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Abstract—Distributed Denial of Service (DDoS) attacks have 

received significant global attention because they are increasing 

in frequency and severity.  We analyze all flows surrounding the 

Network Time Protocol (NTP) amplification attack that 

occurred during January of 2014 at a large mountain-range 

university.  We present an unsupervised machine learning data-

driven approach that can detect and mitigate attacks in near 

real-time.  Our method is based on thresholding, Functional 

Principal Component Analysis, and K-means clustering (with 

tuning parameters for flexibility), which dissects the dataset to 

reveal several categories of outliers.  Using eigenfunction scores, 

clustering, and individual IP behavior summary statistics, we 

assign risk probabilities to the outliers, which enables creating 

dynamic firewall rules.  We demonstrate the speed and 

capabilities of our technique in a forensic replay of the NTP 

attack.  We show that we can detect and attenuate the DDoS 

within two minutes with significantly reduced volume 

throughout the six waves of the attack.  

Keywords-anomaly detection; clustering; DDoS; Functional 

Principal Component Analysis; network monitoring. 

I.  INTRODUCTION  

There is an abundance of network security events, and one 
of the most impactful is the Distributed Denial of Service 
(DDoS) attack, in which attackers attempt to flood the target 
systems with huge amounts of traffic from many 
compromised systems leading to an interruption of the 
victim’s services.  Often, victims are high profile networks in 
companies, banks, or governments, and sometimes entire 
Internet Service Providers (ISPs) are targeted.  Adversaries 
want to not only steal data (for later use or sale), but also 
disrupt operations of those targeted and impact their 
reputation.  Hackers also increasingly use DDoS attacks as a 
smokescreen or distraction for more covert operations that 
allow them to carry out data breaches [1]. 

DDoS have been reported in the 1Tb/s range, driven by 
more than 150,000 compromised Internet of Things (IoT) 
devices, such as DVRs and security cameras [2].  Just a few 
months before that attack, the same botnet launched another 
in the range of 600Mbps - the volume trend is upward.  Also, 
in Q4 of 2017, 67% of DDoS targets were blasted with more 
than one attack - an increase of 10% from Q3 [3].  In Q4, 32% 
of targets had between two and five assaults aimed at them, 
6.5% that attracted between six and nine attack attempts, and 
a truly unfortunate 29% that were targeted over ten times 
(mean is 8.7 attack attempts per target over the course of the 
quarter).  Perhaps a silver lining is that the attack duration has 
significantly decreased from an average of five days in 2016, 

to 1.3 hours at the end of 2017.  However, direct costs to large 
organizations range from $50,000 to $100,000 per hour [4]. 

One variant of DDoS is the amplified reflection attack.  
There are several services that are vulnerable, and the one we 
will focus on here uses the Network Time Protocol (NTP).  In 
this type of attack, adversaries send relatively small queries 
spoofing victim’s Internet protocol (IP) address(es) to public 
servers (e.g., an NTP server), requesting a response - usually 
a large amount of data.  As a result, this floods both the 
server’s and the victim’s network bandwidth.  In 2014, 85% 
of all DDoS attacks larger than 100Gbps were using NTP 
amplification [5], and the bandwidth consumed peaked at 1% 
of all global Internet traffic (in late 2013 and early 2014) [6].  
NTP had grown from .001% in early 2013; a dramatic three 
order of magnitude rise in both absolute and relative terms.  
This translated into organizational and financial impact [7] 
[8]; in fact, our own university suffered significantly.  After 
peaking globally on February 11th (2014), NTP traffic 
declined back to .1% by May, still two orders of magnitude 
higher than at the start, as attacks continued on unmitigated 
systems. 

In a Department of Homeland Security (DHS) funded 
project called “NetBrane” (see Figure 1), we model and 
characterize traffic both prior to and during DDoS attacks in 
order to quickly detect them and mitigate their impact.  While 
hosted cloud-based security services offer some protection 
from DDoS, current solutions cannot benefit everyone.  Many 
institutions, such as government, military, and financial 
organizations, need to tightly control their data, which is 
incompatible with cloud services.  To bridge this gap, [9] is 
designed to be a defense service that takes advantage of the 
desirable properties of cloud technologies but allows 
customers to keep their data local.  In this system, anomaly 
detection analytics using machine learning occurs on pre-
attack network flows (inside the red box in Figure 1).   

At our large university, we have installed optical taps to 
capture network flows at line rate (40gbps or more, top left of 
Figure 1) and push those flows into Hadoop Distributed File 
System (HDFS).  Our analytics engine reads those flows in 
one-minute intervals, and searches for anomalies that should 
be investigated further.  We use multi-core (parallel R 
packages) techniques.  

In this paper, we study NTP traffic flows captured at our 
organization during the real 2014 main reflection attack.  We 
conduct forensic re-analysis using our methodology to detect 
outliers in the flow data and apply the result to mitigate the 
effects of the actual DDoS in near real-time.  Specifically, we 
detect unusual behaviors in two steps: (1) Functional Principal  
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Component Analysis (FPCA) combined with (2) k-means 
clustering. 

The remainder of this paper is structured as follows: 
Section 2 describes previous work related to Internet anomaly 
detection and Section 3 describes the dataset we use.  In 
Section 4, the methodology of our technique is detailed, and 
Section 5 shows and discusses results of the analysis.  Lastly, 
Section 6 discusses results and limitations, and Section 7 
provides a conclusion. 

II. RELATED WORK  

Anomaly detection methods can be classified into (1) 
signature based and (2) profile-based [10]. Signature-based 
methods use prior knowledge about characteristics of the 
anomaly of interest to identify suspects, and have several 
concerns, such as the need for labeled data, an external 
supervisor, and prior results from anomalies.  Many machine 
learning classification techniques are supervised, meaning 
that they need to be trained on a set of labeled data prior to 
use.  Examples of popular approaches are the Support Vector 
Machine, Bayesian Networks, Neural Networks, and 
Discriminant Analysis (surveyed in [9][10]).  While these 
have been shown to perform well in certain situations, the 
reliance on labeled data can be a difficult hurdle to overcome.  
For the case of network traffic classification, ground truth 
knowledge may not be available.  These supervised 
techniques can then only be applied when the true labels are 
approximated.  Training on an incorrectly labeled dataset can 
greatly skew results [11]. 

In the case of a real-world DDoS attack, knowledge of 

which behaviors are malicious is not known; we do not have 

labels.  Thus, supervised techniques cannot be applied.  

Profile-based methods create representative normal traffic 

behavior, and anomalies are detected by deviations from this 

profile.  While there may be higher false alarm rates, profile-

based methods are more promising due to their data-driven 

flexibility and they may also detect previously unknown 

anomalies [11]. Principal Component Analysis (PCA) is a 

widely used profile-based method which has been applied to 

detect traffic anomalies in DDoS data by decomposing 

network traffic into two components [12]. The anomalous 

subspace, which is noisier and contains the significant traffic 

spikes, is separated from the normal, which is dominated by 

predictable traffic. An individual observation is deemed an 

anomaly if its projection to the anomalous subspace is large.  

A two-stage approach was proposed, using (1) PCA to 

identify potential anomalies, and (2) a meta-heuristic to group 

them [13].   

However, the use of PCA has been criticized due to issues 

pertaining to (i) false positive rates, (ii) traffic measurement 

aggregation, (iii) normal subspace pollution, and (iv) correct 

anomaly identification [14].  The third is important, as it 

highlights the need to choose which principal components 

represent normal behavior, and which ones represent the 

abnormal.  It has been demonstrated that some traffic 

captures do not lend themselves to this partition/selection; 

that is, all principal components contain abnormal behaviors, 

and thus this approach is not usable. 

Clustering is another example of a profile-based method. 

Clustering has been applied to all traffic, comparing the 

centers of known normal traffic clusters to the centers of 

actual traffic, to try and determine if the actual traffic is not 

normal [15]. Unfortunately, this approach has only been 

applied to Simple Network Management Protocol (SNMP) 

objects, not network flows, and requires known normal traffic 

data.  Clustering techniques have been used to characterize 

DDoS attack traffic (k-means, CLARA, and Self Organizing 

Maps) [16]. K-means was found to be the most accurate for 

attack detection because attack traffic displays strong 

similarity as opposed to the heterogeneity of normal traffic.  

Note their attack cluster still mixed legitimate traffic in with 

malicious (between .4% and 2.04%). We believe this 

phenomenon can be eliminated by clustering only 

demonstrated outliers, not all traffic. 

To avoid the concerns with PCA and clustering when 

applied separately, we will use FPCA (instead of PCA) and 

Figure 1.  System Architecture 
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Figure 2.  NTP DDoS Attack - All Waves 

 

apply clustering to the resulting outliers [17] (that paper 

examined scanner behavior, where here we analyze a DDoS 

attack).  We perform classification only using the data that is 

given as input, making this technique well-suited for dealing 

with an attack in real-time.  We suggest this is more 

appropriate than using a supervised approach trained on data 

from a previous attack, as there are a wide variety of different 

perpetrators with attack methods, and what was previously 

learned may not apply. 

III. DATASET DESCRIPTION 

The raw data we consider in this paper is a collection of bi-
directional flow records to and from our mountain-west 
university, relating to the NTP service.  We focus on traffic 
between January 12 and January 25 of 2014, during the second 
half of which a true real-world reflection DDoS was carried 
out (starting in the early morning of January 18).  This attack 
impacted the university in six waves (see Figure 2 for a plot 
of packet counts), with a wave defined by significantly 
decreased packet volume, or the monitoring system becoming 
unavailable.  Discussion of our analytics will begin with the 
first wave because detection and mitigation are most crucial 
at the start of the attack but will generalize to all waves. 

The flow records contain a plethora of useful information, 
such as timestamp, source and destination IP (SIP & DIP), 
source and destination port, packets, and bytes.  We group 
information into one-minute bins, and the full dataset covers 
roughly twenty-thousand minutes.  As this is a real-world 
dataset, we do not have ground truth knowledge of which SIPs 
are the victims (spoofed by attackers).  However, we suggest 
that ground truth is not necessary as we know that a reflection 
DDoS indeed occurred, and we are only seeking ways to 
alleviate damage. 

IV. METHODOLOGY 

We conduct our analytics in near real-time by replaying 
the actual NTP attack with a sliding-window mechanism; to 
illustrate: the initial round of analytics is carried out on the 
data that appears only in the first thirty minutes of the dataset, 
the next round of analyses on the second to thirty-first minute 
of the dataset, and so on. 

In each thirty-minute window, we construct a time series 
of contacts made for each SIP that appeared on the network, 
where a contact is defined to be a SIP sending at least one 
packet to a DIP.  So, every external IP has a corresponding 
series with each value counting the number of DIPs they 
contacted in that minute.  These series are used as input for 
Functional Principal Component Analysis (FPCA), which we 
use to identify outlier IPs - these are SIPs that interact with our 

network in an unusual way.  These outliers are then clustered 
with the K-means algorithm to facilitate understanding of the 
outliers and streamline creation of firewall rules if an attack is 
detected.  When not under attack, these outliers are displayed 
for operators to monitor or investigate further.  Brief details of 
FPCA and K-means are included in Section IV.B, with full 
discussion found in [17]. 

We also monitor the time series of aggregated (SIP and 
DIP) packets and bytes in each thirty-minute window to 
volumetrically detect when the attack begins.  In each 
window, a threshold is calculated, and when a new minute’s 
data exceeds the pervious window’s threshold, it identifies a 
potential start of a DDoS attack (next section). 

If our volumetric threshold(s) are exceeded, we suspect 
that we may be under attack.  At this point, the sliding-window 
becomes a growing window, fixed at the current time, and 
subsequent minutes are appended to the previous data.  For 
example, if a significant volumetric change is detected while 
we are considering a window from minute 30 to 59, the next 
window we analyze will contain data from minute 30 to 60.  
This growing-window is used so we do not skew outlier 
detection as the attack proceeds; that is, if more behavior 
enters the network that is similar to that which caused the 
volumetric trigger, we do not want it to become representative 
of normal traffic. 

When we are under attack, the outliers gathered and 
clustered by FPCA+K-means are remembered in what we 
refer to as a total recall strategy.  We keep a running list of 
outliers that are detected and assign a threat level to each based 
on the individual IP’s activity on the network (details in 
Section IV.B).  From the threat levels, we construct a list of 
suspected attackers, as well as a list of those that are believed 
to have acceptable behaviors.  It may seem counter-intuitive 
that acceptable traffic can be flagged as unusual, and more 
discussion on this is given in Section V.  These two groups 
can then be blocked from and allowed into the network, 
respectively, to mitigate the attack and yet allow some known 
good systems to continue access. 

As a final note, when the analytics have detected an attack, 
we implement a two-pass procedure where we repeat FPCA 
with outlier collection on the subset of the data that were 
classified as non-outliers from the first pass.  The outliers from 
the first and second passes are added to the running list.  This 
two-pass is carried out only during attack mitigation, and later 
we will compare the effects of one and two passes to 
demonstrate the marginal gain from each round of outlier 
collection.  (Discussed in Section V). 

All data management and analytics are carried out in 
version 3.4.4 of the R programming language.  The analytics 
in each sliding-window iteration takes approximately four 
seconds, while the attack analytics (growing-window) take no 
more than ten seconds (on a 10Gb set of flows) using eight 
cores.  

A. Volumetric Attack Detection 

As a first warning for a DDoS event, we seek to identify 

a drastic increase in packets or bytes sent and received by the 

network in any given minute.  We define this drastic increase 

to be an instance when a new minute’s data exceeds a 
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threshold from the previous thirty-minute window.  

Specifically, we calculate separate thresholds for packets and 

bytes in each window and compare the new minute’s 

aggregated packet and byte counts to these thresholds.  The 

threshold is defined by (1), 

 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =  max
𝑡∈𝐻

𝑋𝑡 + 𝑐𝑣 ∙ 𝑆𝐸 [max
𝑡∈𝐻

𝑋𝑡] . (1) 

 

In (1), 𝑋𝑡 for 𝑡 ∈ 𝐻 is the time series of packets or bytes 

in the given window of history.  𝑆𝐸 [max
𝑡∈𝐻

𝑋𝑡] is the standard 

error of the maximum packet or byte count from a LOESS fit 

of the packet/byte time series in the window of history.  

Lastly, 𝑐𝑣 is a critical value determined from investigation of 

long-term (months) packet and byte distributions.  This takes 

the largest value in the given window of history and sets a 

threshold greater than it by adding a scaled measure of this 

maximum’s variability.  That is, we start with the largest 

packet or byte count in local history which is considered 

acceptable because it previously did not indicate a potential 

DDoS, then raise this to calculate the threshold.  This is 

motivated by the idea that we may see normal network 

activity that is larger than the previously accepted amount, 

but we only expect a DDoS if new packet or byte counts 

exceed what we expect from historical variability of our data. 

If a new minute of data is collected and it does not exceed 

the previous window’s threshold, the time series of flows for 

the new thirty minutes are stored, and the threshold is 

recalculated.  This creates a dynamic threshold for volumetric 

detection that takes usual network activity into account. 

If a new minute of data is collected and either our packet 

or byte threshold is exceeded, we consider an attack to be 

starting and we initiate the growing window and two-pass 

FPCA outlier collection. 

B. Outlier Detection and Risk Assessment 

FPCA takes as input a collection of series that can be 
treated as realizations of a function over time, and then models 
these series as a mean curve plus a linear combination of 
eigenfunctions.  These eigenfunctions are orthogonal curves 
created by finding the largest dimensions of variability in the 
data.  That is, the first eigenfunction can be thought of as the 
direction of highest variance, the second captures the next 
most variance, and so on. When the original series are 
projected onto the eigenfunctions it produces scores, which 
are the locations of the observations on each new dimension.  
These scores are used to identify data points as outliers.  For 
each eigenfunction, we calculate the bounds �̅� ± 𝑘𝑠, where �̅� 
is the average score, 𝑠 is the standard deviation of the scores, 
and 𝑘 > 0 is a constant.  If a score is outside of the bounds on 
any eigenfunction, it is flagged as an outlier.  As we use the 
time series of contact counts for input, these outliers are the IP 
addresses that are interacting with the network in an unusual 
way. With the feature of descending variance in the 
eigenfunctions, SIPs that are outliers based on our definition 
are also extreme in the sense of the original dataset.  For our 

analytics, we use the Principal Analysis by Conditional 
Expectation (PACE) implementation of FPCA [18]. 

The number of eigenfunctions to use in the FPCA model 
is a parameter that must be selected so we use the Akaike 
Information Criterion (AIC) and Bayesian Information 
Criterion (BIC) [19].  Should the results of these not match, 
factors specific to the situation should be considered to 
determine which is better suited [20].  As this analysis is 
carried out in each iteration of the sliding window, 
disagreement between AIC and BIC at some point is likely.  
For the purposes of detecting unusual behavior in network 
traffic, the true model for which can be highly complex, we 
focus on AIC.  It can also be the case that AIC and BIC are 
not applicable, depending on the amount of data available and 
its sparseness. In these situations, the number of 
eigenfunctions is chosen using a Fraction-of-Variance-
Explained (FVE) cutoff.  That is, we select the first 𝑛 
eigenfunctions that capture a certain percent of the variance 
from the original dataset.  This method is always applicable, 
provided the FPCA model can be used successfully.   

Following the gathering of outlier SIPs on the network in 
the available window, they are clustered using the K-means 
algorithm of [21].  The number of clusters is also chosen using 
a FVE cutoff commonly referred to as the elbow method.  The 
cluster amount chosen is such that adding one additional 
cluster will not significantly increase how much variance of 
the original dataset is explained by our clustering; i.e., the 
point of diminishing marginal returns.  The outlier SIPs are 
clustered based on their proportion of successful contacts, 
where a success is defined to be at least one packet sent back 
to the SIP by the DIP being contacted.  With this completed, 
the result is a set of SIPs that are interacting with the network 
in an unusual way, stratified by their success.  This facilitates 
easier understanding of the traffic that is detected.  

After the clustering, we assign a threat level (𝑇𝐿) to the 
outlier IPs.  This is calculated using (2). 
 

𝑇𝐿 =  𝛼1𝑣 +  𝛼2𝑑 + 𝛼3(1 − 𝑐). (2) 
 
In (2), the 𝛼𝑗’s are constants that satisfy 0 < 𝛼𝑗 < 1 and 

∑ 𝛼𝑗 = 1.  Further, 𝑣 is the proportion of volume sent and 

received by the given IP relative to that of the entire window, 
𝑑 is the number of destinations contacted by the IP divided by 
the total number contacted by the SIPs in the given sliding 
window iteration, and 𝑐 is the fraction of minutes that the SIP 
reached out to at least one destination.  For purposes of the 
analytics in this paper, we use 𝛼𝑗 = 1 3⁄ , but other choices can 

be made based on context-specific factors.  With these 
definitions, the threat level 𝑇𝐿 exists between 0 and 1 and 
represents the maliciousness of the outlier - a threat level 
closer to 1 indicates greater likelihood the IP is malicious.  The 
quantities used in this calculation are chosen based on analysis 
of NTP behaviors prior to and during the attack.  It is likely 
that different factors must be considered when assigning a 
threat level to behaviors on other services. 

Since we only group the outlier SIPs based on one 
numerical summary of their behavior, there can be instances 
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Figure 3.  NTP reflection DDoS wave 1: actual packets (blue), one-pass 
reduced packets (orange), two-pass reduced packets (green) 

 
where behaviors are mixed within clusters.  The 𝑇𝐿’s alleviate 
this issue, as we can search for non-threatening SIPs in lower-
centered clusters or threatening ones in the high.  

V. RESULTS 

We first present results from attack detection, and then 
turn to mitigation.  We begin our sliding-window analysis by 
working with the section of the dataset prior to the attack.  This  
is roughly a week’s worth of data, during which our detection 
mechanism does not trigger.  So, in each iteration of the 
window, we carry out only one pass of outlier detection 
(FPCA) and the outliers are clustered with K-means.  This 
results in 95 distinct outliers out of approximately 6 thousand 
SIPs across the entire pre-attack period.  When assigning 
threat levels (𝑇𝐿’s), the vast majority of these non-attack 𝑇𝐿’s 
are close to 0, indicating that the behavior is non-threatening.  
In fact, the outliers we identify here have well-known and 
acceptable NTP behaviors - they are consistently checking the 
time with the network’s published NTP servers.  We think of 
such behaviors as active peers because they are working in a 
way we expect for this service [22].  These are identified as 
outliers because they are contacting the network in a way that 
is unusual with respect to the rest of the dataset considered; 
that is, reaching out to one DIP uniformly over time. 

In each iteration of our thirty-minute window prior to the 
attack, our threshold is calculated as in (1), with 𝑐𝑣 calculated 
from long-term historical distributions of maximum packet 
and byte counts.  Specifically, we recreated our sliding 
window procedure on approximately 5 weeks of data directly 
prior to the dataset described in Section III, saving the 
maximum packet and byte counts in each window.  We then 
find the 99th percentile for both distributions and standardize 
them to calculate 𝑐𝑣.  For example, we find the 99th percentile 
of our maximum packet counts, then subtract off the mean 
maximum packet count and divide this by the standard 
deviation of the distribution.  The same is done for byte 
counts.  In the case of packets, 𝑐𝑣 is 19.94, and in the case of 
bytes, it is 21.2. 

     As the sliding-window marches forward, we eventually 
reach the minute at which the attack begins (12000 minutes 
into the dataset).  In the iteration that captures the start of the 
event, it is as if the attack has been going on for one minute, 
and we are observing that first minute along with the previous 
thirty (of pre-attack traffic).  With a new minute of data, we  

    
compare the packet and byte counts to previous thresholds and 
find that both are exceeded.  Our attack flag is triggered, and 
we begin to grow our window of history, which now contains 
the 30 minutes prior to the attack, as well as its first minute.  
As an approximation of real-world monitoring, our method 
detects the DDoS attack during its second minute of activity. 

Once the attack has been detected, we begin applying our 
two-pass procedure, using the 3-𝑠𝑑 from the mean cutoff to 
define outliers in each pass (�̅� ± 3𝑠 on each eigenfunction).  
With outliers identified, 𝑇𝐿’s are assigned and stored before 
adding the new minute’s worth of data to our now growing-
window (because we are under attack).  In this new minute, 
we simulate blocking the high-threat outlier IPs activity from 
the network; that is, the data generated by all malicious outlier 
SIPs gathered in previous window iterations are removed 
from the new minute’s information.  This mimics the creation 
of firewall rules that would block IP addresses from the 
network and is the proposed mitigation strategy for DDoS - 
we remove those outliers which are found to be the malicious 
actors in the attack.  Figure 3 visualizes the packets counts and 
mitigation during each pass, in order to demonstrate the 
reduction gain from each round of outlier collection.  At the 
end of the first wave, we have identified about 100 unique 
SIPs as outliers.  The one-pass reduced volume is 
approximately 60% less than the actual first wave, while the 
two-pass reduced volume attains a reduction of 95%.  This is 
a significant mitigation result, making the attack look much 
more like pre-attack traffic than a DDoS. 

Later waves of the attack are handled in the same manner, 
and Figure 4 visualizes the reduced packet volumes.  
Approximately 3000 SIPs are identified as outliers throughout 
all six waves.  The volume reduction achieved in the first wave 
extends to the entire attack: 95% of the overall volume is 
masked by removing the traffic from outliers (detected by two 
passes of FPCA) that are determined to be threatening. 

While we block the traffic from the threatening outliers, 
we propose allowing activity from the active peers through to 
the network.  The series of packet volumes with and without 
the non-threatening activity are virtually identical, with the 
active peer outlier traffic representing only 3% of the overall 
data.  This gives high mitigation levels of the attack while 
allowing the known active NTP actors (from clustering) to 
continue operating.  We acknowledge that malicious actors 
could possibly take advantage of this but will address the issue 

Figure 4.  NTP reflection DDoS: actual packets (blue), one-pass reduced 
packets (orange), two-pass reduced packets (green) 
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in future work.  For any of the window iterations during the 
attack, no more than six clusters are used at any point (as set 
by the elbow method).  This stratification consistently collects 
what we consider as active peer behavior in the higher-
centered clusters (those with the largest portion of success), 
facilitating the creation of firewall rules. 

We now turn to alternatives in parameter choices and 
investigate their effects on mitigation.  The standard deviation 
(𝑠𝑑) threshold can be altered.  𝑘 = 3 was previously used, and 
we also considered 𝑘 = 1 and 𝑘 = 2.  On one-pass of outlier 
detection, the 2-𝑠𝑑 cutoff removes 80% of the traffic while the 
1- 𝑠𝑑 achieves 90% reduction.  A second-pass using these 
cutoffs achieves close to the 95% reduced volume found using 
the 3- 𝑠𝑑 threshold.  This indicates that we do not gain new 
outliers in this attack by varying standard deviations. 

Another option for mitigation would be to mask the 
subnets that contain the outliers found by our method.  This 
option would reduce the number of firewall rules that need to 
be created to block the outliers; instead of creating a rule for 
each individual IP, a rule for the /24, /16, or /8 subnets could 
be created - we tested this.  For example, if the address 
169.229.70.49 is found as an outlier and we are masking 
traffic at the /16 level, we omit IPs with addresses 
169.229.X.X from further iterations of our sliding window.  
Figure 5 shows the mitigation results on the first wave using 
one-pass (3sd) with varying levels of subnet masking.  
Observe that blocking the individual outlier IPs, the /24, and 
/16 subnets achieve similar reductions in traffic, while the /8 
subnet mask diminishes packets by almost 95%.  Note this 
uses one-pass of outlier detection, indicating that this blocking  
results in mitigation like our complete two-pass procedure 
without the subnet rules, however we suggest that blocking 
the subnets can lead to blocking legitimate traffic too. 
     Avoiding blocking of legitimate traffic is the motivation 
for the two-pass procedure.  We know that a DDoS is 
happening but have no ground truth about the attackers – thus, 
we must at least consider the notion of false-positives.  
Blocking /8 will certainly block more legitimate traffic than 
blocking outliers from a second pass of FPCA.  At each 
application of FPCA when scores are calculated, we can 
estimate the shape of the distribution of scores on each 
eigenfunction using kernel density estimation [23].  We carry 
this out on the scores from the second pass of FPCA, when the 
outliers detected in the first pass are removed.  Specifically, 
we test the estimated distributions for normality using the 
Shapiro-Wilk test [24].  If we find evidence for the scores 
being approximately normal, it indicates that the IPs detected 
in the first pass are appropriate outliers.  We can extend this 
idea to an 𝑛-Pass procedure, in which we stop the repeat 
applications of FPCA when normality of the scores is reached, 
or we can no longer apply our method.  The most common 
reason is that eventually no outliers are found by FPCA. 
     We recall that we employ a Total Recall strategy, in which 
our threatening outliers are remembered from previous 
window iterations and masked from future incoming data.  As 
this list grows over time, there are less outliers to be found and 
less passes of FPCA are needed.  The second reason the 
procedure stops is because of no data, in which this is the case 

 
Figure 5.  NTP reflection DDoS wave 1: actual packets (blue), one-pass 

reduced packets (orange), one-pass /24 reduced packets (green), one-pass 

/16 reduced packets (red), one-pass /8 reduced packets (purple) 

 
or the data available is few and sparse.  Lastly, normality is 
reached only a small portion of the time.  The average number 
of passes throughout all waves of the attack is 1.88, with only 
1 window iteration needing 11 passes.  This occurs near the 
beginning of the first wave, before a large list of outliers is 
built up.  With this, and the packet reduction achieved by our 
methodology, we believe two passes is appropriate for outlier 
detection and attack mitigation. 

VI. DISCUSSION AND LIMITATIONS 

The notion of false-positives arises whenever anomaly 
detection is discussed.  Without ground truth of the attackers 
in the dataset we analyzed, there is no way to accurately 
measure the false positive rate of the results in Section V.  Our 
assignment of a threat level attempts to alleviate this issue, as 
we allow the non-threatening outliers to remain in the 
network’s traffic.  Even with this, there may be a few SIPs 
blocked that are not malicious.  We suggest that this is not a 
major concern when truly under attack, as the security of the 
network is paramount and only outliers are being blocked. 

The formula for calculating threat levels is created based 
on observing the data during and prior to the attack.  Data from 
different services may require a different calculation of the 
𝑇𝐿, and this is true of the NTP-port as well - as this attack and 
more are studied further, the 𝑇𝐿 computation will be 
improved.  Also, the methodology will benefit if selection of 
the 𝛼𝑗 parameters is made dynamic and data-driven.  For 

example, if network history or other contextual information 
can help select the weights for factors being considered, threat 
level assignment is expected be more accurate. 

A major part of our analysis relied on the sliding-window 
approximation of real-time streaming data.  We used a fixed 
thirty-minute window, because it is a near worst-case 
scenario, in that it is the smallest window of time-series data 
on which FPCA can still be applied.  A larger history could be 
kept, and different types of behaviors may become apparent.  
This requires more data in RAM, especially during an attack, 
but we believe that the attack detection and mitigation would 
occur in the same way as presented in Section V. 

VII. CONCLUSION 

We have demonstrated an approach to detecting and 

mitigating an actual DDoS attack that occurred in early 2014.  

Dynamic volumetric thresholding is shown to detect the 
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attack, and the FPCA+K-means approach mitigates the attack 

volume significantly (by >95%).  These unsupervised 

approaches are best suited for detection and mitigation of 

unknown attacks.  We have proposed multiple options for 

reducing the packet volumes of the attack, including the 

alteration of tuning parameters and masking subnets.  

Assignment of threat levels to the outliers allows for better 

understanding of the SIPs identified.  
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