
 Decision Method of Training Data for Web Prefetching

Zhijie Ban Feilong Bao
 College of Computer Science, Inner Mongolia University, China

 e-mail: banzhijie@imu.edu.cn csfeilong@imu.edu.cn

Abstract—Web prefetching is an effective technique to reduce
user-perceived latency. Most studies mainly focus on prediction
algorithm but they ignore selection strategy of training data which
is an important part of web prefetching. This paper presents a
decision method based on monitoring prediction precision. It
divides user access sequence into different data blocks and the
changing features of prediction precision among data blocks
indicate whether some training data is outdated. According to the
varying trend of prediction precision, some user access requests are
inserted into or deleted from training data. We use two real web
logs to examine this proposed method and the simulation shows
that our method can significantly improve prefetching performance.

Keywords-web prefetching; sliding window; training data

I. INTRODUCTION
Web prefetching technique is one of the primary

solutions used to reduce user-perceived latency. The spatial
locality shown by user accesses makes it possible to predict
future accesses from the previous ones [1][2]. Web
prefetching system makes use of these predictions to
preprocess user requests before they are actually demanded.
Part of the network latency can be hidden if prefetching
system perfetchs those pages which are very likely to be
demanded in subsequent requests.

 To predict the user’s next request, a number of
prediction approaches were presented, which had achieved
an acceptable performance [3]. In the web prefetching
technique, part of user access sequence is used as training
samples to construct prediction model before user requests
are predicted. By training with samples, prediction model
includes user access patterns and some important
information, which provides a foundation for predicting the
user’s next request page. Thus training data is very
important to correctly predict user requests. However, few
studies focus on decision method of training data. Many
researchers random select one part of user access sequence
as training samples and another part is used as test samples.
Nanopoulos et al. used 75 percent of a week Clarknet log
available from the site http://ita.ee.lbl.gov/html/traces.html
as training data and 25 percent as test data [4]. Sarukkai
presented that 40000 samples of the EPA-1995 server log
were used as training samples and the remaining as test
samples [5]. Shi and Gu used 80 percent of one month’s
NASA -1995 log to train prediction model and 20 percent

Supported by the program of higher-level talents of Inner
Mongolia University (Z20090137) and national innovation
experiment program for university student (101012623)

as test data [6]. Only the papers slightly talked about
training data problem [7][8][9]. In order to verify client-
based web prefetching experiments, Lan and Ng [7]
obtained a proxy trace whose web pages were requested by
different users. Then, the log was partitioned into a number
of the single user’s access sequences. Finally, they
randomly selected continuous 14 days web accesses from
every user’s log to train prediction model and the fifteenth
day’s user requests were predicted according to the
constructed prediction model. During the experimental
period, they found that the web accesses of 14 days were
enough for describing user access patterns. So two-week log
was selected for every user as training samples. In order to
examine the web prefetching performance, Davison shown
the prediction model was not trained before predicting the
next user request [8]. He considered that this method was
better near to the real network environment. But the
prediction precision is very low if the prediction model is
seldom trained in the real prefetching system. In the low
precision’s condition, network resources such as network
bandwidth are wasted if predicted pages are prefetched.
Domènech and Sahuquillo studied how training data to
influence prefetching performance with two different
prediction models and 4 different logs [9]. They compared
prefetching performance using the old and current web log,
but they did not study how to decide training data.

 This paper presents one decision approach of training
data based on our previous work [10]. It partitions the user
access sequence into different continous data blocks
according to the access time of every request. Based on the
changing trend of prediction precision among different data
blocks, our method decides whether web accesses are
deleted from or added into training data. As a result,
prediction model space is decreased and prefetching
performance is improved.

The rest of the paper is organized as follows. Section 2
presents the related background. Section 3 describes the
decision strategy of training data and its algorithm. Section
4 gives the details of our experiments and testing results.
Section 5 is the summary and conclusions.

II. RELATED WORK
There is an important set of research works concentrating

on prefetching techniques to reduce the user perceived
latency. Various prediction models have been proposed to
model and predict a user's browsing behavior on the web.
Markatos and Chronaki proposed a Top-10 approach which
combined the popular documents of the servers with client

104

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

access characteristics [11]. Web servers regularly pushed
the most popular documents to web proxies, and then
proxies pushed those documents to the active clients. But
the approach only made use of page access frequency. In
order to solve the problem, the study in [12] presented a
prefetching algorithm based on prefetching in the context of
file systems [13]. The server built a dependency graph (DG)
where an arc from node A to B meant that B was likely to
be accessed within a short interval after an access to A.
Each arc was labeled the conditional probability. But the
DG model was not very accurate in predicting the user
browsing behavior because it only considered first-Order
dependency [4] and did not look far into the past to correctly
discriminate the different observed patterns. Thus, the
studies in [14][15] described the use of a kth-Order Markov
model for user request patterns. In a kth-Order Markov
model, each state represented the sequence of k previous
requests, and had conditional probabilities to each of the
next possible states. However, it is likely that there will be
instances in which the current context is not found in a kth-
Order Markov model if the context is shorter than the order
of the model. Therefore, the PPM (Prediction by Partial
Matching) model [16][17][18] which originates in the data
compression community, overcomes the problem. It trained
varying order Markov models and used all of them during
the prediction phase. Fan et al. studied how user access
latency could be reduced for low-bandwidth users by using
compression and PPM prediction model between clients and
proxies [17]. Bouras et al. studied prefetching’s potential in
the Wide Area by employing two prediction models [19].
These PPM models do not implement the online update and
timely reflect the changing user request patterns. An online
PPM with dynamic updating is presented [20]. But most of
them arbitrarily take a part of web log as training set and
another part as prediction set. Only the studies in [7][8][9]
slightly mention the training data problem. Lan and Ng
proposed a client-based web prefetching management
system, which was based on the caching schema of
Netscape Navigator [7]. In the experiments, users submitted
their web access requests throw their own machines to the
proxy server, and their prefetching system obtained each log
file that contained the log of each individual user’s web
access requests within a 2-week consecutive time period. A
2-week time period was chosen because it was sufficient to
show the web access pattern of each individual user based
on their observations during the experimental period. Thus,
they randomly chosen a 2-week consecutive time period for
each user to represent the access history of the user as long
as the user accessed the web on the fifteenth day, the day
after the 2-week consecutive time period. But Domènech
and Sahuquillo considered that the length of training period
may impact on prefetching performance, either improving
or degrading it [9]. In addition, this length may involve a
high amount of information and therefore important
computer resources are consumed. Thus, they analyzed that
how the training affects the prediction performance using

current and old web traces. Their experimental results
showed that while in old traces the training, in general,
improves performance, when using recent traces this
training may degrade performance because users’ access
pattern had changed. Davison evaluated prediction
algorithms without previous training [8]. This procedure
was argued to be more realistic than freezing the learning
after a training period [9]. But all of them do not study how
to dynamically determine training data according to
different user access behaviors.

III. DECISION APPROACH
In this section, we specify concept definition, and give

decision strategy and decision algorithm.

A. Concept definition
 We firstly give some related concepts before decision

method is introduced.
 Definition 1 User access sequence is an orderly

sequence composed of a series of two-tuples such as <T1,
I1>, <T2, I2>, <T3, I3>, ..., where Ti(i=1,2,3…) is the access
time, Ii denotes the entity, Tj is larger than Ti if j is larger
than i.

The time of two-tuples has strong restriction and denotes
the absolute time of user request. The entity of two-tuples
represents every request’s attributes. Suppose the entity I
includes k attributes {X0 ,X1, …, Xk-1}, where the value range
of the attribute Xi is d(Xi), the attribute space of the entity I
is {d(X0) ,d(X1),…,d(Xk-1)}. In the server’s log, every <T,I>
corresponds to one user request record, where T represents
the user absolute request time and I mainly includes IP
address, the request page’s URL and so on.

Definition 2 Sliding window is defined a user access
sequence including h user requests, where h is the number
of user requests in the sliding window.

Figure 1 gives a sliding window’s sketch map with h
user requests. In order to describe simple, the two-tuples of
user request sequence is denoted as aj, where j is the relative
access time. In the sliding window, ai is the eldest user
request, ai+h-1 is the newest one and ai+h is the user request
which will slide into the sliding window.

Figure 1. Sliding window with h user requests

 Definition 3 Data block refers to one user request
sequence and all requests are ranked according to the access
time from the eldest one to the newest one. Partition of data
blocks may take time segment or request number as
dimension. We choose the former because there may exist a
large number of requests in a short time. When the emergent
event happens, data block using fixed request number as
dimension can not represent user access behaviors while

105

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

data block with the time dimension better reflects user
access features.

 Definition 4 Window includes one user access
sequence during a period of time and is partitioned into n
data blocks according to the same time dimension. The label
of data blocks in one window varies from 0 to n-1. Figure 2
depicts a window’s sketch map with n data blocks. In the
window, the data block labeled 0 is the eldest and one
labeled n-1 is the newest. The user request number of every
data block may be different while the time periods are the
same.

Figure 2. Window with n data blocks

B. Decision strategy
The right training data is important for constructing

prediction model and predicting the user next request page.
If training data includes too little access requests, the
relevant user requests may be forgotten so that some
correctly access features may be deleted. If training data
includes excessive user accesses, the prediction model do
not also represent the browsing characteristics of current
users because it may include some outdated user access
patterns and browsing infromation.

 We use one sliding window SW and two windows (WS
and WL) to dynamically adjust training data to reduce the
prediction model’s space and improve prefetching
performance. The sliding window SW includes the total
user access sequence in the prediction model. WS is called
the small window which includes some continuous data
blocks. WL is called the large window which includes WS
and other some continuous data blocks. WS is a part of the
large window. The sliding window SW includes WL and the
newest user access requests which can not compose one data
block. In order to decide training data, the large window
size is adjusted according to prediction precision’s changing
features among data blocks of the small window so that the
sizes of the sliding window and WS change.

 Figure 3 gives the relation between the small window
and the large window. In Figure 3, the total user access
sequence is regarded as a series of user requests. It is
denoted a1, a2, a3, …, where ai stand for usr request and i is
the relative access time of the ith user request. The user
access sequence is partitioned into some data blocks
according to the same time, where DB0 is the eldest data
block and DBn is the newest one in the large window. The
large window WL includes n+1 continuous data blocks and
the small window WS includes m continuous data blocks,
where m is smaller than n, and the m data blocks are the
newest in the large window.

Figure 3. Relation between small window and large window

In order to specify the relation between data blocks of
the large window and the user access sequence used to train
prediction model, Figure 4 gives the relations among the
large window, the small window and the sliding window.
By the time dimension, the total user access sequence is
partitioned into some continuous data blocks and some
subsequent user requests which can not form one data block.
The sliding window represents the total user access
sequence which is used to construct prediction model. The
large window includes all of data blocks labeled from 0 to n.
The small window is a part of the large window, whose
data blocks are labeled from n-m+1 to n.

Figure 4. Relations among WL, WS and sliding window

For the sake of choosing training data, the total user
access requests with access log and current user requests are
regarded as one user access sequence which is partitioned
into data blocks. WL ,WS and sliding window are
respectively set the original value. The original prediction
model is constructed with the user access sequence in the
sliding window according to certain prediction algorithm.
Then the sizes of WL ,WS and sliding window are adjusted
based on prediction precision’s changing. The essence of
adjusting strategy contains three aspects. First, the sliding
window slides ahead and the new user requests are
continuous inserted into the sliding window. Second, the
prediction model is updated in order to capture the changing
user request patterns in time. Third, if the new user access
request can compose one new data block, the sizes of
WL ,WS increase one and these new user requests are
inserted into two windows. At the same time, some elder
data blocks may be deleted from prediction model according
to some rules and windows’ sizes will change. The concrete
adjusting rules are described as following.

 1) If the small window’s precision is consistent decrease,
the sizes of WL and WS are shortened and some elder data
blocks are deleted from prediction model. The user access
requests in the deleted data blocks are obliterated from the
sliding window whose length is reduced accordingly.
Consistent decrease indicates that any difference between

106

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

the prediction precision of the newest data block in the
small window and any other is negative. Consistent decrease
shows that the outdated access information reduces
prediction precision and the prediction model better
represents user access characteristics of the elder data
blocks which are not consistent with the new user browsing
behaviors. Thus the prediction precision of the newest data
block falls.

2) If the small window’s precision is consistent increase,
the width of WL and WS is widened. The large window and
small window includes the newest data block and their sizes
are increased. Consistent increase indicates that any
difference between the prediction precision of the newest
data block in the small window and any other is plus.
Consistent increase denotes the newest user requests
enhance prediction capability of the original prediction
model so that training data increases.

3) If the small window’s precision is stability, the sizes
of WL and WS are not changed. The precision stability is
defined that any difference is very smaller between the
prediction precision of the newest data block in the small
window and any other. It shows that the newest user
requests are consistent with the original model. Thus the
large window and the small window cover the newest data
block and the eldest data block are deleted from them. At
the same time, the corresponding browsing patterns are
deleted from the prediction model and the new user requests
are added.

4) The prediction model is in a conversion phase if any
instance above mentioned does not happen. In order to
avoid forgetting the elder training samples too earlier, the
wide of the large window is enlarged and the small
window’s one is kept.

C. Decision algorithm
Suppose that the length of WL is n and the length of WS

is m, where n is greater than m . The large window’s data
blocks from the eldest to the newest are respectively labeled
from 0 to n-1. When a new user request appears, the sliding
window goes forward and the new user request is added into
it while the bottom of the sliding window does not change.
If the new user requests of the sliding window form one new
data block n, the changing features of the small window’s
prediction precision are calculated and the sizes of WL and
WS are changed according to adjusting rules. Then the
length of the sliding window changes and the prediction
model’s access patterns are updated. In the following
section, we specify concrete algorithm and make use of the
prediction model which is our previous work [19]. To make
this process clear, decision of training data is separated into
two steps. First step is the original values of WL, WS and the
sliding window are respectively set. At the same time, the
original prediction model PM is constructed with the user
access sequence in the sliding window. Second step is to
change training data by adjusting the lengths of different

windows. The following algorithm DecisionMethod gives
the adjusting strategy.
Algorithm DecisionMethod(WL, WS, SW, PM, RS)
Input: WL is the large window ,WS is the small window, SW
is the sliding window, PM is prediction model and RS is the
new user request sequence.
Output: PM, WL, WS, SW
BEGIN
For (every request A of RS)
BEGIN

 A is inserted into SW and PM
WHILE (one new data block appears)

BEGIN
n=n+1;
m=m+1;//The sizes of WL and WS increases one.
IF (prediction precision of WS is consistent decrease)

 BEGIN
 n=n-2;

//The eldest two data blocks are deleted from WL
 m=n/2;// To change the size of WS
 Every request in the deleted data blocks is deleted

from SW and PM.
 END

ELSE
IF (prediction precision of WS is stable)

BEGIN
 n=n-1; //The eldest data block is deleted from WL
m=m-1;//To keep the size of two windows

 Every request in the deleted data blocks is deleted
from SW and PM.

END
ELSE
IF (prediction precision of WS is consistent increase)

 m=n/2;
 ELSE m=m-1; //To increase the large window’s size
 END
END

When a new user request appears, we make use of the
algorithm in the [20] and its data structure to insert the
request into the prediction model so that the changing user
behavior patterns are updated in time. When the large
windows is shorten, some data blocks are deleted from it
and the corresponding user access information is forgotten
so that prediction model reduces the outdated browsing
patterns and saves space.

IV. EXPERIMENTS
To evaluate our decision method called DM, we adopt

Microsoft Visual C++ 6.0 to develop a series of
experiments. To compare our method with other, we
simulate other system without any training data selection
strategy called Non-Selection. DM and Non-Selection both
makes use of the prediction model in the [20] during
experiments. We compare our approach’s performance with
Non-Selection from the log day number of training data,

107

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

prediction model’s space, prediction precision, hit rate, and
traffic incremental rate.

A. Logs and parameters set
We do the trace-driven simulation using two real trace

files. One file is from Chinese certain medium-sized
education institution’s proxy server log, called CE log. This
trace file is collected by one proxy software from January 1,
2005 to January 26, 2005. Every record includes request
object’s access information such as IP ,URL and access time.
Another file is from American National Lab of Applied
Network Research (NLANR) which provides web access
logs continuous seven days in one ftp server. We download
one proxy server log by authorized username and password,
called NLANR_NY, which is composed of continuous user
accesses from June 3, 2007 to June 28, 2007.

We remove all dynamically generated files. These files
can be in types of “.asp”, “.php”, “.cgi” and so on. We also
filter out embedded image files such as “.gif” and “.jpg”
because we believe the image file is an embedded file in the
HTML file. Access request sequence of each log file is
partitioned into user sessions. One user session is one
orderly access sequence from the same user. If a user has
been idle for more than two hours, we assume that the next
request from the same user starts a new user session. We
recognize that the time interval of partitioning sessions may
introduce some inaccuracy in the simulator, but it will not
affect the evaluation of different models.

All of the models make the following configuration. A
global model is constructed for all users in each test. All
predictions are based on the model. Because of physical
systems limitation (e.g. network bandwidth), each model
predicts at most a request according to a user’s current
request every time. The prefetching cache size is formulated
in terms of number of web pages, rather than number of
bytes. The approach is more intuitive for interpretation of
the results, without altering their significance [16]. The
prefetching cache replacement algorithm is LRU. The size
of conditional probability threshold affects both hit rate and
the amount of traffic increment. A larger threshold allows
less data to be prefetched, which is beneficial to traffic, but
may decrease hit rate. We take into account a trade-off
probability threshold. Thus, conditional probability
threshold is set to 0.1.

For our decision method, user access sequence is
partitioned into data blocks. Each data block includes one
day’s user requests so that CE and NLANR_NY both
includes 26 data blocks. Each data block is partitioned into
some user sessions according to IP address and time
threshold. The large window includes 7 data blocks and the
small window's length is 3 because people regularly browse
web every week.

B. Evaluation parameters
We employ the following four metrics [4][21] in the

experiments.

 Definition 5 Precision is the ratio of the number of
correct predictions to the number of total predictions. If
users in the subsequent requests access the predicted page
that is in the prefetching cache, the prediction is considered
to be correct, otherwise it is incorrect. The metric represents
the fraction of predicted pages that are actually used.

Definition 6 Hit rate refers to the percentage of user
access requests that are found in the prefetching cache.

Definition 7 space is the required memory allocation
measured by the number of nodes for building a prediction
model in the web server for prefetching.

Definition 8 Traffic incremental rate is the ratio of the
traffic from undesired pages to the traffic from the total user
requests. Some of the prefetched pages will not be actually
requested. Therefore, they increase the network traffic
overhead.

Web prefetching aims at maximizing the first three
metrics and minimizing the last one. It is obvious that these
metrics are conflicting. The more pages are prefetched, the
more probable it is for some of them to be accessed and the
hit rate increases. At the same time, precision decreases and
network traffic increment is high. Thus, it is a trade-off
among these objectives that the model should consider.

C. Decision of training data
In order to decide training data, we respectively choose a

part of CE and NLANR_NY to do a series of experiments.
Figure 5 depicts the changing process of training data,
where abscissa denotes the log’s day number and ordinate
is the log’s day number of training data. For example,
abscissa is 20, which denotes that 20 days’ log is provided
to train prediction model.

8

11

14

17

20

8 11 14 17 20 23

Accumulated log days

T
r
a
i
n
i
n
g

d
a
t
a

d
a
y
s

(a) Training data versus accumulated log (CE)

6

9

12

15

18

8 11 14 17 20 23

Accumulated log days

T
r
a
i
n
i
n
g

l
o
g

d
a
y
s

(b) Training data versus accumulated log (NLANR_NY)

Figure 5. Decision of training data

108

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

As presented in Figure 5, DM respectively selects the
latest 15 days log and 12 days log to construct prediction
model for CE and NLANR_NY when the day number of
accumulated log is 22. We can conclude that the prediction
precision of the small window is consistent increase when
the day number of accumulated log varies from 14 to 22
from Figure 5(a) because training data is increasing. At the
same time, it also displays that training data decreases when
the changing trend of prediction precision is consistent
decrease that takes place between days 11 to 14 in Figure
5(a).

D. Comparision of two approaches’s training data
In the set of experiments, we display the simulation

results of training data comparison among two methods. In the
condition of the same day number of accumulated log, Figure 6
gives the log day number of training data with CE and
NLANR_NY.

(a) Comparison of training data days using CE log

(a) Comparison of training data days using NLANR_NY log

Figure 6. Training data days versus accumulated log days using two logs

As presented in Figure 6, the day number of training
data with DM is less than Non-Selection’s when the day
number of accumulated log varies from 20 to 25. Because
the training data in our method is chosen by the changing
trend of the small window’s precision during constructing
prediction and the outdated user requests are deleted from
model and the log day number of training data is reduced.

E. Prefetching performance test
We compare the prefetching performance of DM and

Non-Selection with two logs in the condition of the same day
number of accumulated log. Figure 7 and Figure 8
respectively show different parameter’s comparison of
prefetching performance using CE and NLANR_NY. In the

two figures, abscissa is the day number of accumulated log
and ordinate respectively represents precision, hit rate and
traffic incremental rate for (a), (b), (c) of every figure.

(a) Precision comparison

(b)Hit rate comparison

(c) Comparison of traffic incremental rate
Figure 7. Prefetching performance comparison(CE Log)

In Figure 7, our method and Non-Selection respectively
adopt the corresponding result of training data which is
displayed in Figure 6 (a). According to the training data, one
prediction model is constructed and the succedent one day’s
user requests are predicted based on the model. For example,
DM and Non-Selection respectively use 14 days log and 20
days log to construct the prediction model when abscissa is
20. Then the 21th day’s requests are predicted. As presented
in Figure 7, the prefetching performance of DM exceeds
Non-Selection’s. The reason is the Non-Selection method
ignores the choosing problem of training data so that the
corresponding prediction model does not completely
represent the user browsing behaviors. At the same time,
DM adopts the technology of adjusting windows to change

109

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

training data so that some outdated access requests are
deleted from the prediction model.

(a) Precision comparison

(b) Hit rate comparison

Tr
a
ff

ic

in

c
re

m
en

t
al

ra

t
e(

%
)

(c) Comparison of traffic incremental rate

Figure 8. Prefetching performance comparison(NLANR_NY Log)

In Figure 8, our method and Non-Selection respectively
adopt the corresponding result of training data which is
displayed in Figure 6(b). As presented from Figure 8(a) to
(c), precision of DM is average higher 0.77% than Non-
Selection’s and traffic incremental rate is average less
0.49% than Non-Selection’s. Although our approach does
not have better hit rate or in some cases even worse from the
experimental results, it is evident that DM prefetches more
web pages correctly than Non-Selection and this is achieved
with less cost in the network traffic that has less adverse
effect on other network applications. Thus, our algorithm
achieves the best performance.

F. Model’s space test
We compare prediction model’s space of DM with Non-

Selection’s using two logs in the condition of the same day
number of accumulated log. Figure 9 gives the test results

using CE and NLANR_NY, where abscissa represents the
day number of accumulated log and ordinate denotes the
space reduction rate. It is calculated using the following
formula.

spacesSelectionNon
spacesDMspacesSelectionNonratereductionspace

'
''

−
−−

=

0

10

20

30

40

50

20 21 22 23 24 25

Accumulated log days

S
pa

ce

re

du
ct

io
n
 r

at
e(

%)

CU NLANR_NY

Figure 9. Comparison of prediction model’s space using two logs

Figure 9 shows that prediction model’s space of DM is
always less than Non-Selection’s for different logs. The
space reduction rate is 25.97% for CE log and it is 41.96%
for NLANR_NY log when the day number of accumulated
log equals to 22. Figure 9 indicates that our method
effectively reduces the prediction model’s space.

V. CONCLUSION AND FUTURE WORK
In this paper, we consider the choosing problem of

training data and propose a decision method of training data,
which is developed according to monitor prediction
precision’s changing features. It is designed to partition user
access sequence into continuous data blocks and makes use
of one sliding window, a small window and a large window
to capture the precision’s characteristics among data blocks
so that training data is adjusted. We compare our method
with Non-Selection approach from model’s space and
prefetching performance using two real logs. The
experiments show that, for the different day number of
accumulated log, our method outperforms Non-Selection’s
and achieves higher prediction precision with quite low
traffic incremental rate and less model’s space.

The traces we use are from years ago and some users’
behaviors in web surfing could have changed. In the future,
we will try to obtain web data from different sources more
recent and test the performance of our algorithms.

REFERENCES
[1] J. Domenech, J. A. Gil, et al, “Using Current Web Structure to

Improve Prefetching Performance,” Science Network, vol. 54, Dec.
2009, pp.1404-1417.

[2] P. Venketesh, D. R. Venkatesan, and L. Arunprakash, “Semantic Web
Prefetching Scheme Using Naive Bayes Classifier,” International
Journal of Computer Science and Applications, vol. 7, 2010, pp. 66-
78.

110

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

[3] B. Ossa, J. Sahuquillo, et al, “An Empirical Study on Maximum
Latency Saving in Web prefetching,” Proc. IEEE Web Intelligence
and Intelligent Agent, IEEE Press, Sep. 2009, pp. 556-559.

[4] A. Nanopoulos, D. Katsaros, and Y. Manolopoulos, “A Data Mining
Algorithm for Generalized Web Prefetching,” IEEE Transactions on
Knowledge and Data Engineering, Sep. 2003, Vol. 15, NO. 5, pp.
1155-1169.

[5] R. Sarukkai, “Link Prediction and Path Analysis Using Markov
Chains,” Proceedings of the 9th International World Wide Web
Conference, Amsterdam, Holand, May 2000, pp. 377-386.

[6] L. Shi, Z. Gu, et al, “Popularity-Based Selective Markov Model,”
Proc. IEEE/WIC/ACM International Conference on Web Intelligence,
Beijing, China, Sep. 2004, pp. 504-507.

[7] K. Lau and Y. Ng, “A Client-Based Web Prefetching Management
System Based on Detection Theory,” Lecture Notes in Computer
Science, Springer, 2004, vol. 3293, pp. 129-143.

[8] B. D. Davison, “Learning Web Request Patterns,” Web Dynamics:
Adapting to Change in Content, Size, Topology and Use. Springer,
2004, pp. 435-460.

[9] J. Domènech, J. Sahuquillo, et al, “How Current Web Generation
Affects Prediction Algorithms Performance,” Proceedings of the 13th
International Conference on Software, Telecommunications and
Computer Networks, Split, Croatia, Sep. 2005.

[10] Z. Ban, Z. Gu, and Y. Jin, “Selection of Training Period Based on
Two-Window,” Proceedings of the 10th International Conference on
Advanced Communication Technology, IEEE Computer Society
Press, Feb. 2008, pp. 2043-204.

[11] E. Markatos and C. Chronaki, “A Top-10 Approach to Prefetching on
the Web,” Proceedings of the Eighth Annual Conference of the
Internet Society, Geneva, Switzerland, 1998.

[12] V. N. Padmanabhan and J. C. Mogul, “Using Predictive Prefetching
to Improve World Wide Web Latency,” Computer Communication
Review, 1996, vol. 26, NO. 3, pp. 22-36.

[13] J. Griffioen and R. Appleton, “Reducing File System Latency Using a
Predictive Approach,” Proceedings of Summer USENIX Technical
Conference, 1994, pp. 197-207.

[14] J. Borges and M. Levene, “Data Mining of User Navigation Patterns,”
Proceedings of WEBKDD, 1999, pp. 92-111.

[15] Z. Su, Q. Yang, et al, “WhatNext: A Prediction System for Web
Requests Using N-Gram Sequence Models,” Proceedings of the First
International Conference on Web Information Systems Engineering,
2000, pp. 200-207.

[16] T. Palpanas and A. Mendelzon, “Web Prefetching Using Partial
Match Prediction” Proceedings of the Fourth Web Caching Workshop,
San Diego, California, 1999.

[17] L. Fan, P. Cao, and Q. Jacobson, “Web Prefetching Between Low-
Bandwidth Clients and Proxies: Potential and Performance,”
Proceedings of the ACM SIGMETRICS'99, Atlanta, Georgia, May
1999.

[18] M. Deshpande and G. Karypis, “Selective Markov Models for
Predicting Web Page Accesses,” ACM Transactions on Internet
Technology, 2004, vol. 4, NO.2, pp. 163-184.

[19] C. Bouras, A. Konidaris, and D. Kostoulas, “Predictive Prefetching
on the Web and its Potential Impact in the Wide Area,” World Wide
Web: Internet and Web Information Systems, 2004, vol.7, NO. 2, pp.
143–179.

[20] Z. Ban, Z. Gu, and Y.Jin, “An Online PPM Prediction Model for Web
prefetching,” Proceedings of the 9th ACM International WoTrkshop
on Web Information and Data Management, Nov. 2007, pp. 89-96.

[21] J. Domènech, J. A. Gil, et al. “Web Prefetching Performance Metrics:
A Survey,” Performance Evaluation, 2006, vol. 63, NO. 9, pp. 988-
1004.

111

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

