
A Hybrid Approach for Enhancing Android Sandbox Analysis

Ngoc-Tu Chau∗, Jaehyeon Yoon† and Souhwan Jung∗
∗School of Electronic Engineering

Soongsil University
Seoul, Korea 06978

Email: chaungoctu@soongsil.ac.kr, souhwanj@ssu.ac.kr
† Department of Software Convergence

Soongsil University
Seoul, Korea 06978

Email: yjh7593@naver.com

Abstract—Dynamic analysis solutions are applied to prevent
malicious applications from bypassing Android sandbox using
dynamic payload techniques. However, such dynamic analysis
methods are vulnerable to malware that use Anti-Analysis
and Anti-Emulator techniques. Malicious applications use Anti-
Emulation techniques to archive sensitive information that can
be used to distinguish between sandbox and real device. Upon
identifying sandbox environment, malicious applications may
implement several of evasion techniques to avoid from being
analyzed. The main problem, however, is that it can be easy
for even a novice user to get sensitive information provided by a
sandbox with just a little effort. Although there are work-around
solutions for solving the problem by directly updating the sensitive
information before building the sandbox, they are still containing
some limitations in practice. Firstly, it is inconvenient to change
the sensitive information after the sandbox or instrumentation
module are deployed. Secondly, the updated information can
be inconsistent and illogical. To provide a flexible approach
for these issues, this paper proposes a dynamic approach that
updates the sensitive information based on Sensitive Information
Provider server that is located outside the sandbox. The Sensitive
Information Provider (SIP) could be a collector that retrieves
and processes sensitive information from one or more seeder
mobile devices or could be a set of mobile devices. Because of
the device-based information, the proposed approach provides
a consistence and logic output when it is compared with other
solutions. Furthermore, since the proposed solution separates the
source of sensitive information from the sandbox, it is possible
to update the sensitive information even after the sandbox was
deployed. However, the proposed approach sacrifices performance
to flexibility and thus it is only suitable to specific environments.
The implementation section also analyzes the use-cases which are
suitable to apply the proposed solution.

Keywords–Android Analysis; Sensitive Information Provider;
Anti-Analysis

I. INTRODUCTION

There are three main analysis methods that have been used
by Android sandboxes to analyze an application: 1) Static anal-
ysis; 2) Dynamic analysis and 3) Hybrid analysis [1]. Static
analysis (also known as Source code analysis) technique works
by extracting and analyzing information based on the given
android application package (APK) file. AndroidManifest.xml,
resources and Dalvik bytecode are the most useful information
for analysis since they contain the structure of the application,
permissions for the application, and behavior of the application
(through the byte-code). Representatives for static analysis
approach are FlowDroid [2], Droid Intent Data Flow Analysis

for Information Leakage (DIDFAIL), AndroSimilar [3]. Unlike
static method that performs analysis through śtatic(́or non-
running) source code, dynamic approach performs application
analysis by running the application inside a customized sand-
box. Behaviors of an analyzed application are recorded and
inspected to check for malicious activity. A hybrid solution
is the combination of both static and dynamic methods. On
the other hand, Android malware families also evolve them-
selves in order to avoid being scanned by the analyzer and
to bypass the sandbox system. Dynamic payload techniques
are usually used by an Android malware to deal with static
analysis. With dynamic payload techniques, a malicious code
can be encrypted or obfuscated within the Android package
to go undetected by the analyzer. However, such dynamic
payload techniques are futile against dynamic analysis sandbox
since the analyzed application is installed and run directly on
the sandbox environment. To handle with dynamic analysis
sandbox, cybercriminals usually perform anti-analysis tech-
niques to avoid detection [4]. There are workaround solutions
for solving the problem of sensitive information. Sandbox
provider can modify the sensitive information before building
the sandbox or takes advantage of dynamic instrumentation
tools like Xposed and Frida to provide a fixed manipulation
scenario. However, it is troublesome to rebuild the whole
source code in order to change the manipulation scenario.
Moreover, the function does not always work since the return
of sensitive value sometimes needs to be logic and consistent.
In order to archive better flexibility of sensitive information,
this paper introduces a dynamic approach to separate between
the sensitive information provider and sandbox environment.
The proposed model is aimed at increasing the flexibility of
sensitive information inside analysis sandboxes. The rest of
the paper is organized as follows. Section 2 provides more
information and examples about the analysis methods, anti-
emulation techniques. Section 3 introduces proposed approach.
Section 4 shows the implementation result with analysis of the
new proposed model. Last section summaries the contribution
and future research for the research topic.

II. RELATED WORKS

In this section, in order for the reader to easily reach to the
subject mentioned in the proposed models, we introduce the
basic knowledge related to the analysis. In addition, solutions
related to anti-analysis are also mentioned, along with related
articles for providing knowledge about traditional methods of
checking sandbox environment.

30Copyright (c) IARIA, 2018. ISBN: 978-1-61208-652-1

ICIMP 2018 : The Thirteenth International Conference on Internet Monitoring and Protection

A. Analysis Methods
Analysis methods aim at assessing the application vulnera-

bility as well as analysis an application for malicious code. The
analysis methods consists of: 1) Static analysis; 2) Dynamic
analysis and 3) Hybrid analysis. The following subsections
describe detail about each approach.

1) Static Approach: Static method analyzes an application
without actually executing the APK file. Most of static analysis
methods are usually depend on the decompilation technique
to repackage the APK file. There are various types of static
analysis methods including: Resources-based and Bytecode-
based analysis. Basically, resources-based analysis extracts
the configuration and resources files for detecting abnormal
information. An application are considered abnormal either
when it contains patterns that match with a specific malware
signature or when it requests a combination of sensitive
permissions [5]–[8]. Bytecode-based analysis extracts classes,
methods or instructions and applies control-flow analysis to
check for malicious actions. Taint analysis that uses to keep
track the data that propagate from a source of sensitive
information to sink [9] [10]. Data propagation tracking method
usually applied in bytecode-based analysis to detect privacy
leakage. Since there is no requirement to deploy and execute
application, the performance of static analysis is quite fast.
However, static analysis can be easily bypassed by using
dynamic payload technique like code encryption, dynamic
loading, or reflection technique. There are many applicants for
static analysis including Androguard, AndroSimilar, APKIn-
spector, Drozer (also known as Mercury).

2) Dynamic Approach: In dynamic analysis, an application
is installed and run within a customized sandbox. In order to
collect behaviors of an application, the sandbox or android
framework running inside sandbox has to be modified. In
order to interact with the applications, tools that generate
events have been used. One of the example for generating
random events are monkey tool that is provided together with
the Android SDK. There are various methods that applied to
the sandbox to check for malicious application, but they are
useless if the application refuses to execute all of its code.
Because of that reason, the most challenge point in deploying
a dynamic analysis sandbox is to prevent an application from
performing Anti-Emulation techniques. Because an application
needs to be run and inspected inside the sandbox, dynamic
analysis is a trade-off between performance and efficiency. The
representatives for dynamic analysis are Andromaly, Bouncer,
TaintDroid, Droidbox and various of research topics about
dynamic sandbox [5], [11]–[15].

3) Hybrid Approach: Hybrid approaches take advantage of
both static and dynamic analysis. [1] has proposed a hybrid
approach for Android malware analysis where both static
analysis and dynamic analysis are performed and outputs are
analyzed to check for suspicion behaviors. Although there are
not many representatives for the hybrid approach, this idea
could be a new direction for anti-malware researchers.

B. Anti-Emulation Methods
Anti-Emulation methods are used by cybercriminals to

check for the execution environment and to avoid being
scanned by the sandbox. This paper divides Anti-Emulation
techniques into two type of methods: 1) Sandbox Evasion

and 2) Sandbox Detection. The following subsections describe
detail about each approach.

Sandbox evasion technique is the method of hiding a part
of source code until one or more conditions are met [16] [17].
An evasion technique that requires human interactions can
be solved by tools that generate random events like Monkey
tool [18]. It is note that not all applications that use evasion
technique are malicious, some applications that related to
financial or banking environment usually use evasion technique
to avoid being run on the rooted device. Some applications that
contain Easter egg, which is a hidden message or feature, also
use evasion technique for hidden features. On the other side,
malicious applications also depend on the evasion technique
to hide their malicious code. Since both benign and malicious
applications sometimes use the same evasion techniques, it
is difficult for the sandbox to determine between the benign
and malicious application. There are various type of evasion
technique. One of the simplest methods is to configure the
execute time. In the time configuration method, a malicious
code will be executed whenever a certain time condition is met.
The time configuration technique is effective for sandboxes
that only spend fix amount of time to do analysis. The other
evasion technique is human behaviour configuration. In human
behaviour configuration, a specific code will be execute only
if a specific human action is detected, for example: touch
or scroll onto the screen. Sandbox evasion technique can be
solved by simply satisfying the condition given by application.
For example, a time configuration method can be circumvented
by updating the sleep duration using repackaging technique or
manipulating the clock of sandbox. Repackaging technique al-
lows sandbox to decode and make modification before rebuild
the source code. An evasion technique that requires human
interactions can be solved by tools that generate random events
like Monkey tool [18]

A more aggressive use of evasion techniques is actively de-
tection of analysis sandbox. Sandbox detection techniques are
based on the fact that sandbox is not a real mobile device [4],
[19]. This paper calls the information that used to distinguish
between a sandbox and real device as sensitive information.
A sandbox is made by various system layers including: 1)
Application layer and 2) Virtualization layer. Because of that
reason, there are various type of sensitive information that
can be achieved through those sandbox layers. In application
layer, users (both malicious and benign) can get sensitive
information through API call provided by Android framework.
For example: getDeviceId call from TelephonyManager object
return a device registration number of a mobile device, but
it is return null in sandbox like Android Virtual Device. In
Virtualization layer, sensitive information are information that
related to different of network information, process difference,
or caching.

III. PROPOSED MODEL

This section describes the hybrid approach as a work-
around solution for sandbox detection technique. The word
hybrid means a combination between sandbox and mobile
device. The main motivation is to separate between sandbox
and sensitive information source. Figure 1 illustrates the design
for our approach.

The proposed approach creates an interceptor module
called Sensitive Information Interceptor (SI Interceptor) that

31Copyright (c) IARIA, 2018. ISBN: 978-1-61208-652-1

ICIMP 2018 : The Thirteenth International Conference on Internet Monitoring and Protection

Figure 1. Hybrid Sandbox Architecture

stays between application and application framework. The SI
Interceptor will check all request for information of sandbox
and intercept sensitive requests. Sensitive request is a request
that is expected to return a sensitive data. The sensitive
request is forwarded to Sensitive Information Provider (SIP).
Upon receiving the request to communicate, the SIP create
an SI Application to handle the request. After get the request
information, an SI Application processes and queries to the
Sensitive Information Pools (SI Pools) for the related sensitive
information. After getting the sensitive information, the SI
Application send sensitive response to SI Interceptor that will
return the data back to the requested application.

There are some points that must be considered for this
architecture: 1) Feasibility, 2) Performance, and 3) Security.
Because new interceptor module is added into the sandbox,
it is obvious that the performance will be reduced. There
are some factors that are related to performance problems
including the cost of interception, network, and SI request.
The SI request cost is depending on the difference between SIP
side and sandbox. However, since the SIP server can provide
information for many applications as well as sandboxes at the
same time, SIP server can apply caching technique to some
or all sensitive information. Network cost can be reduced by
setup the sandbox and SIP server in the same gateway. The

TABLE I. LIST OF HYBRID API

Type API name Return Type

TelephonyManager getDeviceId String

TelephonyManager getLine1Number String

TelephonyManager getSubscriberId String

TelephonyManager getSimCountryIso String

TelephonyManager getNetworkCountryIso String

TelephonyManager getSimSerialNumber String

TelephonyManager getSimState Integer

TelephonyManager getNetworkType Integer

LocationManager getLastKnownLocation Location

ConnectivityManager getNetworkInfo NetworkInfo

interception cost is depending on the intercept method that is
applied to the system.

The security also needs to be considered. Since the sen-
sitive request will be sent out to the network, it should be
protected in a way that it can not be manipulated by Android
applications. However, in case if the request for network
information is considered as sensitive, the Android application
will receive information from SIP server, which will not
exposed the sandbox network information. The second security
consideration is the security of SIP server. If SIP server is not
a server that collect mobile information but a mobile device, it
could be harm by the malicious sensitive request. In this case,
the SI Interceptor should wisely decide which request could
be considered as sensitive information.

IV. IMPLEMENTATION

This paper analyses the effects of hybrid architecture
on 28 malware samples that are known to include anti
emulator techniques that check for sensitive information.
The samples are provided by VirusShare. We decided to
use only a small samples set since the main purpose of
this implementation is to demonstrate the possibility of
our design. Furthermore, since the approach is only at the
prototype stage, the API covered by this implementation
is also limited. The SIP server is a mobile device with
Universal Subscriber Identity Module (USIM) setup. The
authors have chosen 3 android API packages that are usually
used by malware to check the sensitive information. These
packages are 1) android.telephony.TelephonyManager,
2) android.location.LocationManager, and 3) an-
droid.net.ConnectivityManager. List of hybrid API is
shown in the Table I.

Table II shows the result between Log API and Hybrid
API when executing all apps in android VM. Log API means
that the authors only log the API call and do nothing with the
result. Some apps need to run with UI tool to simulate user
behaviours. The result shows hybrid solution could reveal more
information called by the malware in some cases.

A. Performance Problem
In the second implementation, the author chose one method

to be intercepted is ”getDeviceId” that class by the object
of TelephonyManager class. This function will return the
device ID of a mobile device. In case of the sandbox envi-
ronment, the ”getDeviceId” method will return a null value
or 00000000000000 since the value is fixed before sandbox

32Copyright (c) IARIA, 2018. ISBN: 978-1-61208-652-1

ICIMP 2018 : The Thirteenth International Conference on Internet Monitoring and Protection

TABLE II. LOG API AND HYBRID API

Number Process name Log Only Hybrid

1 nang.dv (with UI tool) 8 8

2 com.googleapi.cover 1 1

3 com.software.application 1 1

4 com.hou.jokescreen 7 9

5 com.mobi.screensaver.fzllove1 1 1

6 com.liuwei.XiaopinClub 17 33

7 net.xfok.info.liujialing 2 4

8 com.readnovel.book 32415 6 11

9 com.xiaoyangrenworkroom.facerecognize 15 25

10 ru.android.apps 3 3

11 Jk7H.PwcD 5 5

12 com.bratolubzet.stlstart 2 2

13 ngjvnpslnp.iplhmk 8 8

14 com.zhuaz.bugaishipdq 0 0

15 com.soft.install 1 1

16 install.app (with UI tool) 0 7

17 com.android.mmreader739 5 5

18 com.googleapi 2 2

19 com.hdc.bookmark1566 1 2

20 com.outfit7.talkinggingerfree 9 10

21 com.sinosoft.duanxinwzw 39 62

22 com.android.system 0 6

23 com.tencent.token 12 12

24 com.baoyi.meijiaba 19 43

25 com.unitepower.mcd33305 6 16

26 azbc88881.jingdian10 6 25

27 com.android.kmax.tie 13 22

28 com.androidbox.lz3net2 1 1

TABLE III. 1ST TIME REQUEST BETWEEN HYBRID AND NO
HYBRID

Number of 1st Times Request Hybrid No Hybrid

1 210 0

2 205 0

3 403 1

4 31 0

5 149 0

6 103 0

7 79 0

8 96 1

9 130 0

10 104 0

is built. On the other hand, if the method is called by an
application in a mobile phone, the return value is the device ID
of that mobile. This demo involves the mobile phone as SIP
server and a Virtual Machine (VM) run Android OS. Both VM
and mobile phone connect to the same gateway. Also, a simple
application is installed inside Android OS.

After the implementation, with 20 requests sent to the SIP
server, the average time is only 7 milliseconds with caching
from SIP server. The application shows a very slow response
from the first request. Table III shows the cost (in milliseconds)
for each 1st time request (by clearing the cache of SIP server
for each try).

It is easy to notice that only the first request cost much
performance, about 151 milliseconds for each request. Because

of that reason, system with distributed SIP applications may
reduce the average time more closely to the performance of
non-intercepted sandbox.

Based on the implementation result, the effectiveness for
one application with one method in proposed model could be
calculated as follows:

δ =

{
TI + TN + TR if 1st request
TI + TN + TC if not 1st request

Where δ is the average performance per request. TI ,
TN , TR, and TC are the performance cost for interception,
networking, request of SI information (in the SIP server), and
cost for getting information from cached.

And the effectiveness for one application with n methods
will be calculated as follows:

δ =

T (1)I+T (1)N+T (1)R+
n∑

i=2

(T (i)I+T (i)N+T (i)C)

n

At last, the effective of m applications with n methods is:

δ =

T (1)I+T (1)N+T (1)R+m∗
n∑

i=2

(T (i)I+T (i)N+T (i)C)

n∗m

As m goes larger, the SI request time will get smaller. In
this case, the performance of proposed approach will depend
on the time cost for intercept a method and cost for request
transmit to the network. In a LAN network (SIP and sandbox
have same gateway), the cost of request transmit could be very
small. In an idea condition, the different between performance
of proposed approach and non-intercepted approach is only
depending on the interception algorithm.

B. Pre-initialize Solution for SIP server

The main problem of proposed approach is that it takes
the first sensitive request a long time to response. Since an
application may usually call a method for one time only
during its life-cycle, the performance will be very slow if the
sensitive result have not been cached. In order to solve the
problem, the SIP server could run pre-initiate function that
caches common and high frequency sensitive methods before
establishing communication channel with any SI interceptor.
By doing the pre-initiate method, the effective of common
sensitive methods could be improved into:

δ =

n∑
i=1

(T (i)I+T (i)N+T (i)C)

n

C. Discussions Of The Approach

The solution can be applied as an additional module
for supporting dynamic analysis. The experiments focus on
feasibility and performance overhead of the method before
further development. Since it is only at the prototype stage,
a small number of dataset were applied. According to the
performance test result, there is a delay for the first request
of sensitive information in which a malicious app can use as a
fingerprint for sandbox detection. However, for the second time
or if there is another app already request the same information,
the delay is the same as provided by existing instrumentation
method.

33Copyright (c) IARIA, 2018. ISBN: 978-1-61208-652-1

ICIMP 2018 : The Thirteenth International Conference on Internet Monitoring and Protection

V. SUMMARY AND FUTURE WORK

The existing solutions for manipulating sensitive informa-
tion are through instrumentations and modification of An-
droid source code. However, those existing approaches often
provide fixed manipulation scenario with illogical informa-
tion. Because of the above problem, this paper proposed
an instrumentation-based approach for a sandbox to improve
quality of sensitive information. Basically, the proposed model
provides an intercept-based module for handling the request
for sensitive information and forward to a remote Sensitive
Information Provider (SIP) server. The SIP server has the
responsibility to process and returns the value that is similar to
a sensitive information of the mobile device. The performance
result shows a close to non-intercepted from the second request
of the same method. In the future, more research will be done
in order to provide depth analysis of security problems and to
optimize the architecture.

ACKNOWLEDGMENT

This research was supported by the MSIT(Ministry of
Science and ICT), Korea, under the ITRC(Information Tech-
nology Research Center) support program(IITP-2018-2017-
0-01633) supervised by the IITP(Institute for Information
& communications Technology Promotion) and Institute for
Information & communications Technology Promotion(IITP)
grant funded by the Korea government(MSIP) (No.2016-0-
00078, Cloud based Security Intelligence Technology Devel-
opment for the Customized Security Service Provisioning)

REFERENCES

[1] P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M. S. Gaur, M. Conti,
and et.al., “Android security: a survey of issues, malware penetration,
and defenses,” IEEE communications surveys & tutorials, vol. 17, no. 2,
2015, pp. 998–1022

[2] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, and et.al.,
“Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-
aware taint analysis for android apps,” Acm Sigplan Notices, vol. 49,
no. 6, 2014, pp. 259–269.

[3] P. Faruki, V. Ganmoor, V. Laxmi, M. S. Gaur, and A. Bharmal,
“Androsimilar: robust statistical feature signature for android malware
detection,” in Proceedings of the 6th International Conference on
Security of Information and Networks. ACM, 2013, pp. 152–159.

[4] T. Petsas, G. Voyatzis, E. Athanasopoulos, M. Polychronakis, and
S. Ioannidis, “Rage against the virtual machine: hindering dynamic
analysis of android malware,” in Proceedings of the Seventh European
Workshop on System Security. ACM, 2014, p. 5.

[5] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss, “andro-
maly: a behavioral malware detection framework for android devices,”
Journal of Intelligent Information Systems, vol. 38, no. 1, 2012, pp.
161–190.

[6] Y. Feng, S. Anand, I. Dillig, and A. Aiken, “Apposcopy: Semantics-
based detection of android malware through static analysis,” in Pro-
ceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM, 2014, pp. 576–587.

[7] G. K. Chin Erika, Felt Adrienne Porter and W. David, “Analyzing
inter-application communication in android,” in Proceedings of the 9th
international conference on Mobile systems, applications, and services.
ACM, 2011, pp. 239–252.

[8] B. Sanz, I. Santos, C. Laorden, Ugarte-Pedrero, and et.al., “Puma:
Permission usage to detect malware in android,” in International
Joint Conference CISIS’12-ICEUTE 12-SOCO 12 Special Sessions.
Springer, 2013, pp. 289–298.

[9] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get off of
my market: detecting malicious apps in official and alternative android
markets.” in NDSS, vol. 25, no. 4, 2012, pp. 50–52.

[10] J. Kim, Y. Yoon, K. Yi, J. Shin, and S. Center, “Scandal: Static analyzer
for detecting privacy leaks in android applications,” MoST, vol. 12,
2012.

[11] A. Reina, A. Fattori, and L. Cavallaro, “A system call-centric analysis
and stimulation technique to automatically reconstruct android malware
behaviors,” EuroSec, April, 2013.

[12] D. Damopoulos, G. Kambourakis, and G. Portokalidis, “The best of both
worlds: a framework for the synergistic operation of host and cloud
anomaly-based ids for smartphones,” in Proceedings of the Seventh
European Workshop on System Security. ACM, 2014, p. 6.

[13] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,
and et.al., “Taintdroid: an information-flow tracking system for realtime
privacy monitoring on smartphones,” ACM Transactions on Computer
Systems (TOCS), vol. 32, no. 2, 2014, p. 5.

[14] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: behavior-
based malware detection system for android,” in Proceedings of the 1st
ACM workshop on Security and privacy in smartphones and mobile
devices. ACM, 2011, pp. 15–26.

[15] J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang, “Asdroid: Detecting
stealthy behaviors in android applications by user interface and program
behavior contradiction,” in Proceedings of the 36th International Con-
ference on Software Engineering. ACM, 2014, pp. 1036–1046.

[16] J. Oberheide and C. Miller, “Dissecting the android bouncer,” Summer-
Con2012, New York, 2012.

[17] T. Vidas and N. Christin, “Evading android runtime analysis via sandbox
detection,” in Proceedings of the 9th ACM symposium on Information,
computer and communications security. ACM, 2014, pp. 447–458.

[18] Google, “Ui/application exerciser monkey. online:
http://developer.android.com/tools/help/uiautomator/index.html.”

[19] D. Maier, T. Müller, and M. Protsenko, “Divide-and-conquer: Why
android malware cannot be stopped,” in Availability, Reliability and
Security (ARES), 2014 Ninth International Conference on. IEEE,
2014, pp. 30–39.

34Copyright (c) IARIA, 2018. ISBN: 978-1-61208-652-1

ICIMP 2018 : The Thirteenth International Conference on Internet Monitoring and Protection

