
A Validation Framework for the Service-Oriented Process Designing
Guoqiang Li1,2, Lejian Liao1, Fuzhen Sun1

1Beijing Engineering Research Centre of High Volume Language Information Processing & Cloud Computing Applications,
Beijing Key Laboratory of Intelligent Information Technology,

School of Computer Science, Beijing Institute of Technology, Beijing, China
2School of information, Linyi University, Linyi, China

{lgqsj, liaolj, 1090723}@bit.edu.cn

Abstract—In the service-oriented software systems, the
services composition process is modeled using the service
orchestration languages whose fault-handling and
compensation mechanisms are crucial to guarantee the process
running successfully. In this paper we propose to extend the
syntax of BPEL to improve these two mechanisms. In order to
validate their correctness, the composition is transformed to
the planning graph. Then the validation of the fault-handling
mechanism is regarded as a problem of seeking solution from
the solution sets gained from the planning graph. We analyze
the services composition structures and construct a
relationship matrix to complete the validation of the
compensation mechanism. A validation framework is
proposed and an experiment is implemented to show our
method effectiveness.

Keywords - graph planning; BPEL; service orchestration;
fault handling; compensation mechanism

I. INTRODUCTION
Service-oriented paradigm is capturing a growing

interest as a mean for business to business integration. To
realize the composition of the web services, researchers and
industrial practitioners have proposed several web service
orchestration languages such as BPEL4WS [1], WSFL [2],
XLANG [3] and StAC [4]. And BPEL4WS is the de facto
standard. Compare to the other languages, BPEL4WS
supports this problem with a programmable and scope-based
fault-handling and compensation mechanisms. Fault-
handling mechanism guarantees the composition continues
to achieve the goal. The function of compensation
mechanism is to maintain the consistency of the whole
process by eliminates the effects of everything executed
from the failed service. But, it is a time-consuming and
error-prone task to design these strategies and it is difficult
to validate the correctness by the designers completely.

In order to solve the above problem, we propose to make
use of graph planning technology focusing on the
correctness validation of the business process during the
design phase. The contribution of this paper includes:

• Syntax of the BPEL is proposed to extend with two
operators corresponding to the fault-handling and
compensation-handling mechanisms and their
semantics are presented. A planning graph is
constructed by means of analyzing the business
process.

• For the fault-handling mechanism, it is transformed
to seek a solution from the solution set of graph.

• Analyze the structural relationship of services and
build a relationship matrix to facilitate the validation
of the compensation-handling mechanism.

This paper is organized as follows. In the next section,
we place the related work. Section Ⅲ introduces the
extension of BPEL and the graph planning technology. The
Section Ⅳ details the validation framework including the
validate algorithms. The experiment is implemented and
analyzed in Section Ⅴ. The conclusion of this paper and
future work are discussed in the Section Ⅵ.

II. RELATED WORK
To guarantee the correctness of the business process,

many researchers consider the semantic model. A simplified
version of the WS-BPEL is defined in [5]. Compensation
closure and context are proposed to capture the execution
structure and form a good framework to the semantics of
implementation of BPEL4WS. In [6], Chenguang,
Shengchao and Zongyan verify the process using the Hoare-
logic. In [7], Huibiao, Jifeng, Jing and Bowen focus on
deriving the operational semantics and denotational
semantics from algebraic semantics. Algebraic laws for
BPEL programs are considered. Comparing with these
methods, our approach is more intuitive.

A logic model specifies the semantics of workflows and
composite tasks are given in [8]. A set of inference rules are
presented to deduce the strongest post condition and weakest
precondition and automatic workflow verification is
demonstrated. The interactions of composite web services
are modeled as conversations in [9]. The guarded automaton
augmented with unbounded queues for incoming messages
is used to be the intermediate representation and the model
checker SPIN verifies synchronous communication. But, it
is a challenge to translate the BPEL to the Promela program
which is the input of SPIN for the designers. A Petri-net
based formalization to construct composition process is
proposed in [10]. And the interface dependency,
compensation dependency and sequence triggered in nesting
scopes are discussed. These preceding methods focus on the
validation of the fault-handling and compensation-handling
during the running phrase. From a transactional perspective
of the compositions, many works introduce their approaches
[11-13], e.g., a heuristic-based analysis of the process
definition is proposed in [11]. The analysis result is a set of
nonrepairable activities, whose impacts are evaluated by a
repairability reasoner. Then a combination of the fault and
the branching probabilities associated with an activity is
given to gain a relevance index, which is used to remind the
designer of knowing that to improve the repairability of the

1Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

process. A transactional service patterns are used in [12] to
specify the transactional composite service (CS) using Event
Calculus. The CS transactional behavior is specified initially
by the designers. Then the patterns and transactional flow
are rewritten using EC predicates. Last, the behavior
consistency is checked according to the predefined
transactional consistency rules. Similar to our work, a
planning graph is also used in [14], which only considers the
repair technique for the composition adaptation rather than
validating the correctness of the composition. A testing tool
for web services composition is proposed in [15]. This tool
focuses on conformance testing and unit testing considering
the timing constraints and synchronous time delay. But, the
activities of a flow activity are processed as sequence
activities instead of processing in parallel in this tool. A web
services translation tool is proposed in [16]. This tool is
used to design and verify a web services system with time
restrictions during the design phase. UML is used in the
design phase to model the system to provide sequence
diagram, which is transformed to choreography description
by WS-CDL. Last, the UPPAAL tool is used for validation
and verification purpose. An on-line approach is introduced
in [17] to test an orchestration of web service composition
and a passive testing verifies a timed trace with respect to a
set of constraints. But, it does not pay close attention to the
fault-handling and compensation-handling mechanisms.

III. EXTENSION OF BPEL AND GRAPH PLANNING

A. Syntax and Semantic of the Extended BPEL(ex-BPEL
for short)
 ex-BPEL builds on the base of the BPEL by extending

the original fault handling mechanism. A business process
(BP) includes four components: an activity P, a basic
activity A, a fault handler F and a compensation handler C.
The detailed syntax is as follows:

The operational semantics of P and A are same as the

semantics of [6]. For example, sequence “P1; P2” presents an
order of these two activities, i.e., P2 starts running only after
P1 completes.

The extension of the fault mechanism includes two new
operators: retry and substitute. The operator retry :P N
means activity P makes N repetitions and substitute 1 2:P P
means 1P substitutes 2P if 2P fails. Actually, the two

operators can be combined to describe complex handling
strategy.

A work-through scenario is an e-travel example. To plan
to travel from place A to B, a train ticket should be ordered
first and another choice is to book a flight ticket if no train
ticket. Then a hotel should be booked. In case of hotel
booking failure, we can re-order the ticket or cancel the plan.

More details of the fault handling and compensation
handling syntax of BPEL is referred to [1].

B. Extension of Fault-handling Mechanism
We distinguish two types of faults: temporary faults and

permanent faults. For example, a temporary fault may be a
network interruption in a short time. After the fault is thrown
from the business process, firstly we analyze the type of the
fault, and then we choose the handling mechanism for it.
Retry is used to cope with the temporary faults, and
substitute handles the permanent faults. So, the modified
fault handler is as follows:

 “[N]” specifies the number of repetitions in retry

operation.

C. Introduction to Graph Planning
A planning graph is a directed, leveled graph with nodes

and edges, denoting as ,V E [18]. ,V Prop Action= ,
Prop is a set of all proposition levels
{ }0 1 2 nProp , Prop , Prop ...Prop , Action is a set of all action
levels { }0 1 2 nAction , Action , Action ...Action where an action
is described as: ()(), , ,Action name Params Pre Add Del= ,
where Pre specifies the preconditions of this action and
Add specifies its positive effects. While the Del specifies

its negative effects. The proposition levels and the action
levels occur alternately. So, the planning graph is:
{ }0 0 1 1 nProp ,Action ,Prop ,Action ...Prop shown in Fig. 1,
where 0Prop specifies the initial proposition level and

nProp specifies the goals proposition level. If one
proposition Prop0i exists in Pre of one action A, then there
is an edge between Prop0i and A. Similarly, if one
proposition Prop0j exists in Add of one action B, then there
is an edge between Prop0j and B.

<faultHandlers>
<catch faultName="FailofTrainTicket"?
faultVariable="ncname"? >
<retry><invoke partnerLink=”TrainSupplier”
portType=”Trainsup:OrderInterface”
Operation=”submitOrder” inputVariable = “OrderInfo”
outputVariable= “OrderConfirmation”>[N]
</retry>
<substitute> <invoke partnerLink=”FlySupplier”
portType=“Flysup:OrderInterface”
Operation=”submitOrder” inputVariable = “OrderInfo”
outputVariable= “OrderConfirmation”>
</invoke> </substitute></catch> </faultHandlers>

BP:= 【P: F】
P:= A (basic activities)
 | skip (do nothing)
 |P; P (sequence)
 |P || P (flow)
 | if b then P else P (conditional)
 |n: {P?C:F} (scope)
A:= e (assignment)
 | rec p y (receive)
 | inv p x y (invoke)
 | rep p x (reply)
 | throw (throw a fault)

C, F := ↤n (compensation) | retry P: N | substitute P: P’

2Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

In Fig. 1, the black circle is a proposition node and the
rectangle is an action node. The dotted line means every
proposition that appears in proposition-level i may also
appear in proposition level i+1, allowed by “no-op actions”.
Because of this trait, action-level i may contain all the
possible actions whose preconditions all exist in

proposition-level i [18]. So, for the retry operation, we
can determine the maximum occurs times according to the
N of a service when it fails. As shown in Fig. 1, the grey
rectangle means the services ws1 and wsi should be updated
in that level. We will not distinguish the action from service
from here.

Figure 1. a planning graph

IV. VALIDATION FRAMEWORK
There are three modules in our validation framework as

shown in Fig. 2. The Parsing module includes BPEL Parser
and WSDL Parser. The former parses the BPEL documents
and gets the service structure relationship matrix which is

stored in the database. The latter parses the WSDL
documents to get the corresponding actions. The Graph
Planner is used to gain the solutions.

Figure 2. the validation framework

A. Parsing Modules
The parsing modules are responsible for generating the

original input data.
1) WSDL Parser

WSDL is an XML format for describing web services as
a set of endpoints operating on messages containing either
document-oriented or procedure-oriented information.
WSDL Parser transforms the services description to the
actions presented by STRIPS, the algorithm is as follows:

2) BPEL Parser

ws1

wsi

ws1

wsi

input: WSDL documents:{Wsdl1,Wsdl2……}
output: a set of actions of planning: {Action1,Action2……}
procedure:
(a) name = the names appear in label:
<wsdl:service></wsdl:service> of Wsdli
(b) Params = the list of all the names of the labels:
<wsdl:message></wsdl:message>of Wsdli.
(c) Pre = the conjunction of all <wsdl:input></wsdl:input>
as defined in label<wsdl:binding></wsdl:binding> of Wsdli.
(d)Add = the conjunction of all
<wsdl:output></wsdl:output> as defined in label
<wsdl:binding></wsdl:binding> of Wsdli.
(e) return Actioni = (name(Params, Pre, Add)).

BPEL
WSDL

documents

DB

planner

UDDI

faults analyzer

compensation analyzer

solution
?

end

information
and advice

BPEL
parser

WSDL

parser

true

false

3Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

There are two ways in which two actions are marked to
be exclusive of each other: (1) interference: if either of the
actions deletes a precondition or add-effect of the other; (2)
competing needs: if there is a precondition of action A and a
precondition of action B that are marked as mutually
exclusive of each other in the previous proposition level [18].

We treat the compensation information as the del
information corresponding to the attribute “del” of the
original STRIPS representation. Suppose ws is a service in
business process, the set of services in its fault handler is
defined { }1 2, ...Wsf wsf wsf= and the set of services in its
compensation handler is { }1 2,Wsc wsc wsc= . So, its mutual
exclusion set is Mes Wsc= . All this information is stored in
database and used in graph planning.

B. Implements of Validation
1) Construction of Planning Graph

It is simple to transform the business process to a
planning graph. The actions of every level correspond to the
services of one step of the process.

2) Definitions of Validation Properties
The validations of the fault and compensation handling

mechanisms require all the satisfied solution i.e., the actions
sequence: { }1 2 3, , ...S S S S= . We give some definitions on the
validation properties.

a) fault-amendable service: for every service ws, if
ws′ exists and satisfies: ws Wsf′∈ and ws S′∈ , we say this
service fault-amendable.

b) fault-amendable process: if all the services of a
process are fault-amendable, we say the process is fault-
amendable.

c) compensation-amendable service: for every service
ws, if ws′ exists and ws Wsc′∈ can bring the process to a
consistent state, we say this service compensation-
amendable.

d) compensation-amendable process: if all the services
of a process are compensation-amendable, we say the
process is compensation-amendable.

e) reliable process: if the process is fault-amendable
and compensation-amendable, we say the process is reliable.

3) Validation Algorithm of Fault-handling

If the definition (a) is satisfied, the result is true, else a

fault service is returned, and a handling suggestion will be
given to the designers.

4) Validation of the Compensation-handling
According to the structures of the BPEL, we define the

structure relationship as follows:

a) Sequence structure: in Fig. 3, 1ws is a directly prior
of 2ws , denoted: 1 2ws wsp . And 2ws is a directly
successor of 1ws , denoted: 2 1ws wsf . If a compensation of

2ws is invoked, the compensation of 1ws should be invoked.
b) Xor structure: in Fig. 4, 1ws is a directly xor-split

prior of 2ws denoted： 1 2xsws wsp . And 2ws is a directly
xor-split successor of 1ws , denoted: 2 1xsws wsf . 2ws is a
directly xor-join prior of 4ws , denoted : 2 4xjws wsp , 4ws
is a directly xor-join successor of 2ws , denoted:

4 2xjws wsf .
c) And structure: in Fig. 5, 1ws is a directly and-split

prior of 2ws denoted: 1 2asws wsp .And 2ws is a directly
xor-split successor of 1ws , denoted: 2 1asws wsf . 2ws is a
directly and-join prior of 4ws , denoted: 2 4ajws wsp , 4ws
is a directly and-join successor of 2ws ,denoted 4 2ajws wsf .

d) Parallel-or structure: in Fig. 4, 2ws and 3ws are
parallel in xor structure, denoted 2 3|| orws ws . The pair of
services will not affect each other while any of them throws
a fault. In this case, if the compensation of 2ws is invoked
and ws3 runs normally, the compensation of ws1 can not be
invoked.

e) Parallel-and structure: in Fig. 5, 2ws and 3ws are
parallel in and structure, denoted: 2 3|| andws ws . If 2ws is
compensated, 3ws must be compensated, and the
compensation of ws1 will be invoked.

Figure 3. Sequence structure

Figure 4. Xor structure

Figure 5. "and" structure

1 2 3 4

1

2

3

4

||
||

xs xs

xs or xj

xs or xj

xj xj

ws ws ws ws
ws
ws
ws
ws

− −
−

−
− −

p p

f p

f p

f f

Figure 6. Relationship matrix
All the structure relationship of the services will be

ws1 ws2

ws1 xor

ws2

ws3

ws4xor-join

ws1 and

ws2

ws3

ws4and-join

begin
for each iws BPEL∈ Process
 if ws Wsf ws S∃ ∈ ∧ ∈

 return true
else return iws

end

4Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

stored in a matrix, which can be automatically generated in
the parsing of BPEL documents. The corresponding matrix
of Fig. 4 is the Fig. 6, where the symbol "-" means no
relationship between services.

Suppose the compensated service is ws and the service
relationship matrix is ws-matrix. The algorithm to validate
the compensation-handling mechanism is as follows:

a) Step 1: Look for a set of the services which is
related to ws until a xor-split service ws-xs or the first
service is found, and the path is recorded, denoted ws-path.

b) Step 2: Locate the directly successor ws-post of ws.
c) Step 3: Make sure whether there is a path from ws-

post to ws-xs and the path exists in solution sets, if so, the
validation of compensation-handling ends.

d) Step 4: if not, take the del information of the
compensation services on the ws-path as the goal
propositions and do the planning. If the solution can be
found, the process is reliable, else the faulty service is
located and advice is given.

For example, if 2ws is compensated, its directly
successor is 4ws . Because there are two path from 4ws to

1ws , i.e., 4 2 1ws ws ws→ → and 4 3 1ws ws ws→ → . So,
if the compensation handling of 2ws is defective
nevertheless 3ws is available, the process can run
successfully.

5) Analysis of the Algorithms:
a) For the faults-handling, the complexity is O(n), n is

the number of the services which is semantic or functionally
equivalent to the faulty service in the same level.

b) For the compensation-handling, the complexity is
O(n2), which is the time needed to look for a path between
given two nodes in a graph. If the path does not exist, we
should do a new planning process, which is at least
PSPACE-hard. In spite of this, the planning graph
analysis can provide a quite substantial improvement in
running time [18].

V. EXPERIMENT
The goals of the experiments are: (1) To validate the

soundness and completeness. Soundness is that if there is a
problem in the fault-handling and compensation-handling,
the system is able to find it. Completeness is that if the fault
information is returned, it is related to the designing. (2) To
validate the efficiency of the algorithms. Because in our
framework, wsdl4j is used to parse the WSDL documents,
and dom4j is used to parse BPEL documents. So, we now
focus on the validation efficiency of our proposed
algorithms. The validation program is completed with Java
on the platform Eclipse.

We adopt the dataset from [14]. There are 351 available
services which use 2891 parameters in their input and
output messages. This dataset has four groups, where Group
1 and Group 2 are chosen in our experiment. Group 1
contains solutions with 9 levels and Group 2 contains
solutions with 18 levels. In our experiments, a random
service of every level is presumed to be failed. At each
experiment, we run the validation algorithms and running

time is recorded. At Last, each data point is obtained from
the average of three runs for the different failed service.

For the validation of fault-handling shown in Fig. 7, we
change the size of the set Wsf of the failed service. Overall,
the maximum running time is less than three milliseconds
even though we set the size 100. Comparing the Group 1
with Group 2, there is not quite a difference in the running
time in spite the fact that the levels of Group 2 is twice as
many as the levels of Group 1. The main source of this
conclusion is that the running time does not depend on the
level of the service but the size of the set Wsf of the failed
service. For designers, the running efficiency is quite
acceptable.

validation of fault-handling

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100 120

services of one level

t
i
m
e
(
m
s
)

Group 1

Group 2

 Figure 7. Validation of fault-handling
Group 1

-5

20

45

70

95

120

145

3 4 5 6 7 8

level

t
i
m
e(

m
s
)

(a) Validation of Group 1

Group 2

-10
10
30
50
70
90

110
130
150
170

5 10 15

level

t
i
m
e
(
m
s
)

 (b) Validation of Group 2

Figure 8. Validation of compensation-handling

For the validation of compensation-handling, because of

their different levels, we place the running results of Group
1 and Group 2 into two figures, i.e., Fig. 8.a and Fig. 8.b.
respectively. In the case of several paths existence from the
faulty service to a consistent service, the running efficiency
is very excellent. For example, the running time is only
about 10 milliseconds even though the faulty service is in
the tenth layer in the Fig. 8.b. But, it is very time-
consuming to find a solution according to the del

5Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

information of the faulty service. For example, the running
time reaches 164 milliseconds in the thirteenth layer. At the
same time, we can observe that it will take more time to
make the validation when the faulty service is in the later
layer under the same conditions. For example, the time
taken in the thirteenth layer is longer than the tenth layer.

From the above analysis, it is feasible to take use of our
method and it is acceptable for the designers.

VI. CONCLUSION
In this paper, we focused on the validation of the

correctness of the service composition process during
design phase. To improve the fault-handling mechanism,
we extend the BPEL with two operators, whose semantics
are presented. Then the graph planning technology is
introduced to validate the fault-handling and compensation-
handling mechanisms. The algorithms are detailed
respectively and the validation framework is described. The
experiment is implemented and the results show that our
proposed approach is effective.

For the operator retry, we only consider that one service
is replaced with another. But, in actual application, one
service may be replaced by several services which are
combined to satisfy the functional requirement. The loop
structure is also not considered in our current solution.
Theses will be discussed in our further study. It is limited to
guarantee the composition running successfully only with
the validation during the design phase in the dynamic
environment. So, another part of our future work is to
integrate our approach into a self-adaptive framework
which can monitor the process execution.

ACKNOWLEDGEMENT
This work is funded by the Natural Science Foundation

of China (NSFC, Grant No.60873237), Natural Science
Foundation of Beijing (Grant No.4092037), and partially
supported by Beijing Key Discipline Program.

REFERENCES
[1] A. A. A. Alves, S. Askary, and et al. April 2007, OASIS

Standard Web Services Business Process Execution Language
Version 2.0. . Available: http://docs.oasis-
open.org/wsbpel/2.0/serviceref, [retrieved: March, 2012].

[2] F. Leymann. May 2001, WSFL: Web Serices Flow Languag.
Available: http://xml.coverpages.org/WSFL-Guide-200110.pdf,
[retrieved: March, 2012].

[3] S. Thatte. June 2001, XLANG: Web Service for Business
Process Design. Available: http://xml.coverpages.org/XLANG-
C-200106.html, [retrieved: March, 2012].

[4] M. B. a. C. Ferreira., "An operational semantics for stac,a
language for modelling long-running business transactions.," in
Proceedings of Sixth International Conference on Coordination
Models and Languages,, February 2004, pp. 87-104.

[5] Z. Qiu, S. Wang, G. Pu, and X. Zhao, "Semantics of
BPEL4WS-Like Fault and Compensation Handling," in FM
2005: Formal Methods, ed, 2005, pp. 350-365.

[6] L. Chenguang, Q. Shengchao, and Q. Zongyan, "Verifying
BPEL-Like Programs with Hoare Logic," in TASE '08. 2nd
IFIP/IEEE International Symposium on Theoretical Aspects of
Software Engineering 2008, pp. 151-158.

[7] Z. Huibiao, H. Jifeng, L. Jing, and J. P. Bowen, "Algebraic
Approach to Linking the Semantics of Web Services," in SEFM

2007. Fifth IEEE International Conference on Software
Engineering and Formal Methods, 2007, pp. 315-328.

[8] D. Ziyang, A. Bernstein, P. Lewis, and L. Shiyong, "Semantics
based verification and synthesis of BPEL4WS abstract
processes," in Proceedings. IEEE International Conference on
Web Services, 2004, pp. 734-737.

[9] X. Fu, T. Bultan, and J. Su, "Analysis of interacting BPEL web
services," in Proceedings of the 13th international conference
on World Wide Web, New York, NY, USA, 2004, pp. 621-630.

[10] M. Xiaoyong, F. Yiyan, W. Yonglin, and F. Xia, "A petri net-
based failure handling model for composition transactions," in
Second International Conference onComputational Intelligence
and Natural Computing Proceedings (CINC), 2010, pp. 378-
381.

[11] G. Friedrich, M. Fugini, E. Mussi, B. Pernici, and G. Tagni,
"Exception Handling for Repair in Service-Based Processes,"
IEEE Transactions on Software Engineering, vol. 36, pp. 198-
215, 2010.

[12] W. Gaaloul, S. Bhiri, and M. Rouached, "Event-Based Design
and Runtime Verification of Composite Service Transactional
Behavior," IEEE Transactions on Services Computing, vol. 3,
pp. 32-45, 2010.

[13] Q. L. An Liu, Liusheng Huang,Mingjun, Xiao, "FACTS: A
Framework for Fault-Tolerant Composition of Transactional
Web Services," in IEEE Transactions on Services Computing,
2010, pp. 46-59.

[14] Y. Yan, P. Poizat, and L. Zhao, "Self-Adaptive Service
Composition Through Graphplan Repair," in IEEE
International Conference on Web Services (ICWS), 2010, pp.
624-627.

[15] C. Tien-Dung, P. Felix, and R. Castanet, "WSOTF: An
Automatic Testing Tool for Web Services Composition," in
Fifth International Conference on Internet and Web
Applications and Services, 2010, pp. 7-12.

[16] E. Martinez, M. E. Cambronero, G. Diaz, and V. Valero,
"Design and Verification of Web Services Compositions," in
International Conference on Internet and Web Applications and
Services 2009, pp. 395-400.

[17] C. Tien-Dung, R. Castanet, P. Felix, and G. Morales, "Testing
of Web Services: Tools and Experiments," in IEEE Asia-
Pacific Services Computing Conference (APSCC), 2011, pp.
78-85.

[18] M. L. F. Avrim L. Blum, "Fast Planning Through Planning
Graph Analysis," in Proceedings of the International Joint
Conference on Artificial Intelligence(IJCAI), 1995, pp. 1636-
1642.

6Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

