie, “Automated Robustness
Testing of Web Services,” Proceedings of the 4th International
Workshop on SOA and Web Services Best Practices, Oct. 23,
Portland, Oregon, USA., 2006, pp. 114-129.

[5] C. Bartolini, A. Bertolino, and E. Marchetti, “WS-TAXI: a
WSDL-based testing tool for Web Services,” icst,
International Conference on Software Testing Verification
and Validation, Colorado, 2009, pp. 326-335.

[6] soapUI, http://www.soapui.org, April 2012

[7] A. Bertolino, J. Gao, and E. Marchetti, “Automatic test data
generation for XML Schema based partition testing, ” IEEE
Automation of Software Test, Minneapolis, 2007, pp. 4-11.

[8] H. Balzert, Lehrbuch der Software-Technik, Spektrum Akad.
Verl., 1998, pp. 257.

[9] TEXO, Business Webs in the Internet of the Services, url:

http://www.internet-of-services.com/index.php?id=276&L=0
, April 2012

[10] The Venice Service Grid, url: http://www.v-
grid.info/html/pdf/The%20Venice%20Service%20Grid.pdf,
April 2012

[11] T. Erl, Service-Oriented Architecture, Concept, Technology,
and Design, Prentice Hall PTR, March 2009, pp. 290-291

[12] P. Liggesmeyer, Software Qualität – Testen, Analysieren und
Verifizieren von Software, Spektrum Akad. Verl., Heidelberg,
2002.

[13] R. Pressman, Software Engineering: A Practitioner’s
Approach, McGraw Hill, Boston, 2001.

[14] P. Jalote, An Integrated Approach to Software Engineering,
Springer Verl., 1997.

[15] S. Arikan, M. Hillenbrand, and P. Müller, “A Runtime
Testing Framework for Web Services”, 36th EUROMICRO
Conference on Software Engineering and Advanced
Applications (SEAA’10), Lille, France, 2010.

[16] IEEE Standard Glossary of Software Engineering
Terminology, IEEE std 610.12-1990, September 1990, url:
http://web.ecs.baylor.edu/faculty/grabow/Fall2011/csi3374/se
cure/Standards/IEEE610.12.pdf, April 2012

[17] C. Haubelt, J. Teich, Digitale Harware/Software-Systeme -
Spezifikation und Verifikation, Springer Verl., 2010, pp.95-
111.

[18] A. Kabzeva, M. Hillenbrand, P. Müller, and R. Steinmetz,
“Towards an Architecture for the Internet of Services”, 35th
EUROMICRO Conference on Software Engineering and
Advanced Applications (SEAA’09), Patras, Greece, 2009.

[19] C. Janiesch, R. Ruggaber, and Y. Sure, “Eine Infrastruktur für
das Internet der Dienste”, HMD - Praxis der
Wirtschaftsinformatik, 45(261):71–79, June 2008.

[20] J. Spillner, M. Winkler, S. Reichert, J. Cardoso, and A.
Schill., “Distributed Contracting and Monitoring in the
Internet of Services”, Ninth IFIP WG 6.1 International
Conference on Distributed Applications and Interoperable
Systems (DAIS 2009), vol. 5523 of Lecture Notes in
Computer Science, pp. 129–142. Springer-Verlag, Berlin
Heidelberg,2009.

[21] B. Sosinsky, Cloud Computing Bible, Wiley Publishing, Inc.,
2011.

[22] OASIS, SOA-EERP Business Service Level Agreement
Version 1.0, Commetee Draft 03, January 2010, url:
http://docs.oasis-open.org/soa-eerp/sla/v1.0/SOA-EERP-
BSLA-spec-cd03.pdf, April 2012

66Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

http://www.soapui.org/
http://www.internet-of-services.com/index.php?id=276&L=0
http://www.v-grid.info/html/pdf/The%20Venice%20Service%20Grid.pdf
http://www.v-grid.info/html/pdf/The%20Venice%20Service%20Grid.pdf
http://web.ecs.baylor.edu/faculty/grabow/Fall2011/csi3374/secure/Standards/IEEE610.12.pdf
http://web.ecs.baylor.edu/faculty/grabow/Fall2011/csi3374/secure/Standards/IEEE610.12.pdf
http://docs.oasis-open.org/soa-eerp/sla/v1.0/SOA-EERP-BSLA-spec-cd03.pdf
http://docs.oasis-open.org/soa-eerp/sla/v1.0/SOA-EERP-BSLA-spec-cd03.pdf

