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Abstract—Laws, regulations and contracts often allow ac-
tions, such as usages of data artefacts, under the condition
that a set of obligations is fulfilled. Formalising such allowances
as policies enables the automated testing whether actions are
compliant. Previous approaches to formalise obligations treat
them as special objects in the underlying logic. We propose
to represent obligations and other compliance conditions in a
uniform way, in order to increase understandability by non-
expert users. The challenge of such an approach is to differen-
tiate between policy violations and not yet fulfilled obligations.
We present a solution based on abductive reasoning, which is
described in general terms for policy languages based on first-
order logic (FOL). Furthermore, we discuss the use of decidable
fragments of FOL as a base for practical policy languages.
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I. INTRODUCTION

Processes that have to comply with laws, regulations,
norms, licenses, and contracts are ubiquitous. Data owners
can restrict processes that use their data based for example
on privacy law or copyright law. One important aspect of
such restrictions are obligations. Obligations are duties that
have to be fulfilled, when a right is exercised. Consider for
example that it is allowed for a blogger to reuse an image in a
non-commercial blog post, however the blogger is obliged to
add an attribution of the original creator of the image to his
post. Here, the obligations are clearly separated from other
restriction, e.g., that the post must be non-commercial. This
separation is also found in existing approaches to formalise
such restrictions as computer-understandable policies, where
obligations are modelled with special operators. Formalisa-
tions are useful to automate compliance checks in order to
enable systems that adhere to restrictions or assist human
users to do so. Special obligation operators that specify,
which actions have to be performed to reach compliance,
have two drawbacks:
• The policy remains at a lower conceptual level than

goal-based policies, which only describe compliant
states, and leave the computation of required actions
to the policy engine.

• Special operators in a language or its underlying logic
mean additional effort for non-expert users to under-
stand them and use them correctly.

In this paper, we propose a novel approach to represent
policy conditions and obligations in a uniform way as goal-
based policies. Definitions of obligations are given specific
for each application in the corresponding domain vocabulary,
defined and understood by the system users. Our approach is
defined and described in abstract terms using first-order logic
and abductive reasoning. We also discuss concrete policy
languages that can be used to apply the theoretical results
to practical problems.

The rest of the paper is structured as follows: in Sec-
tion II, we introduce a motivating use cases for formalising
policies with obligations. Goal-based data usage policies are
introduced in Section III. Our core approach is explained in
Section IV. Throughout the technical parts, we go through
one continuous example from the use case to illustrate the
introduced concepts. In Section V, we discuss practical
policy languages and the realisation of the use case. Finally,
we discuss related work in Section VI, and conclude in
Section VII.

II. USE CASE: RESTRICTED DATA USAGE

Usage of data artefacts can be restricted on the foundation
of copyright and privacy laws, company internal guidelines
or social norms. We consider usage policies of data artefacts
as the formal specification, which usages are allowed and
which conditions apply. For formalizing policies, we need
a vocabulary for describing data usages, which is visualised
in Figure 1. The vocabulary describes Artefacts that can
be used in Processes. An artefact has a Policy, to which
processes using the artefact must comply. Processes are
divided in (i) Usages, which consume an artefact for a
specific Purpose, and (ii) Derivations, which generate new
artefacts on the base of the used artefacts. A process a can
trigger another process b, meaning that the execution of a
will lead to the execution of b. We present the following
examples of conditions on allowed data usages:

• A derivation of an artefact with usage policy p is
allowed, if the generated artefact will also be assigned
the same policy p. Such conditions are used, e.g., in
Creative Commons ShareAlike licenses.
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Figure 1. Vocabulary for Data Usage Restrictions

• A usage of an artefact is allowed, if the usage is for
non-commercial purposes and triggers an attribution of
the artefact’s creator. Such conditions are used, e.g., in
Creative Commons NonCommercial (NC), Attribution
(BY) licenses (abbreviated as BY-NC).

• A usage of an artefact (e.g., a electronic health record)
is allowed by doctors, who can also store the artefact
under the condition that it is deleted after one year.

III. GOAL-BASED DATA USAGE POLICIES

In computer science, the notion of a policy refers to a
formal description of the actions and behaviors that are al-
lowed or required in a protected context. The context can be
characterised for example by the data artefacts that are used,
properties or identities of agents involved in performing the
action, or temporal constraints. Formal specifications enable
the automated detection of policy violations of systems or
agents that are formally described. Additionally, in many
applications, required adoptions to transit from violation to
compliance, can be automatically computed and realised by
the corresponding system or agent. In this sense, policies can
be used to formalise laws, norms and regulations that apply
to a computer system, or a process realised or supported by
such a system.

In our approach, we consider goal-based policies as
defined by Kephart and Walsh [1]. Goal-based policies are
on a high conceptual level, as they only describe the desired
states of (the modelled) world, instead of specifying how
such a state can be reached.

In the following, we give a general formal definition of
policies based on first-order logic (FOL). We assume that
the state of the world is described by the FOL theory T
of the signature consisting of constants C and predicates
P . A policy p is applicable to a set Sp ⊆ C of policy
subjects. Policy subjects can either be compliant or non-
compliant with p, all other constants c ∈ C \ Sp are called
inapplicable. A policy p is defined by a formula φp[x] with
one free variable. The compliant subjects are given by the
set of constants that when replacing x in φ establish T |= φ.

In the following, we restrict all given theories, formulae,
and policies to stay in the Datalog fragment of first-order
logic. Datalog is the FOL language of function-free Horn
clauses [2] and is used as a base for many policy languages,
e.g., [3], [4], [5]. Policies in our definition as formulae

with one free variable can be expressed as monoid Datalog
queries. Compliance checks can be solved via query evalua-
tion, which is decidable. As we will discuss in Section V-B,
also all other required operations are decidable for Datalog.

As an example, we formalise the policy BY-NC restricting
data usages to trigger an attribution of the original creator
(see Section II):

BY-NC(x)←Usage(x) ∧ triggers(x, a) ∧ Attribution(a)∧
hasPurpose(x, r) ∧ NonCommercial(r).

In Datalog, the variables a and r are existentially quantified,
which means that the right-hand side of the rule is a FOL
formula with one free variable (x) and thus defining φBY-NC.

IV. DISTINGUISHING OBLIGATIONS AND VIOLATIONS

In situations, where a data usage is classified non-
compliant to the used artefact’s policy, we have to dis-
tinguish between policy violations and not yet fulfilled
obligations. Obligations are temporary violations of a policy,
which will be fixed after a certain amount of time to
reach compliance. Consider for example the obligation to
attribute the original creator of an artefact when it is used:
using the artefact is classified as non-compliant but only
temporarily until the attribution is given and thus compliance
reached. If usage is restricted to non-commercial purposes
and a usage is classified as non-compliant because it has
a commercial purpose, the violation is not temporary and
thus there is not an obligation required, but the usage should
be prevented. In the following, we present an approach to
distinguish violations and obligations for usages classified
as non-compliant to a policy.

Consider a data usage described by the theory T , where a
policy subject s is found non-compliant to a policy p defined
by φp[x]. The solution is structured along the following
steps:

1) finding out why s is non-compliant;
2) if s can be made compliant by adding new facts,

identify the required facts;
3) identify obligations in the facts;
4) checking whether obligation handling makes the usage

compliant;
5) if compliance is given, schedule the obligations with

the corresponding handlers.
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Figure 2. Architecture of a Policy-aware System for Data Usage and Automated Obligation Handling

Step 1: Finding out why s is non-compliant:
We consider s to be non-compliant with p, if we cannot
infer that s makes φp true, i.e., T 6|= φp[s]. One reason why
we cannot infer φp[s] can be that it contradicts T , i.e., T |=
¬φp[s]. In case of a contradiction, we cannot establish φp[s]
by adding new facts (e.g., from describing the fulfilment
of an obligation), because of the monotonicity of FOL. As
such contradictions cannot be fixed by obligation handling,
we only proceed if T 6|= φp[s] and T 6|= ¬φp[s].

As an example, consider the following theories describing
data usages:

T1 : Usage(u1) ∧ hasPurpose(u1, r1) ∧ NonCommercial(r1).

T2 : Usage(u2) ∧ triggers(u2, a2) ∧ Attribution(a2).

T3 : Usage(u3) ∧ hasPurpose(u3, r3) ∧ Commercial(r3).

All three theories T1, T2, T3 do not model a usage compliant
to the policy BY-NC. However, T3 |= ¬φBY-NC[u3] and thus
will be disregarded in further examples.

Step 2: Identify suitable theories to add:
Next, we search for a set E of theories that make s compliant
to p. The search naturally translates into a problem that can
be solved by abductive reasoning. The term of abductive
reasoning goes back to Peirce [6] and refers to finding an
explaining hypothesis for a circumstance. In other words,
for a given observation b find an explanation a from which
b can be logically inferred. In this sense, abduction is
the reverse of of deduction, where b is found for a given
a. Abductive reasoning was applied to formal logics and
several algorithms were given for various logic formalisms
(e.g., [7], [8], [9], [10]). In the following, we formally define
our understanding of abductive reasoning for FOL. Given

a theory T and a set F of atomic facts (formulae of the
form p(c1, . . . , cn), where p ∈ P is a predicate of arity
n, and each ci ∈ C is a constant), find an explanation
E, such that F can be inferred from T and E, or more
formally: T ∪ E |= F . Additionally, we require that there
exists an interpretation for T∪E, i.e., T∪E is consistent. For
sake of simpler notation, we also apply abduction to find an
explanation for a sentence φ[c], where φ[x] is a formula with
the only free variable x. This can be realised by introducing
a fresh unary predicate p′ and the axiom ∀x.p′(x) ↔ φ[x];
then abduction can be applied to finding an explanation for
the atomic fact p′(c). Applying abduction to our problem
of finding suitable theories for making s compliant to p, we
search a set E , such that: ∀E ∈ E .T ∪E |= φp[s]. We require
that every explanation E is minimal in the sense that there
is no other explanation E′ which entails E and there is no
subtheory of E, which is also an explanation:

∀E ∈ E . 6 ∃E′ ∈ E .E 6= E′ ∧ T ∪ E′ |= T ∪ E.
∀E ∈ E . 6 ∃E′.E′ ⊆ E ∧ T ∪ E′ |= φp[s].

The set of explanations can still be of infinite size, e.g., be-
cause of transitive predicates, and the minimality conditions
might not always be desired [7]. We leave the exact defini-
tion of the explanations selected for E open to be specified
for concrete applications. Similarly, there maybe a system-
specific preference order on the explanations, therefore we
describe the following steps for a single explanation E ∈ E .

Continuing the previous examples, we choose the follow-
ing explanation E1, E2 such that T1 ∪E1 |= φBY-NC[u1] and
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T2 ∪ E2 |= φBY-NC[u2]:

E1 : triggers(u1, a1) ∧ Attribution(a1).

E2 : hasPurpose(u2, r2) ∧ NonCommercial(r2).

Step 3: Identification of obligations:
An explanation E contains facts that would make s compli-
ant to p. Not all of the facts in E however can be fulfilled
by adding the description of an obligation, but could only
be the result of complying to an unfulfilled condition (see
example below). Depending on the specific application, we
thus define a set O of obligations, and for every obligation
o ∈ O a query qo(p1, . . . , pn) and an obligation handler ho.
The query qo defines, which kind of required facts can be
handled by the corresponding obligation handler ho. In our
example, we define one obligation o1 with a handler ho1
that can automatically add attributions to data usages. The
corresponding query qo1 is defined as:

qo1(x, a)←triggers(x, a) ∧ Attribution(a).

The bindings for the query are passed to the obligation
handler ho, which will return a FOL theory T ′ that describes
the planned fulfilment of the obligations identified by the
bindings. In our example, for E1 the query qo1 gives the
binding {x 7→ u1, a 7→ a1}, for which the handler ho1 plans
to create an attribution action, described by the returned
theory:

T ′1 : triggers(u1, a1
′) ∧ Attribution(a1′).

For the explanation E2, the query qo1 gives no bindings, and
thus the obligation handler only returns the empty theory T ′2.

Step 4: Checking if obligation handling leads to compli-
ance:
After getting the descriptions of the planned obligation ful-
filments, we want to ensure that fulfilling them is sufficient
to make s compliant. For this we check whether T ∪ T ′ |=
φp[s]. If this is the case, we can proceed to the next step
and schedule the planned obligation fulfilments. Otherwise,
we found out that s is not only a temporary violation, but
should be prevented completely. In our example, we see
that T1 ∪ T ′1 |= φBY-NC[u1], but T2 ∪ T ′2 6|= φBY-NC[u2].
Thus, we prevent u2 from execution, but allow u1 and tell
the obligation handler ho1 to schedule the attribution a1′

(Step 5: Obligation handling).
A system architecture realizing the complete process of

Steps 1 to 5 is visualised in Figure 2.
In order, to ensure that every obligation can be unam-

biguously assigned to an obligation handler, one can require
that the qo queries define pairwise disjoint sets for different
obligations. Another, weaker, requirement would be that no
obligation definition is subsumed by an other definition. In

some systems, however, it may also be practical to pose
no such requirements and have an obligation subsuming
all other obligations, which has an handler that logs all
obligation instances.

V. IMPLEMENTATION AND APPLICATION

In this section, we describe how the proposed concepts
can be used for realising the use case of data usage restric-
tions. We then argue, how two popular policy formalisms
(Datalog and OWL) can be used with our approach, by
describing how the required operations can be realised with
standard reasoner methods. Finally, we briefly describe how
we implemented the approach for Datalog-based policies.

A. Realisation of Use Case

We already discussed the Creative Commons NonCom-
mercial, Attribution policy and its application to three dif-
ferent usages as a running example in the explanation of our
approach. The other two policies are given in the following:
• Creative Commons ShareAlike (abbreviated SA): de-

rived artefact should have the same policy:

SA(x)←Derivation(x) ∧ wasGenBy(a, x) ∧ hasPolicy(a, SA).

Assigning an allowed target policy for a generated arte-
fact, can be done automatically by an obligation handler
ho2 taking the bindings of the following obligation
query: qo2(a, p) ← hasPolicy(a, p). If the obligation
handler receives bindings that would assign incom-
patible policies to an artefact, the obligation handler
returns an empty theory back, meaning that it cannot
fulfil the obligations. Otherwise, it returns a theory
describing that a compatible policy is assigned to the
artefact, which is scheduled in case that the obligation
descriptions make the usage compliant.

• Electronic health record policy (abbreviated EHR):
doctors can use the artefact and store it for one year:

EHR(x)←
(
Usage(x) ∧ performedBy(x, a) ∧ Doctor(a)

)
∨(

Storage(x) ∧ performedBy(x, a) ∧ Doctor(a)∧

triggers(x, d) ∧ Deletion(d)∧

performedAt(d, t) ∧ t ≤ now() + 1y
)
.

To a storage action, which is classified as non-
compliant, at least one of the following applies: (i)
it is not performed by a doctor, or (ii) there is no
deletion scheduled. The former cannot be handled as
an obligation: allowing only doctors access to the
health record is a hard constraint, which cannot even
temporarily be violated. In contrast, an automated dele-
tion can be scheduled by an obligation handler in
the future, making the storage action compliant. The
corresponding obligation query is given as
qo3(d, t)← Deletion(d) ∧ performedAt(d, t).
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B. Applicability to Concrete Policy Formalisms

We used a Datalog-based policy formalism in this work,
as it is a popular choice for policy languages and has
desirable computational properties: compliance checks and
obligation identification can be solved via query evaluation,
which is decidable. Checking whether an obligation query
is subsumed by another query is a query containment
problem, which can be reduced to query evaluation [11].
Testing whether obligation queries are disjoint is equivalent
to testing disjointness of database views and queries, for
which algorithms exist [12]. Finally, there exist numerous
approaches to abductive reasoning that can be applied to
Datalog, e.g., [8], [10].

Other fragments of FOL, for which practical tools ex-
ist, are represented by Description Logics [13], namely
the Web Ontology Language (OWL) and its profiles [14].
OWL is also used for policy languages (e.g., [15], [16])
and defines concepts, which correspond to formulae with
one free variable, and thus is compatible to our approach.
Standard inference tasks for OWL reasoners cover almost
all required tasks for our procedure presented in this paper:
instance classification (for compliance checks and obligation
identification), class subsumption (for checking subsumption
of obligation queries) and class disjointness checks (for
testing disjointness of obligation queries). Missing is only
abduction, which is not regarded as a standard task, but
solved by several approaches, e.g., [9].

C. Implementation

We developed a prototypical implementation of our ap-
proach for Datalog-based policy languages, as described in
this paper. The prototype uses the DLV System [17] for
compliance classification and a custom obligation handling
system based on the abductive reasoning engine HYPRO-
LOG [18] running on SWI-Prolog [19]. The prototype is
not optimised, but is able to classify simple examples based
on our use case in less than 0.2 seconds and find and handle
obligations in less than 1 second on a 2.4 GHz standard
laptop computer. The conducted measurements show that an
integration into a fast design, compliance check, modification
life cycle is possible. More extensive performance measure-
ments will be conducted in future work, when the policy and
obligation engine is integrated into a concrete policy-aware
system for exposing compositions of data artefacts on the
Web.

VI. RELATED WORK

As noted before, the term of abductive reasoning goes
back to Peirce [6] and many technical solutions for different
logic formalisms were developed, e.g., [7], [8], [10], [9].
Related to our task to find out the reasons for a policy
non-compliance are so-called why not, respectively how to
questions [20]. Becker and Nanz explicitly mention the use
of abductive reasoning in policy systems to determine what

is missing to reach compliance [8]. Not targeted at policies
but at formal knowledge systems in general is the work of
Chalupsky and Ross for answering why not queries, i.e.,
giving reasons why some desired inference does not hold
[21]. The applications of explanations and abduction to
policies have in common that they aim at helping the user
to reach compliance. Our goal is to automatically identify
obligations and pass them to an obligation handler. Not
all missing pieces described by an explanation can just
be regarded as obligations, but could also be violations of
the policy. Finding out, which pieces are obligations and
whether they cover the full explanation is a non-trivial task
for a policy-based system, for which we presented to the
best of our knowledge, the first solution.

Xu and Fong present a policy language with obliga-
tions [22], for which they list a set of requirements taken
from surveying obligation policy languages in the literature,
including [23], [24], [25], [26], [27]. In contrast to the
languages analysed by Xu and Fong and the language they
propose, there are no special logic operators for repre-
senting obligations in our approach. Instead, domain- and
application-specific types of obligations can be defined. We
model only desired goal states, i.e., the states compliant to
a policy, and leave computation of what has to be done to
reach compliance (including the fulfilment of obligations) to
the policy system. This is in contrast to the other approaches,
which specify the actions that have to be performed directly
using the obligation operators. In the following, we describe
how the requirements identified by Xu and Fong [22] are
handled by our approach:
• Trigger and obligation: define under which conditions

the obligation is applicable, and what the obligation
is. In our approach, both are described in one logical
formula specifying the desired and compliant goal
states.

• Temporal constraint: specifies the time span in which
an obligation should be fulfilled. In our approach, this
can be modelled, if needed, as part of the domain ontol-
ogy. Depending on the application, different models of
time spans can be employed, e.g., (i) attribution must
be given at the same time as usage, or (ii) deletion
of artefact must take place latest one year after it was
stored.

• Penalty or reward: what happens if the obligation is
violated (penalty), respectively fulfilled (reward). A
penalty can just be modelled as another possibility to
reach compliance, namely by executing the protected
actions and fulfilling the penalty instead of the obli-
gation. A reward is simply a more relaxed policy, i.e.,
allowing more actions if the obligation is also fulfilled.

VII. CONCLUSIONS

We presented a novel approach to formalise obligations
and other compliance conditions in a uniform way. The
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approach enables goal-based policies on a high conceptual
level without the need for users to learn special operators
in the policy language. Instead definitions of obligations
can be specified using domain- and application-specific
vocabularies that are defined and understood by the users.
Explanations about what a policy subject lacks to compli-
ance are found by abductive reasoning. We presented a novel
method to check whether an explanation is fully covered by
obligations and to identify the obligations.

For future work, we plan to integrate the implemented
method in a concrete application, realising the automated
handling of obligations when using data with restricted
usages to create new services and data sources.
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