
JASMIN: A Visual Framework for Managing Applications in Service-oriented Grid

Systems

Hayat Bendoukha, Abdelkader Benyettou

Department of Computer Science,

University USTO-MB Oran, Algeria

bendoukhyat,aek_benyettou@univ-usto.dz

Yahya Slimani
Department of Computer Science,

University of Tunis El Manar, Tunisia

yahya.slimani@fst.rnu.tn

Abstract— Both scientific and industrial applications are

becoming more and more complex and need important

computing and storage resources to be executed in an accepted

time. Workflows associated to service-oriented grids allow to

users the specification and the management of their most

demanding and interdependent applications. In this paper, we

propose a user-friendly framework JASMIN based on a

refinement of UML to specify workflow models and on BPEL

to generate and compose web and grid services.

Keywords- Grid computing; Workflow; UML; BPEL; Service

composition.

I. INTRODUCTION

Grids are able to aggregate a very big number of
distributed and dispersed storage and computing nodes. They
support huge databases and execute very demanding
applications [1]. However, the most requiring applications in
terms of storage and/or computing resources are, in the same
time, composed of a set of sub-processes which are
interdependent, share the same workspace and have to
respect a particular execution scheme to achieve one same
objective. Thus, new environments must be able not only to
provide all needed resources but also specify, in an efficient
way, the internal complexity of users’ applications.

As service-oriented technology gains in popularity [2], it
is normal that researchers try to design large scale solutions
that incorporate web services. Current grids are mainly based
on service-oriented architectures developed using grid
service infrastructures enabling the invocation of services
remotely across Internet [3]. The ability to define, deploy
and invoke grid services remotely represents an important
barrier for job submission and monitoring, staging, file
transfer and data portal services [4]. Indeed, users are
involved in many steps of the execution process of their
respective applications. Also, in addition to fundamentals
and tools of their exercising area, users are constrained to
deal with formal languages and complex protocols requiring
a very good master of grid technology, web and grid services
composition and deployment. This can be noticed by
observing the submission process in Globus Toolkit
described in the programmer’s tutorial of Borja Sotomayor
[5].

We consider that it is increasingly necessary to reduce
the complexity of the management of service-oriented grids.
It is now necessary to associate user-oriented interfaces to
large-scale and service-oriented systems in order to hide their
complexity and make it easy to handle the services.

The goal of our work is to make grids more efficient and
more transparent to individual users by making easy
interaction between them and the grid execution
environment. In this paper, we propose an approach which
links efficiency of service-oriented grids and conviviality of
user-friendly composition tools like workflows [6]. We
define a workflow and service-based framework JASMIN
responsible for submitting and visualizing user applications
to a grid system. JASMIN is UML-based for the workflow
specifications and BPEL-based for the service composition.

The remainder of the paper is organized as follows.
Section II presents some related works and highlights the
main contributions of our approach. Section III presents our
framework, describes in details its architecture and the
functionalities of its components. Section IV concludes the
paper and outlines our future work.

II. RELATED WORKS

Workflow has emerged as a useful paradigm to describe,
manage and share complex scientific analysis and business
processes [7]. Workflows represent, declaratively, the
components or codes that need to be executed in a complex
application, as well as the data dependencies among those
components [6]. Workflow systems address reproducibility
by automatically managing the execution of the applications
in distributed environments, and by assisting scientists to
assemble the workflows and customize them to their
particular data. Many researchers are interested, in their
projects, to the field of grid computing and workflow [8].
These projects achieved to a variety of management systems
for grid workflows, each dedicated to a particular application
domain and based on concepts and specific models such as:

 Askalon [9] is a grid application development and
computing environment which provides services for
composing, scheduling and executing scientific
workflows in the grid. Grid workflow applications can be
composed using a UML-based workflow composition
with Teuta workflow environment [10] or using the
XML-based Abstract Grid Workflow Language (AGWL)
[11].

 Kepler [12] is one of the most popular workflow systems
with advanced features for composing scientific
applications. Kepler allows Drag-Drop creation and
execution of workflows for distributed applications.
Workflows are modelled in MoML (Modeling Markup
Language) [13].

46Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

 Taverna [14] is a collaboration between the European
Bioinformatics Institute (EBI), IT Innovation and the
Human Genome Mapping Project Resource Centre
(HGMP). In Taverna, data models can be represented in
XML based language called Simple Conceptual Unified
Flow Language (SCUFL) [15].

 Triana [16] is a workflow-based graphical problem
solving environment for data mining applications
developed at Cardiff University. Triana provides a visual
programming interface with functionalities represented
by units.
Compared to these related works, our proposal has

essentially 3 main characteristics. First, our framework’s
architecture is not related to any specific application domain
contrarily to others like Triana which is dedicated to
distributed data mining on grids or Taverna and Kepler
which are both oriented to bioinformatics. Second, many
frameworks like Triana are based on self defined notations to
compose their workflow models. These notations require a
learning phase to be mastered and generate models which are
difficult to verify and to validate since corresponding toolkits
do not provide any verification tool. We avoided these two
above disadvantages by using standard tools such as: UML
for workflow specification and BPEL for service and
workflow composition. We also were widely inspired by the
Workflow Management Coalition (WfMC) [6]. Third, our
framework is mainly user-oriented. Users interact with our
framework through a friendly graphical interface not
requiring any specific expertise on formal languages. This
can significantly increase the number of grid users.
Workflow and UML make our tool much easier to handle
than other frameworks that use exclusively XML-based
languages as Taverna.

III. THE JASMIN FRAMEWORK

We propose a grid workflow graphical framework
composed of two major components. Each component is
responsible for one or more specific task in the whole
process of management of the distributed application. Our
framework JASMIN is the user front-end of the distributed
system. It interacts with other service-based and workflow
enactment engines in order to accomplish the execution of
users' applications. We aim to make grids more efficient and
more transparent for different users by making easy
interaction between the grid execution environment and the
user. Figure 1 describes the architecture of JASMIN and
presents its main interactions with the whole system.

Figure 1. The architecture of JASMIN and its interactions

 In order to gain in both efficiency and transparency, we
separate between two main steps while composing and
deploying processes: the generation of models and the
generation of instances. Our framework is workflow-oriented
in the first part and service-oriented in the second one. Our
architecture is characterized by its capability to separate the
specification of applications and their execution. This
separation can help to:

 Easy rewriting of repetitive processes. Multiple

uses of abstract models for a given process are

possible without having to redefine it whenever users

want to submit the repetitive actions to the grid. Users

do not specify conditions on the physical nodes of the

grid. This introduces a high degree of transparency.

 Ease of communication with users. Users submit

their applications in form of diagrams made through a

graphical interface easy to handle. This will

undoubtedly increase the number of users of grids.

 Time saving. Users do not submit sequentially every

unit of work separately but realize a global model

corresponding to the whole process composed of a set

of interdependent activities.

 Following the evolution of the submitted

applications. Thanks to the graphical interface of the

Workflow Model Editor, both submission and

visualization of the applications are possible.

In the following, we describe the components of our

architecture and their functionalities.

BPEL

docs

WSDL

files

UML-based models

UML -Based

GUI
WfMC-UML

Workflow Instance

generator

UML2BPEL

Library

Workflow Model Editor

Users

Service definition

TOMCAT

Service enactment

Web services
Physical Resources

W

o
r
k

fl
o
w

 D
e
fi

n
it

io
n

S

e
r
v
ic

e
 C

o
m

p
o
si

ti
o
n

JASMIN

Active BPEL

47Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

A. Workflow Definition: The Workflow Model Editor

The Workflow Model Editor is based on UML activity
diagrams. Several editors of UML diagrams exist such as
ArgoUML [17]. Our main contribution over these editors is
that we focused on both workflow and services. Workflow
concepts allow us to see applications through the flow of
performed actions. Each application is defined as a set of
interdependent activities. The routing rules describe the
interdependencies as a control flow of a workflow model and
define a formal view of a coordinated set of activities to
accomplish the same goal. Besides, our proposal takes into
account both the physical constraints of the execution
platform and the users’ skills. We consider that the execution
environment is service-oriented and we suppose that users
are not necessary expert and need to be assisted during the
submission and the execution of their complex applications.

1) The WfMC-UML Library

 The Workflow Definition tools of JASMIN support the

main routing rules defined by the Workflow Management

Coalition (WfMC) such as [6]: the parallel routing, the

sequential routing, the AND-split, the OR-split, the AND-

join, the OR-join and the iterative routing.

Figure 2, Figure 3, Figure 4 and Figure 5 show the most

recurrent WFMC routings and their corresponding models

in UML activity diagrams.

Figure 2. The sequential routing

Figure 3. The parallel routing

Figure 4. The selective routing

Figure 5. The iterative routing

2) The UML-Based GUI
JASMIN interacts with users through the graphical

interface of the Workflow Model Editor. Standard UML
formalism does not cover service-oriented applications. We
decided to refine UML activity diagrams in order to support
two main characteristics of new complex applications which
are service-oriented and represent scientific workflow
processes [18].

While composing new kind of applications, the
importance of workflow concepts (rules, routes and roles)
presented by the WfMC changes. In scientific workflows,
rules expressing constraints and tasks’ characteristics are
more important than they are in business workflows.
Contrary to rules, roles almost lose sense within new
scientific processes since the complexity of applications is no
more fixed by the human interactions during the process as
in business management but by the interdependencies and
the requirements of the activities. In addition, activities of
grid workflows are often related to stateful services. Users
have to compose a workflow of grid services unlike common
workflows of business processes where a workflow of web
stateless services is composed [19]. Also, UML-based user
interfaces provide, usually, information about activities like
name, shared objects, routing rules, dependencies, etc. In
order to specify grid workflow applications, our interface
provides additional information like activity type, activity
communication ports with other activities, etc. Figure 6
shows the main window of the Workflow Model Editor.

Figure 6. The Workflow Model Editor

 Beside the usual patterns, additional toolbars are
provided in JASMIN (as shown in figure 6). These ones
represent the main refinements that we made on the UML
notations. While refining UML, the most important
challenge that faced us was: (i) to consider users’ skills and
provide a convivial interface, and (ii) to consider the service
composition language which is BPEL and try to automate the
translation of UML models into BPEL documents.

a) Users’ skills related refinements: The first type of

refinements on UML activity diagrams are related to users’

skills. They are defined to ease the work of users and

minimize their intervention while submitting and deploying

their applications. We consider two different classes of users:

(a) WfMC routing (b) Corresponding UML notation

A1 A2 A3 A 2 A 3 A 1

(a) WfMC routing (b) Corresponding UML notation

A1

A2

A3

A4

Or-Split Or-Join A 2

A 4 A 1

A 3

(a) WfMC routing (b) Corresponding UML notation

A1 A2 A3 A 2 A 3 A 1

(a) WfMC routing (b) Corresponding UML notation

A 2

A 4 A 1

A 3

A1

A2

A3

A4

And-Split And-Join

48Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

users who are familiar with workflow languages for process

management (expert users) and those who have no expertise

on UML and workflow (non-expert users).
Expert users represent the class of users from scientific or

business fields who already deal with workflow technology
and UML formalism. For these users, only standard patterns
of UML activity diagrams are requested with no additional
patterns or specifications. A tool bar gives access to the main
patterns to compose a workflow such as: activity, transition,
condition edge, synchronization bar, begin and end nodes,
etc. A user can drag any node and drop it to compose a
workflow by matching these different patterns together.

Non-expert users are those coming from different
application areas and do not necessary have expertise about
workflow and UML. However, they need important
resources to execute their complex and demanding
applications. For this kind of users, we propose a set of
predefined prototypes and some dialog boxes to guide them
while editing their UML model through JASMIN without
forcing them to get a deep knowledge on UML. Users from
this class are able to identify the different activities
composing the whole process and their interdependencies.
Users can use the predefined sub-workflows corresponding
to different types of interdependencies to build their whole
workflow. Since transparency is being our primary concern,
we provide a set of "prototypes" corresponding to the most
recurrent routings. These routings include, for example,
sequential routing, parallel routing (Fork, Join) and selective
routing (Switch), as shown in figure 7.

Figure 7. UML prototypes for non-expert users

b) BPEL related refinements: The second type of

refinements are related to BPEL notations. Once made,

UML activity diagrams have to be managed by service

tools. This is possible by enhancing UML notations such as

activities, transitions and routing rules with some other

patterns like activity properties including, for example,

types, variables, port types and partner links. These new

patterns are introduced in the UML models in order to make

easy the generation of BPEL instances.
Many BPEL patterns are generated automatically, for
example, variables and port types in order to reduce users’
intervention. However, users still have some informations to

indicate like the activity type. While creating any activity,
users have to select among a set of activities the type of the
activity they wish to insert in the UML activity diagram (see
Figure 8). The activity type can be invoke, reply, assign, etc.

Figure 8. BPEL activity types

B. The Service Definition

The workflow model editor helps to generate the UML
models corresponding to a given process. However, even by
refining UML diagrams, the execution of the workflow
models is impossible, unless we translate these models into
services. Service composition tools are responsible for the
extraction of the executable jobs of workflow instances in
form of services from the initial graphical models. In other
words, these tools generate from the UML activities flow a
set services written in a formal language. There are many
workflow formal languages, but BPEL is the standard for
describing the service composition. BPEL contains
constraints for control flow and data manipulation as well as
interaction activities which model the interaction with web
services that implement tasks in a workflow [20].

1) The UML2BPEL Library
This library is a set of programs able to generate BPEL

tags corresponding to any UML notation in the workflow
model. For a portability purpose, the BPEL generation from
UML diagrams was divided into two steps.

The first step consists on mapping UML diagrams into
Java codes while the second one consists on mapping the
obtained Java codes into BPEL documents. This
intermediate java code corresponding to the behaviour of the
sub-processes and their interdependencies may facilitate a
future mapping of UML models into another formal
language or creating BPEL documents from other
semiformal notation when these ones are coded in java. The
second part of the mapping process is from Java code to
BPEL document. Each class of the mapping program
generates a BPEL activity.

Thanks to the UML2BPEL library and the informations
introduced by users while editing UML diagrams, BPEL
documents corresponding to both the so-called basic
activities and the complex activities are generated. The basic

49Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

activities include, for example, invoke activity, receive
activity and reply activity. The complex activities represent
a set of basic activities grouped by workflow routing rules
such as the switch and the flow.

2) The Workflow Instance Generator
In BPEL notation, both activities and interdependencies

are supported. Comparing to UML, more notions are present
in a BPEL definition. As examples, we can mention partner
links, port types, variables and activity types [20].

The Workflow Instance Generator is responsible for
generating the BPEL documents corresponding to UML
models, in coordination with the UML2BPEL library. When
users define a new activity or introduce a new pattern related
to any activity, the Workflow Instance Generator produces
the corresponding code in BPEL. A BPEL document is filled
gradually while editing UML diagrams.

Each time a user starts editing a UML activity diagram, a
new java file is created. This file is filled while the workflow
model is created (when activities are inserted in the diagram
or their interdependencies are defined). At the end of the
modelling step a Java code corresponding to the whole
process is obtained. This mapping from UML to java is
invisible to the user.

Beside the generation of BPEL patterns related to basic
activities, we also made the generation of BPEL routings
automatic. At this level, we proceeded as we did in the
generation of the UML models. We implemented some rules
to map workflow routing from UML activity diagrams into
the so called control flows in BPEL documents. Our grid
workflow framework provides a transparent manner to
generate the BPEL tags corresponding to the most important
WfMC routing rules already presented in the above sections
(Sequential routing, parallel routing, selective routing and
iterative routing).

3) An example of a sequential routing in JASMIN
The workflow definition and the service composition

tools of JASMIN allow to generate, respectively, the UML
activity diagram and the BPEL document corresponding to a
a given application. In Figure 9, we show the UML model of
a sequence of three activities: receive1, invoke1 and invoke2
and a simplified syntax of its corresponding BPEL document
as they are produced by JASMIN.

Figure 9. An example of the sequential routing

C. The Service enactment

In order to deploy the workflow as a service in a grid
environment, the behaviour description given by BPEL is not
enough. It has to be completed by a static description of each
activity (service) given in a WSDL file. In fact, the BPEL
document shows, for example, which service interacts with
which other services and when a given service is invoked.
Two kinds of services need to be deployed:

 The web services representing the static description
of the workflow and the grid services which are
usually deployed on a grid service container, and,

 the workflow services related to BPEL which need a
BPEL based workflow engine to be deployed such
as ActiveBPEL [21] based on the “Apache Tomcat
container”.

We believe that it is possible if both kinds of services are
deployed on the same service container. We chose to deploy
web/grid services on Tomcat instead of the grid container
and launch the ActiveBPEL services on Tomcat to allow the
deployment of the final workflow services. At this level of
our research, we consider that the WSDL documents
corresponding to every single involved service available.

IV. CONCLUSION AND FUTURE WORK

Service-oriented grids provide environments to deploy
and execute complex applications on distributed and
heterogeneous nodes. Despite their performance, Grids stay
underweight in terms of ease of use and conviviality.
Currently, with the large use of service-oriented technology,
workflow tools and languages of service composition are
more and more converging. In this paper, we proposed a
visual framework for managing applications in service-
oriented grids. Our main objective is to take advantage of

<process xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"

 name="example"

 …

<sequence>
<receive partnerLink="PartnerLink" portType="tns:PortType"

operation="OPR1" variable="VR1" name="receive1">

</receive>

 <invoke partnerLink="PartnerLink1" portType="tns:PortType1"

operation="OPI1" inputVariable="VI1in"

 outputVariable="VI1out" name="invoke1">

 </invoke>

<invoke partnerLink="PartnerLink2" portType="tns:PortType2"

operation="OPI2" inputVariable="VI2in"

 outputVariable="VI2out" name="invoke2">

 </invoke>

 </sequence>

</process>

(a) Sequence in UML

(B) Sequence in BPEL

50Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

workflow techniques, service composition tools and grid
infrastructures in an easy and transparent way for the user.
Our framework JASMIN is based on UML activity diagrams
to generate abstract workflow models and on BPEL to
generate associated web and grid services to be deployed on
a grid environment.

We intend to integrate our framework JASMIN in a
service-oriented environment to test physical performances
on systems like caGrid [22], Knowledge Grid [23] or
Taverna.

ACKNOWLEDGMENT

The authors are pleased to acknowledge Professor
Domenico Talia and the members of the GRID Computing
Laboratory of the University of Calabria (Italy) for their
precious contributions in this research work.

REFERENCES

[1] I. Foster and C. Kesselman, “The grid: blueprint for a new computing
infrastructure”, Morgan Kaufman, 2004.

[2] G. Baryannis, O. Danylevych, D. Karastoyanova, K. Kritikos, P.
Leitner, F. Rosenberg and B. Wetzstein, “Service composition”, in:
M. Papazoglou, K. Pohl, M. Parkin and A. Metzger (Eds.),
Proceedings of the service research challenges and solutions for the
future internet, Vol. 6500, Springer, Heidelberg, 2010, pp. 55–84.

[3] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C.
Kesselman, T. Maquire, T. Sandholm, D. Snelling and P. Vanderbilt,
“Open grid services infrastructure (OGSI)”, version 1.0., Technical
report, Global grid forum, 2003.

[4] I. Foster, “Globus toolkit version 4: Software for service-oriented
systems”, in: Proceedings of the IFIP International conference on
network and parallel computing, Vol. 3779, Springer-Verlag, Tokyo,
Japan, 2006, pp. 2–13.

[5] B. Sotomayor, “The globus toolkit 4 programmer’s tutorial”,
Technical report, University of Chicago, 2005.

[6] R. T. Marshak, “Workflow white paper: An overview of workflow
software”, in: Proceedings of the workflow’94 conference, San Jose,
1994.

[7] W. M. P. van der Aalst and K. Hee, “Workflow management: models,
methods, and systems”, MIT press, Cambridge, MA, 2002.

[8] J. Yu, R. Buyya, “A taxonomy of workflow management systems for
grid computing”, Journal of ACM SIGMOD record, vol. 34 (3), 2005,
pp. 44–49.

[9] T. Fahringer, R. Prodan, R. Duan, J. Hofer, F. Nadeem, F. Nerieri, S.
Podlipnig, J. Qin, M. Siddiqui, H. L. Truong, A. Villazon and M.
Wieczorek, “Askalon: A development and grid computing
environment for scientific workflows”, Springer Verlag, 2005, Ch.
Workflows for escience, scientific workflows for grids, pp. 450–471.

[10] T. Fahringer, S. Pllana and J. Testori, “Teuta: Tool support for
performance modeling of distributed and parallel applications”, in:
Proceedings of international conference on computational science,
tools for program development and analysis in computational science,
Springer-Verlag, Karakov, Poland, 2004, pp. 456–463.

[11] T. Fahringer, J. Qin and S. Hainzer, “Specification of grid workflow
applications with agwl: An abstract grid workflow language”, in:
Proceedings of the IEEE international symposium on cluster
computing and the grid, Vol. 2, Cardiff, UK, 2005, pp. 676–685.

[12] B. Luduscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M.
Jones, E. A. Lee, J. Tao and Y. Zhao, “Scientific workflow
management and the Kepler system”, Concurrency and computation:
practice and experience, Special issue on scientific workflows, vol. 18
(10), 2005, pp. 1039–1065.

[13] A. E. Lee and S. Neuendorffer, “MoML a modeling markup
language in XML version 0.4.”, Technical memorandum ERL/UCB
M, University of California, Berkeley, 2000.

[14] T. M. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M.
Greenwood, T. Carver, K. Glover, M. P. Pocock, A. Wipat and P. Li,
“Taverna: A tool for the composition and enactment of bioinformatics
workflows”, Bioinformatics, vol. 20 (17), 2004, pp. 3045–3054.

[15] G. Hobona, D. Fairbairn, H. Hiden and P. James, “Orchestration of
grid-enabled geospatial web services in geoscientific workflows”,
IEEE transactions on automation science and engineering, vol. 7 (2),
2010, pp. 407–411.

[16] I. J. Taylor, M. S. Shields, I. Wang and O. F. Rana, “Triana
applications within grid computing and peer to peer environments”,
Journal of grid computing, vol. 1 (2), 2003, pp. 199–217.

[17] ArgoUML, http://www.argouml.org

[18] M. Sonntag, D. Karastoyanova and F. Leymann, “The missing
features of workflow systems for scientific computations”, in: G.
Engels, M. Luckey, A. P. and R. Reusner (Eds.), Proceedings of
workshops on software engineering, Vol. 160 of LNI, GI, Hanoi,
Vietnam, 2010, pp. 209–216.

[19] W. Dou, J. L. Zhao and S. Fan, “A collaborative scheduling approach
for service-driven scientific workflow execution”, Journal of
computer and system sciences, vol. 76 (6), 2010, pp. 416–427.

[20] D. Jordan, J. Evdemon and A. Alves, “Web service business process
execution language version 2.0.”, Technical report, OASIS standard,
2007.

[21] The ActiveBPEL Project, http://www.activebprl.org

[22] J. H. Saltz, S. Oster, S. Hastings, S. Langella, T. M. Kurc¸, W.
Sanchez, M. Kher, A. Manisundaram, K. Shanbhag and P. A. Covitz,
“cagrid: design and implementation of the core architecture of the
cancer biomedical informatics grid”, Bioinformatics, vol. 22 (15),
2006, pp. 1910–1916.

[23] E. Cesario, M. Lackovic, D. Talia and P. Trunfio, “A visual
environment for designing and running data mining workflows in the
knowledge grid”, In: Data mining: foundations and intelligent
paradigms, D. Holmes, L. Jain (Editors), Springer, Intelligent systems
reference library, vol. 24, 2012, pp. 57--75.

51Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

http://www.argouml.org/
http://www.activebprl.org/

