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Abstract—Web prefetching is an effective technique to reduce 
user-perceived latency. Most studies mainly focus on prediction 
algorithm but they ignore selection strategy of training data which 
is an important part of web prefetching. This paper presents a 
decision method based on monitoring prediction precision. It 
divides user access sequence into different data blocks and the 
changing features of prediction precision among data blocks 
indicate whether some training data is outdated. According to the 
varying trend of prediction precision, some user access requests are 
inserted into or deleted from training data. We use two real web 
logs to examine this proposed method and the simulation shows 
that our method can significantly improve prefetching performance.  

Keywords-web prefetching; sliding window; training data 

I.  INTRODUCTION  
Web prefetching technique is one of the primary 

solutions used to reduce user-perceived latency. The spatial 
locality shown by user accesses makes it possible to predict 
future accesses from the previous ones [1][2]. Web 
prefetching system makes use of these predictions to 
preprocess user requests before they are actually demanded. 
Part of the network latency can be hidden if prefetching 
system perfetchs those pages which are very likely to be 
demanded in subsequent requests. 

  To predict the user’s next request, a number of 
prediction approaches were presented, which had achieved 
an acceptable performance [3]. In the web prefetching 
technique, part of user access sequence is used as training 
samples to construct prediction model before user requests 
are predicted. By training with samples, prediction model 
includes user access patterns and some important 
information, which provides a foundation for predicting the 
user’s next request page. Thus training data is very 
important to correctly predict user requests. However, few 
studies focus on decision method of training data. Many 
researchers random select one part of user access sequence 
as training samples and another part is used as test samples. 
Nanopoulos et al. used 75 percent of a week Clarknet log 
available from the site http://ita.ee.lbl.gov/html/traces.html 
as training data and 25 percent as test data [4]. Sarukkai 
presented that 40000 samples of the EPA-1995 server log 
were used as training samples and the remaining as test 
samples [5]. Shi and Gu used 80 percent of one month’s   
NASA -1995 log   to train prediction model and 20 percent 
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as test data [6]. Only the papers slightly talked about 
training data problem [7][8][9]. In order to verify client-
based web prefetching experiments, Lan and Ng [7] 
obtained a proxy trace whose web pages were requested by 
different users. Then, the log was partitioned into a number 
of the single user’s access sequences. Finally, they 
randomly selected continuous 14 days web accesses from 
every user’s log to train prediction model and the fifteenth 
day’s user requests were predicted according to the 
constructed prediction model. During the experimental 
period, they found that the web accesses of 14 days were 
enough for describing user access patterns. So two-week log 
was selected for every user as training samples. In order to 
examine the web prefetching performance, Davison shown 
the prediction model was not trained before predicting the 
next user request [8]. He considered that this method was 
better near to the real network environment. But the 
prediction precision is very low if the prediction model is 
seldom trained in the real prefetching system. In the low 
precision’s condition, network resources such as network 
bandwidth are wasted if predicted pages are prefetched. 
Domènech and Sahuquillo studied how training data to 
influence prefetching performance with two different 
prediction models and 4 different logs [9]. They compared 
prefetching performance using the old and current web log, 
but they did not study how to decide training data. 

  This paper presents one decision approach of training 
data based on our previous work [10]. It partitions the user 
access sequence into different continous data blocks 
according to the access time of every request. Based on the 
changing trend of prediction precision among different data 
blocks, our method decides whether web accesses are 
deleted from or added into training data. As a result, 
prediction model space is decreased and prefetching 
performance is improved. 

The rest of the paper is organized as follows. Section 2 
presents the related background. Section 3 describes the 
decision strategy of training data and its algorithm. Section 
4 gives the details of our experiments and testing results. 
Section 5 is the summary and conclusions. 

II. RELATED WORK   
There is an important set of research works concentrating 

on prefetching techniques to reduce the user perceived 
latency. Various prediction models have been proposed to 
model and predict a user's browsing behavior on the web. 
Markatos and Chronaki proposed a Top-10 approach which 
combined the popular documents of the servers with client 
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access characteristics [11]. Web servers regularly pushed 
the most popular documents to web proxies, and then 
proxies pushed those documents to the active clients. But 
the approach only made use of page access frequency. In 
order to solve the problem, the study in [12] presented a 
prefetching algorithm based on prefetching in the context of 
file systems [13]. The server built a dependency graph (DG) 
where an arc from node A to B meant that B was likely to 
be accessed within a short interval after an access to A. 
Each arc was labeled the conditional probability. But the 
DG model was not very accurate in predicting the user 
browsing behavior because it only considered first-Order 
dependency [4] and did not look far into the past to correctly 
discriminate the different observed patterns. Thus, the 
studies in [14][15] described the use of a kth-Order Markov 
model for user request patterns. In a kth-Order Markov 
model, each state represented the sequence of k previous 
requests, and had conditional probabilities to each of the 
next possible states. However, it is likely that there will be 
instances in which the current context is not found in a kth-
Order Markov model if the context is shorter than the order 
of the model. Therefore, the PPM (Prediction by Partial 
Matching) model [16][17][18] which originates in the data 
compression community, overcomes the problem. It trained 
varying order Markov models and  used all of them during 
the prediction phase. Fan et al. studied how user access 
latency could be reduced for low-bandwidth users by using 
compression and PPM prediction model between clients and 
proxies [17]. Bouras et al. studied prefetching’s potential in 
the Wide Area by employing two prediction models [19]. 
These PPM models do not implement the online update and 
timely reflect the changing user request patterns. An online 
PPM with dynamic updating is presented [20]. But most of 
them arbitrarily take a part of web log as training set and 
another part as prediction set. Only the studies in [7][8][9] 
slightly mention the training data problem. Lan and Ng 
proposed a client-based web prefetching management 
system, which was based on the caching schema of 
Netscape Navigator [7]. In the experiments, users submitted 
their web access requests throw their own machines to the 
proxy server, and their prefetching system obtained each log 
file that contained the log of  each individual user’s web 
access requests within a 2-week consecutive time period. A 
2-week time period was chosen because it was sufficient to 
show the web access pattern of each individual user based 
on their observations during the experimental period. Thus, 
they randomly chosen a 2-week consecutive time period for 
each user to represent the access history of the user as long 
as the user accessed the web on the fifteenth day, the day 
after the 2-week consecutive time period. But Domènech 
and Sahuquillo considered that the length of training period 
may impact on prefetching performance, either improving 
or degrading it [9]. In addition, this length may involve a 
high amount of information and therefore important 
computer resources are consumed. Thus, they analyzed that 
how the training affects the prediction performance using 

current and old web traces. Their experimental results 
showed that while in old traces the training, in general, 
improves performance, when using recent traces this 
training may degrade performance because users’ access 
pattern had changed. Davison evaluated prediction 
algorithms without previous training [8]. This procedure 
was argued to be more realistic than freezing the learning 
after a training period [9]. But all of them do not study how 
to dynamically determine training data according to 
different user access behaviors.  

III.   DECISION APPROACH 
In this section, we specify concept definition, and give 

decision strategy and decision algorithm. 

A.  Concept definition 
  We firstly give some related concepts before decision 

method is introduced. 
  Definition 1 User access sequence is an orderly 

sequence composed of a series of two-tuples such as <T1, 
I1>, <T2, I2>, <T3, I3>, ..., where Ti(i=1,2,3…) is the access 
time, Ii denotes the entity, Tj is larger than Ti if j is larger 
than i.  

The time of two-tuples has strong restriction and denotes 
the absolute time of user request. The entity of two-tuples 
represents every request’s attributes. Suppose the entity I 
includes k attributes {X0 ,X1, …, Xk-1}, where the value range 
of the attribute Xi is d(Xi), the attribute space of the entity I 
is {d(X0) ,d(X1),…,d( Xk-1)}. In the server’s log, every <T,I> 
corresponds to one user request record, where T represents 
the user absolute request time and I mainly includes IP 
address, the request page’s URL and so on.   

Definition 2 Sliding window is defined a user access 
sequence including h user requests, where h is the number 
of user requests in the sliding window. 

Figure 1 gives a sliding window’s sketch map with h 
user requests. In order to describe simple, the two-tuples of 
user request sequence is denoted as aj, where j is the relative 
access time. In the sliding window, ai is the eldest user 
request, ai+h-1 is the newest one and ai+h is the user request 
which will slide into the sliding window. 

 
Figure 1.  Sliding window with h user requests 

  Definition 3 Data block refers to one user request 
sequence and all requests are ranked according to the access 
time from the eldest one to the newest one. Partition of data 
blocks may take time segment or request number as 
dimension. We choose the former because there may exist a 
large number of requests in a short time. When the emergent 
event happens, data block using fixed request number as 
dimension can not represent user access behaviors while 
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data block with the time dimension better reflects user 
access features. 

  Definition 4 Window includes one user access 
sequence during a period of time and is partitioned into n 
data blocks according to the same time dimension. The label 
of data blocks in one window varies from 0 to n-1. Figure 2 
depicts a window’s sketch map with n data blocks. In the 
window, the data block labeled 0 is the eldest and one 
labeled n-1 is the newest. The user request number of every 
data block may be different while the time periods are the 
same. 

 
Figure 2.  Window with n data blocks 

B.  Decision  strategy 
The right training data is important for constructing 

prediction model and predicting the user next  request page. 
If training data includes too little access requests, the 
relevant user requests may be forgotten so that some 
correctly access features may be deleted. If training data 
includes excessive user accesses, the prediction model  do 
not also represent the browsing characteristics of current 
users because it may include some outdated user access 
patterns and browsing infromation.  

   We use one sliding window SW and two windows (WS 
and WL) to dynamically adjust training data to reduce the 
prediction model’s space and improve prefetching 
performance. The sliding window  SW includes the total 
user access sequence in the prediction model. WS is called 
the small window which includes some continuous data 
blocks. WL is called the large window which includes WS 
and other some continuous data blocks. WS is a part of the 
large window. The sliding window SW includes WL and the 
newest user access requests which can not compose one data 
block. In order to decide training data, the large window 
size is adjusted according to prediction precision’s changing 
features among data blocks of the small window so that the 
sizes of the sliding window and  WS change.  

   Figure 3 gives the relation between the small window 
and the large window. In Figure 3, the total user access 
sequence is regarded as a series of user requests. It is 
denoted a1, a2, a3, …, where ai stand for usr request and i is 
the relative access time of the ith user request. The user 
access sequence is partitioned into some data blocks 
according to the same time, where DB0 is the eldest data 
block and DBn is the newest one in the large window. The 
large window WL includes n+1 continuous data blocks and 
the small window WS includes m continuous data blocks, 
where m is smaller than n, and the m data blocks are the 
newest in the large window.  

 
Figure 3.  Relation between small window and large  window 

In order to specify the relation between data blocks of 
the large window and the user access sequence used to train 
prediction model, Figure 4 gives the relations among the 
large window, the small window and the sliding window. 
By the time dimension, the total user access sequence is 
partitioned into some continuous data blocks and some  
subsequent user requests which can not form one data block. 
The sliding window represents the total user access 
sequence which is used to construct prediction model. The 
large window includes all of data blocks labeled from 0 to n. 
The small window is a part of  the large window, whose 
data blocks are labeled from n-m+1 to n. 

 
Figure 4.   Relations among WL, WS and sliding window 

For the sake of choosing training data, the total user 
access requests with access log and current user requests are 
regarded as one user access sequence which is partitioned 
into data blocks. WL ,WS and sliding window are 
respectively set the original value. The original prediction 
model is constructed with the user access sequence in the 
sliding window according to  certain prediction algorithm. 
Then the sizes of WL ,WS and sliding window are adjusted 
based on prediction precision’s changing. The essence of 
adjusting strategy contains three aspects. First, the sliding 
window slides ahead and the new user requests are 
continuous inserted into the sliding window. Second, the 
prediction model is updated in order to capture the changing 
user request patterns in time. Third, if the new user access 
request can compose one new data block, the sizes of  
WL ,WS increase one and these new user requests are 
inserted into two windows. At the same time, some elder 
data blocks may be deleted from prediction model according 
to some rules and windows’ sizes will change. The concrete 
adjusting rules are described as following. 

 1) If the small window’s precision is consistent decrease, 
the sizes of WL and WS are shortened and some elder data 
blocks are deleted from prediction model. The user access 
requests in the deleted data blocks are obliterated from the 
sliding window whose length is reduced accordingly. 
Consistent decrease indicates that any difference between 
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the prediction precision of the newest data block in the 
small window and any other is negative. Consistent decrease 
shows that the outdated access information reduces 
prediction precision and the prediction model better 
represents user access characteristics of the elder data 
blocks which are not consistent with the new user browsing 
behaviors. Thus the prediction precision of the newest data 
block falls. 

2) If the small window’s precision is consistent increase, 
the width of WL and WS is widened. The large window and 
small window includes the newest data block and their sizes 
are increased. Consistent increase indicates that any 
difference between the prediction precision of the newest 
data block in the small window and any other is plus. 
Consistent increase denotes the newest user requests 
enhance prediction capability of the original prediction 
model so that training data increases.  

3) If the small window’s precision is stability, the sizes 
of WL and WS are not changed. The precision stability is 
defined that any difference is very smaller between the 
prediction precision of the newest data block in the small 
window and any other. It shows that the newest user 
requests are consistent with the original model. Thus the 
large window and the small window cover the newest data 
block and the eldest data block are deleted from them. At 
the same time, the corresponding browsing patterns are 
deleted from the prediction model and the new user requests 
are added.  

4) The prediction model is in a conversion phase if any 
instance above mentioned does not happen. In order to 
avoid forgetting the elder training samples too earlier, the 
wide of the large window is enlarged and the small 
window’s one is kept. 

C.  Decision algorithm 
Suppose that the length of WL is n and the length of WS 

is m, where n is greater than m . The large window’s data 
blocks from the eldest to the newest are respectively labeled 
from 0 to n-1. When a new user request appears, the sliding 
window goes forward and the new user request is added into 
it while the bottom of the sliding window does not change. 
If the new user requests of the sliding window form one new 
data block n, the changing features of the small window’s 
prediction precision are calculated and the sizes of WL and 
WS are changed according to adjusting rules. Then the 
length of the sliding window changes and the prediction 
model’s access patterns are updated. In the following 
section, we specify concrete algorithm and make use of the 
prediction model which is our previous work [19]. To make 
this process clear, decision of training data is separated into 
two steps. First step is the original values of WL, WS and the 
sliding window are respectively set. At the same time, the 
original prediction model PM is constructed with the user 
access sequence in the sliding window. Second step is to 
change training data by adjusting the lengths of different 

windows. The following algorithm DecisionMethod gives 
the adjusting strategy. 
Algorithm DecisionMethod(WL, WS, SW, PM, RS) 
Input:  WL is the large window ,WS is the small window, SW 
is the sliding window, PM is prediction model and RS is the 
new user request sequence. 
Output: PM, WL, WS, SW 
BEGIN 
For (every request A of RS) 
BEGIN 

    A is inserted into SW and PM 
WHILE (one new data block appears) 

BEGIN 
n=n+1; 
m=m+1;//The sizes of WL and WS increases one. 
IF (prediction precision of WS is consistent decrease) 

            BEGIN 
               n=n-2; 

//The eldest two data blocks are deleted from WL 
               m=n/2;// To change the size of WS   
              Every request in the deleted data blocks is deleted 

from SW and PM. 
          END 

ELSE 
IF (prediction precision of WS is stable) 

BEGIN 
 n=n-1; //The eldest data block is deleted from WL 
m=m-1;//To keep the size of two windows 

            Every request in the deleted data blocks is deleted 
from SW and PM. 

END 
ELSE  
IF (prediction precision of WS is consistent increase) 

             m=n/2; 
         ELSE    m=m-1; //To increase the large window’s size              
        END 
END 

When a new user request appears, we make use of the 
algorithm in the [20] and its data structure to insert the 
request into the prediction model so that the changing user 
behavior patterns are updated in time. When the large 
windows is shorten, some data blocks are deleted from it 
and the corresponding user access information is forgotten 
so that prediction model reduces the outdated browsing 
patterns and saves space. 

IV. EXPERIMENTS 
To evaluate our decision method called DM, we adopt 

Microsoft Visual C++ 6.0 to develop a series of   
experiments. To compare our method with other,  we 
simulate other system  without any training data selection 
strategy called Non-Selection. DM and Non-Selection both 
makes use of the prediction model in the [20] during 
experiments. We compare our approach’s performance with 
Non-Selection from the log day number of training data, 
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prediction model’s space, prediction precision, hit rate, and 
traffic incremental rate. 

A. Logs and parameters set 
We do the trace-driven simulation using two real trace 

files. One file is from Chinese certain medium-sized 
education institution’s proxy server log, called CE log. This 
trace file is collected by one proxy software from January 1, 
2005 to January 26, 2005. Every record includes request 
object’s access information such as IP ,URL and access time. 
Another file is from American National Lab of Applied 
Network Research (NLANR) which provides web access 
logs continuous seven days in one ftp server. We download 
one proxy server log by authorized username and password, 
called NLANR_NY, which is composed of continuous user 
accesses from June 3, 2007 to June 28, 2007.  

We remove all dynamically generated files. These files 
can be in types of “.asp”, “.php”, “.cgi” and so on. We also 
filter out embedded image files such as “.gif” and “.jpg” 
because we believe the image file is an embedded file in the 
HTML file. Access request sequence of each log file is 
partitioned into user sessions. One user session is one 
orderly access sequence from the same user. If a user has 
been idle for more than two hours, we assume that the next 
request from the same user starts a new user session. We 
recognize that the time interval of partitioning sessions may 
introduce some inaccuracy in the simulator, but it will not 
affect the evaluation of different models.   

All of the models make the following configuration. A 
global model is constructed for all users in each test. All 
predictions are based on the model. Because of physical 
systems limitation (e.g. network bandwidth), each model 
predicts at most a request according to a user’s current 
request every time. The prefetching cache size is formulated 
in terms of number of web pages, rather than number of 
bytes. The approach is more intuitive for interpretation of 
the results, without altering their significance [16]. The 
prefetching cache replacement algorithm is LRU. The size 
of conditional probability threshold affects both hit rate and 
the amount of traffic increment. A larger threshold allows 
less data to be prefetched, which is beneficial to traffic, but 
may decrease hit rate. We take into account a trade-off 
probability threshold. Thus, conditional probability 
threshold is set to 0.1. 

For our decision  method, user access sequence is 
partitioned into data blocks. Each data block includes one 
day’s user requests so that CE and NLANR_NY both 
includes 26 data blocks. Each data block is partitioned into 
some user sessions according to IP address and time 
threshold. The large window includes 7 data blocks and the 
small window's length is 3 because people regularly browse 
web every week. 

B. Evaluation parameters 
We employ the following four metrics [4][21] in the 

experiments. 

 Definition 5 Precision is the ratio of the number of 
correct predictions to the number of total predictions. If 
users in the subsequent requests access the predicted page 
that is in the prefetching cache, the prediction is considered 
to be correct, otherwise it is incorrect. The metric represents 
the fraction of predicted pages that are actually used.  

Definition 6 Hit rate refers to the percentage of user 
access requests that are found in the prefetching cache.  

Definition 7 space is the required memory allocation 
measured by the number of nodes for building a prediction 
model in the web server for prefetching. 

Definition 8 Traffic incremental rate is the ratio of the 
traffic from undesired pages to the traffic from the total user 
requests. Some of the prefetched pages will not be actually 
requested. Therefore, they increase the network traffic 
overhead.  

Web prefetching aims at maximizing the first three 
metrics and minimizing the last one. It is obvious that these 
metrics are conflicting. The more pages are prefetched, the 
more probable it is for some of them to be accessed and the 
hit rate increases. At the same time, precision decreases and 
network traffic increment is high. Thus, it is a trade-off 
among these objectives that the model should consider. 

C. Decision of training data 
In order to decide training data, we respectively choose a 

part of CE and NLANR_NY to do a series of experiments. 
Figure 5 depicts the changing process of training data, 
where abscissa denotes the log’s day number and  ordinate 
is the log’s day number of training data. For example, 
abscissa is 20, which denotes that 20 days’ log is provided 
to train prediction model.  
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(a) Training data  versus accumulated log (CE) 
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(b) Training data versus accumulated log (NLANR_NY)  

Figure 5.  Decision of training data 
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As presented in Figure 5, DM respectively selects the 
latest 15 days log and 12 days log to construct prediction 
model for CE and NLANR_NY when the day number of 
accumulated log is 22. We can conclude that the prediction 
precision of the small window is consistent increase when 
the day number of accumulated log varies from 14 to 22 
from Figure 5(a) because training data is increasing. At the 
same time, it also displays that training data decreases when 
the changing trend of prediction precision is consistent 
decrease that takes place between days 11 to 14 in  Figure 
5(a). 

D. Comparision of two approaches’s training data 
In the set of experiments, we display the simulation 

results of training data comparison among two methods. In the 
condition of the same day number of accumulated log, Figure 6 
gives the log day number of training data with CE and 
NLANR_NY. 

 
(a) Comparison of training data days using CE log 

 

 
(a) Comparison of training data days using NLANR_NY log 

Figure 6.  Training data days versus accumulated log days using two logs 

As presented in Figure 6, the day number of training 
data with DM is less than Non-Selection’s when the day 
number of accumulated log varies from 20 to 25. Because 
the training data in our method is chosen by the changing 
trend of the small window’s precision during constructing 
prediction and the outdated user requests are deleted from 
model and the log day number of training data is reduced.  

E. Prefetching performance test 
We compare the prefetching performance of DM and 

Non-Selection with two logs in the condition of the same day 
number of accumulated log. Figure 7 and Figure 8 
respectively show different parameter’s comparison of 
prefetching performance using CE and NLANR_NY. In the 

two figures, abscissa is the day number of accumulated log 
and ordinate respectively represents precision, hit rate and 
traffic incremental rate for (a), (b), (c) of every figure. 

 
(a) Precision comparison 

 

(b)Hit rate comparison 

 

(c) Comparison of traffic incremental rate 
Figure 7.  Prefetching performance comparison(CE Log) 

In Figure 7, our method and Non-Selection respectively 
adopt the corresponding result of training data which is 
displayed in Figure 6 (a). According to the training data, one 
prediction model is constructed and the succedent one day’s 
user requests are predicted based on the model. For example, 
DM and Non-Selection respectively use 14 days log and 20 
days log to construct the prediction model when abscissa is 
20. Then the 21th day’s requests are predicted. As presented 
in Figure 7, the prefetching performance of DM exceeds 
Non-Selection’s. The reason is the Non-Selection method 
ignores the choosing problem of training data so that the 
corresponding prediction model does not completely 
represent the user browsing behaviors. At the same time, 
DM adopts the technology of adjusting windows to change 
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training data so that some outdated access requests are 
deleted from the prediction model. 

 
(a) Precision comparison 

 
(b) Hit rate comparison 
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(c) Comparison of traffic incremental rate 

Figure 8.  Prefetching performance comparison(NLANR_NY Log) 

In Figure 8, our method and Non-Selection respectively 
adopt the corresponding result of training data which is 
displayed in Figure 6(b). As presented from Figure 8(a) to 
(c), precision of DM is average higher 0.77% than Non-
Selection’s and traffic incremental rate is average less 
0.49% than Non-Selection’s. Although our approach does 
not have better hit rate or in some cases even worse from the 
experimental results, it is evident that DM prefetches more 
web pages correctly than Non-Selection and this is achieved 
with less cost in the network traffic that has less adverse 
effect on other network applications. Thus, our algorithm 
achieves the best performance.  

F.  Model’s space test 
We compare prediction model’s space of DM with Non-

Selection’s using two logs in the condition of the same day 
number of accumulated log. Figure 9 gives the test results 

using CE and NLANR_NY, where abscissa represents the 
day number of accumulated log and ordinate denotes the 
space reduction rate. It is calculated using the following 
formula. 
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Figure 9.  Comparison of prediction model’s space using two logs 

Figure 9 shows that prediction model’s space of DM is 
always less than Non-Selection’s for different logs. The 
space reduction rate is 25.97% for CE log and it is 41.96% 
for NLANR_NY log when the day number of accumulated 
log equals to 22. Figure 9 indicates that our method 
effectively reduces the prediction model’s space. 

V. CONCLUSION AND FUTURE WORK 
In this paper, we consider the choosing problem of 

training data and propose a decision method of training data, 
which is developed according to monitor prediction 
precision’s changing features. It is designed to partition user 
access sequence into continuous data blocks and makes use 
of one sliding window, a small window and a large window 
to capture the precision’s characteristics among data blocks 
so that training data is adjusted. We compare our method 
with Non-Selection approach from model’s space and 
prefetching performance using two real logs. The 
experiments show that, for the different day number of 
accumulated log, our method outperforms Non-Selection’s 
and achieves higher prediction precision with quite low 
traffic incremental rate and less model’s space.  

The traces we use are from years ago and some users’ 
behaviors in web surfing could have changed. In the future, 
we will try to obtain web data from different sources more 
recent and test the performance of our algorithms. 
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