
Exploiting the Potential of Web Application Vulnerability Scanning

Damiano Esposito, Marc Rennhard

School of Engineering
Zurich University of Applied Sciences

Winterthur, Switzerland
Email: espo,rema@zhaw.ch

Lukas Ruf, Arno Wagner

Consecom AG
Zurich, Switzerland

Email: Lukas.Ruf,Arno.Wagner@consecom.com

Abstract—Using automated web application vulnerability scan-
ners so that they truly live up to their potential is difficult.
Two of the main reasons for this are limitations with respect
to crawling capabilities and problems to perform authenticated
scans. In this paper, we present JARVIS, which provides technical
solutions that can be applied to a wide range of vulnerability
scanners to overcome these limitations. Our evaluation shows
that by using JARVIS, the vulnerability detection performance
of five freely available scanners can be improved by more than
100% compared to using them in their basic configuration. As
the configuration effort to use JARVIS is small and the con-
figurations are scanner-independent, JARVIS also allows to use
multiple scanners in parallel in an efficient way. In an additional
evaluation, we therefore analyzed the potential and limitations
of using multiple scanners in parallel. This revealed that using
multiple scanners in a reasonable way is indeed beneficial as
it increases the number of detected vulnerabilities without a
significant negative impact on the reported false positives.

Keywords–Web Application Security; Vulnerability Scanning;
Vulnerability Detection Performance.

I. INTRODUCTION

Security testing is important to achieve security and trust-
worthiness of software and systems. Security testing can be
performed in different ways, ranging from completely man-
ual methods (e.g., manual source code analysis), to semi-
automated methods (e.g., analyzing a web application using
an interceptor proxy), to completely automated ways (e.g.,
analyzing a web service using a vulnerability scanner).

Ideally, at least parts of security testing should be auto-
mated. One reason for this is that it increases the efficiency of
a security test and frees resources for those parts of a security
test that cannot be easily automated. This includes, e.g., access
control tests, which cannot really be automated as a testing
tool doesn’t have an understanding of which users or roles
are allowed to perform what functions. Another reason is that
automating security tests allows to perform continuous and
reproducible security tests, which is getting more and more
important in light of short software development cycles.

There are different options how to perform automated
security testing. The most popular approaches include static
and dynamic code analysis and vulnerability scanning. Vulner-
ability scanners test a running system “from the outside” by
sending specifically crafted data to the system and by analyzing
the received response. Among vulnerability scanners, web
application vulnerability scanners are most popular, as web
applications are very prevalent, are often vulnerable and are
frequently attacked [1]. Note also that web applications are

not only used to provide typical services such as information
portals, e-shops or access to social networks, but they are
also very prevalent to configure all kinds of devices attached
to the Internet, which includes, e.g., switches, routers and
IoT devices. This further undermines the importance of web
application security testing.

At first glance, using web application vulnerability scanners
seems to be easy as they claim to uncover many vulnerabilities
with little configuration effort – as a minimum, they only
require the base URL of the application to test as an input.
However, their effective application in practice is far from
trivial. The following list summarizes some of the limitations:

1) The detection capability of a scanner is directly
dependent on its crawling performance: If a scanner
can’t find a specific resource in a web application, it
can’t test it and won’t find vulnerabilities associated
with this resource. Previous work shows that the
crawling performance of different scanners varies
significantly [2], [3].

2) To test areas of a web application that are only reach-
able after successful user authentication, the scanners
must authenticate themselves during crawling and
testing. While most scanners can be configured so
they can perform logins, they typically do not support
all authentication methods used by different web
applications. Also, scanners sometimes log out them-
selves (e.g., by following a logout link) during testing
and sometimes have problems to detect whether an
authenticated session has been invalidated. Overall,
this makes authenticated scans unreliable or even
impossible in some cases.

3) To cope with these limitations, scanners usually pro-
vide configuration options, which can increase the
number of detected vulnerabilities [4]. This includes,
e.g., specifying additional URLs that can be used by
the crawler as entry points, manually crawling the
application while using the scanner as a proxy so it
can learn the URLs, and specifying an authenticated
session ID that can be used by the scanner to reach
access-protected areas of the application if the au-
thentication method used by the web application is
not supported. However, using these options compli-
cate the usage of the scanners and still do not always
deliver the desired results.

4) With respect to the number and types of the reported
findings, different vulnerability scanners perform dif-

22Copyright (c) IARIA, 2018. ISBN: 978-1-61208-652-1

ICIMP 2018 : The Thirteenth International Conference on Internet Monitoring and Protection

ferently depending on the application under test [5].
Therefore, when testing a specific web application,
it’s reasonable to use multiple scanners in parallel
and combine their findings. However, the limitations
described above make this cumbersome and difficult,
as each scanner has to be configured and optimized
differently.

The goal of this paper is to overcome these limitations and
to evaluate how much this improves the vulnerability detection
performance of web application vulnerability scanners. To
achieve this goal, we developed JARVIS, which provides
technical solutions to overcome limitations 1 and 2 in the
list above. Using JARVIS requires only minimal configuration,
which overcomes limitation 3. And finally, JARVIS and its
usage are independent of specific vulnerability scanners and
can be applied to a wide range of scanners available today,
which overcomes limitation 4 and which provides an important
basis to use multiple scanners in parallel in an efficient way.

JARVIS was then applied to several vulnerability scanners
to evaluate its effectiveness and to learn more about the
potential and limitations of combining multiple scanners. In
this analysis, the five freely available scanners listed in Table I
were used.

TABLE I. ANALYZED WEB APPLICATION VULNERABILITY SCANNERS

Scanner Version/Commit URL
Arachni 1.5-0.5.11 http://www.arachni-scanner.com
OWASP ZAP 2.5.0 https://www.owasp.org/index.php/

OWASP Zed Attack Proxy Project
Skipfish 2.10b https://code.google.com/archive/p/

skipfish/
Wapiti r365 http://wapiti.sourceforge.net
w3af cb8e91af9 https://github.com/andresriancho/w3af

The choice for using freely available scanners was mainly
driven by the goal to evaluate the performance of using multi-
ple scanners in parallel. This is a much more realistic scenario
with freely available scanners as commercial ones often have
a hefty price tag. Also, previous work concluded that freely
available scanners do not perform worse than commercial
scanners [2], [3]. Arguments for using the scanners in Table I
instead of using others include our previous experience with
these scanners, that these scanners are among the most popular
used scanners in practice, and that they perform well in general
according to [3].

The main contributions of this paper are the following:

• Technical solutions to improve the crawling coverage
and the reliability of authenticated scans of web appli-
cation vulnerability scanners. In contrast to previous
work (see Section IV), our solutions cover both as-
pects, can easily be applied to a wide range of scanners
available today, and require only minimal, scanner-
independent configuration.

• An evaluation that demonstrates how much the vulner-
ability detection performance of five different scanners
is improved when using these technical solutions.

• An evaluation that demonstrates the benefits and lim-
itations when using multiple scanners in parallel.

The remainder of this paper is organized as follows:
Section II introduces the technical solutions to overcome the

limitations of today’s scanners and Section III contains the
evaluation results. Related work is covered in Section IV and
Section V concludes this work.

II. TECHNICAL APPROACH OF JARVIS
One way to improve the vulnerability detection perfor-

mance of scanners is to directly adapt one or more current
scanners. However, the main disadvantage of this approach is
that this would only benefit one or a small set of scanners
and would be restricted to scanners that are provided as
open source software. Therefore, a proxy-based approach was
chosen that is independent of any specific scanner, that does
not require adaptation of current scanners, and that can be used
with many scanners that are available today and most likely
also with scanners that will appear in the future. The basic
idea is illustrated in Figure 1.

JARVIS
(Proxy)

HTTP
Requests

HTTP
ResponsesComputer of Tester

Scanner
Web

Application
under Test

Figure 1. Proxy-based Approach of JARVIS.

A proxy-based approach means that JARVIS, which pro-
vides the technical solutions to overcome the limitations of
the scanners, acts as a proxy between the scanner and the web
application under test. This gives JARVIS access to all HTTP
requests and responses exchanged between scanner and web
application, which allows to control the entire crawling and
scanning process and to adapt requests or responses as needed.
This proxy-based approach is possible because most scanners
are proxy-aware, i.e., they allow to configure a proxy through
which communication with the web application takes place.
Note that JARVIS can basically be located on any reachable
host, but the typical scenario is using JARVIS on the same
computer as the scanner (e.g., on the computer of the tester).

As a basis for JARVIS, the community edition version
1.7.19 of Burp Suite [6] is used. Burp Suite is a tool to support
web application security testing that allows to record, intercept,
analyze, modify and replay HTTP requests and responses.
Therefore, Burp Suite already provides many basic functions
that are required to implement JARVIS. In addition, Burp Suite
provides an application programming interface (API) so it can
be extended and JARVIS makes use of this API.

JARVIS consist of two main components. The first is
described in Section II-A and aims at improving the test
coverage of scanners. This component should especially help
scanners that have a poor crawling performance. The second
component, described in Section II-B, aims at improving the
reliability of authenticated scans and should assist scanners
that have limitations in this area. Finally, Section II-C gives
a configuration example when using JARVIS to demonstrate
that the configuration effort is small.

A. Improving Test Coverage
Improving test coverage could be done by replacing the

existing crawler components of the scanners with a better
one (see, e.g., [7]–[9]). While this may be helpful for some

23Copyright (c) IARIA, 2018. ISBN: 978-1-61208-652-1

ICIMP 2018 : The Thirteenth International Conference on Internet Monitoring and Protection

scanners, it may actually be harmful for others, in particular
if the integrated crawler works well. Therefore, an approach
was chosen that does not replace but that assists the crawling
components that are integrated in the different scanners. The
idea is to supplement the crawlers with additional URLs
(beyond the base URL) of the web application under test.
These additional URLs are named seeds as they are used to
seed the crawler components of the scanners. Intuitively, this
should significantly improve crawling coverage, in particular
if the integrated crawler is not very effective. To get the
additional URLs of a web application, two different approaches
are used: endpoint extraction from the source code of web
applications and using the detected URLs of the best available
crawler(s).

Endpoint extraction means searching the source code (in-
cluding configuration files) of the web application under test
for URLs and parameters. The important benefits of this
approach are that it can detect URLs that are hard to find
by any crawler and that it can uncover hidden parameters of
requests (e.g., debugging parameters). To extract the endpoints,
ThreadFix endpoint CLI [10] was used, which supports many
common web application frameworks (e.g., JSP, Ruby on
Rails, Spring MVC, Struts, .NET MVC and ASP.NET Web-
Forms). In addition, further potential endpoints are constructed
by appending all directories and files under the root directory
of the source code to the base URL that is used by the
web application under test. This is particularly effective when
scanning web applications based on PHP.

Obviously, endpoint extraction is only possible if the source
code of the application under test is available. If that’s not
the case, the second approach comes into play. The idea here
is to use the best available crawler(s) to gather additional
URLs. As will be shown later, Arachni provides good crawling
performance in general, so Arachni is a good starting point as
a tool for this task. Of course, it’s also possible to combine
both approaches to determine the seeds: extract the endpoints
from the source code (if available) and get URLs with the best
available crawler(s).

Once the seeds have been derived, they must be injected
into the crawler component of the scanners. To do this,
most scanners provide a configuration option. However, this
approach has its limitations as such an option is not always
available and usually only supports GET requests but no POST
requests. Therefore, the seeds are injected by JARVIS. To do
this, four different approaches were implemented based on
robots.txt, sitemap.xml, a landing page, and the index page.

Using robots.txt and sitemap.xml is straightforward. These
files are intended to provide search engine crawlers with infor-
mation about the target web site and are also evaluated by most
crawler components of scanners. When the crawler component
of a scanner requests such a file, JARVIS supplements the
original file received from the web application with the seeds
(or generates a new file with the seeds in case the web
application does not contain the file at all). Both approaches
work well but are limited to GET request.

The other two approaches are more powerful as they
also support POST request. The landing page-based approach
places all seeds as links or forms into a separate web page
(named landing.page) and the scanner is configured to use
this page as the base URL of the web application under test

(e.g., http://www.example.site/landing.page instead of http:
//www.example.site). When the crawler requests the page,
JARVIS delivers the landing page, from which the crawler
learns all the seeds and uses them during the remainder of
the crawling process. One limitation of this approach is that
the altered base URL is sometimes interpreted as a directory
by the crawler component of the scanners, which means the
crawler does not request the landing page itself but tries to
fetch resources below it. This is where the fourth approach
comes into play. The index page-based approach injects seeds
directly into the first page received from the web application
(e.g., just before the </body> tag of the page index.html).
Overall, these four approaches allowed to successfully seed
all scanners in Table I when used to test the web applications
in the test set (see Section III-A).

As an example, the effectiveness of the landing page-based
approach is demonstrated. To do this, WIVET version 4 [11]
is used, which is a benchmarking project to assess crawling
coverage. Table II shows the crawling coverage that can be
achieved with OWASP ZAP (in headless mode) and Wapiti
when they are seeded with the crawling results of Arachni via
a landing page.

TABLE II. CRAWLING COVERAGE

Raw Coverage when seeded with
Scanner coverage the crawling results of Arachni
Arachni 92.86%
OWASP ZAP 14.29% 96.43%
Wapiti 48.21% 96.43%

Table II shows that the raw crawling coverage of Arachni
is already very good (92.86%), while Wapiti only finds about
half of all resources and OWASP ZAP only a small fraction.
By seeding OWASP ZAP and Wapiti with the crawling results
of Arachni, their coverage can be improved drastically to
96.43%. This demonstrates that seeding via a landing page
indeed works very well.

B. Improving Authenticated Scans

Performing authenticated scans in a reliable way is chal-
lenging for multiple reasons. This includes coping with various
authentication methods, prevention of logouts during the scans,
and performing re-authentication when this is needed (e.g.,
when a web application with integrated protection mechanisms
invalidates the authenticated session when being scanned) to
name a few. It is therefore not surprising that many scanners
have difficulties to perform authenticated scans reliably.

To deal with these challenges, several modules were im-
plemented in JARVIS. The first one serves to handle vari-
ous authentication methods, including modern methods based
on HTTP headers (e.g., OAuth 2.0). The module provides
a wizard to configure authentication requests, can submit
the corresponding requests, stores the authenticated cookies
received from the web applications, and injects them into
subsequent requests from the scanner to make sure the re-
quests are interpreted as authenticated requests by the web
application. The main advantages of this module are that it
enables authenticated scans even if a scanner does not support
the authentication method and that it provides a consistent way
to configure authentication independent of a particular scanner.

24Copyright (c) IARIA, 2018. ISBN: 978-1-61208-652-1

ICIMP 2018 : The Thirteenth International Conference on Internet Monitoring and Protection

Furthermore, a logout prevention module was implemented
to make sure a scanner is not doing a logout by following
links or performing actions which most likely invalidate the
current session (e.g., change password or logout links). This
is configured by specifying a set of corresponding URLs
that should be avoided during the scan. When the proxy
detects such a request, it blocks the request and generates a
response with HTTP status code 200 and an empty message
body. In addition, a flexible re-authentication module was
developed. Re-authentication is triggered based on matches of
configurable literal strings or regular expressions with HTTP
response headers (e.g., the location header in a redirection
response) or with the message body of an HTTP response
(e.g., the occurrence of a keyword such as login).

C. Configuration Example
To give an impression of the configuration effort needed

when using JARVIS, Table III lists the parameters that must
be configured when scanning the test application BodgeIt (see
Section III-A). In this example, the seeds are extracted from
the source code.

TABLE III. EXAMPLE CONFIGURATION WHEN SCANNING BODGEIT

Parameter Value(s)
Base URL http://bodgeit/
Source code ∼/bodgeit/
Authentication mode POST
Authentication URL http://bodgeit/login.jsp
Authentication parameters password=password

username=test@test.test
Out of scope http://bodgeit/password.jsp

http://bodgeit/register.jsp
http://bodgeit/logout.jsp

Re-auth. search scope HTTP response body
Re-auth. keywords Login, Guest, user
Re-auth. keyword interpretation Literal string(s)
Re-auth. case-sensitive True
Re-auth. match indicates Invalid session
Seeding approach(es) Landing page, robots.txt,

sitemap.xml

The entries in Table III are self-explanatory and show
that the configuration effort is rather small. In particular,
the configuration is independent of the actual scanner, which
implies that when using multiple scanners in parallel (see
Section III-D), this configuration must only be done once and
not once per scanner.

III. EVALUATION

This section starts with a description of the evaluation
setting. Then, the results of the evaluation of the vulnerability
detection performance is presented when the scanners are used
with and without the improvements described in Section II. In
the final step, the benefits and limitations of using multiple
scanners in parallel is evaluated.

A. Evaluation Setting
Table IV lists the web applications that were used to

evaluate the scanners (Cyclone Transfers and WackoPicko do
not use explicit versioning).

All these applications are deliberately insecure and well
suited for security training and to test vulnerability scanners.
The main reason why the applications in Table IV were chosen
is because they cover various technologies, including Java,
PHP, Node.js and Ruby on Rails.

TABLE IV. WEB APPLICATIONS USED FOR THE EVALUATION

Application Version URL
BodgeIt 1.4.0 https://github.com/psiinon/bodgeit
Cyclone Transfers – https://github.com/thedeadrobots/bwa cyclone

transfers
InsecureWebApp 1.0 https://www.owasp.org/index.php/Category:

OWASP Insecure Web App Project
Juice Shop 2.17.0 https://github.com/bkimminich/juice-shop
NodeGoat 1.1 https://github.com/OWASP/NodeGoat
Peruggia 1.2 https://sourceforge.net/projects/peruggia/
WackoPicko – https://github.com/adamdoupe/WackoPicko

The evaluation uses four different configurations that are
listed in Table V.

TABLE V. CONFIGURATIONS USED DURING THE EVALUATION

Config. The scans are executed...
-/- ...without seeding and non-authenticated (i.e., using the basic

configuration of the scanners by setting only the base URL)
S/- ...with seeding and non-authenticated (i.e., using the technical

solution described in Section II-A)
-/A ...without any seeding and authenticated (i.e., using the

technical solution described in Section II-B)
S/A ...with seeding and authenticated (i.e., using both technical

solutions described in Sections II-A and II-B)

As the source code of all these applications is available,
the endpoint extraction approach described in Section II-A is
used for seeding in configurations S/- and S/A.

The test applications were run in a virtual environment that
was reset to its initial state before each test run to make sure
that every run is done under the same conditions and is not
influenced by any of the other scans.

B. Overall Evaluation
The first evaluation analyzes the overall number of vul-

nerabilities that are reported by the scanners when using the
four different configurations described in Table V. Figure 2
illustrates the evaluation results.

The first observation when looking at Figure 2 is that some
scanners identify many more vulnerabilities than others. For
example, Skipfish reports about ten times as many findings as
Arachni or w3af. However, this doesn’t mean that Skipfish is
the best scanner, because Figure 2 depicts the “raw number
of vulnerabilities” reported by the scanners and does not take
into account false positives, duplicate findings, or the criticality
of the findings. For instance, about 80% of the vulnerabilities
reported by Skipfish are rated as info or low (meaning they
have only little security impact in practice) while the other
scanners report a much smaller fraction of such findings.

More importantly, Figure 2 shows that the technical solu-
tion to improve test coverage works well with all scanners and
all test applications included in the evaluation. The number
of vulnerabilities reported when seeding is used is nearly
always greater than without seeding. For instance, Arachni
reports 64 vulnerabilities in Juice Shop in configuration S/-
compared to 47 in configuration -/-. Similarly, when using
authenticated scans, Arachni reports 39 findings in BodgeIt
in configuration S/A compared to 12 in configuration -/A.
The same is true when adding up the vulnerabilities of a
specific scanner over all test applications: Configuration -/-
always reports fewer findings than configuration S/- (e.g., 162
vs. 254 with Arachni) and configuration -/A always reports

25Copyright (c) IARIA, 2018. ISBN: 978-1-61208-652-1

ICIMP 2018 : The Thirteenth International Conference on Internet Monitoring and Protection

-/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A
Arachni OWASP ZAP Skipfish Wapiti w3af

WackoPicko 39 50 36 54 101 137 79 117 313 484 526 617 14 21 14 20 28 55 26 34
Peruggia 4 20 4 20 79 98 62 78 25 81 27 69 1 17 2 18 2 14 2 7
NodeGoat 22 24 44 42 83 84 79 80 235 327 262 293 3 32 23 49 9 14 19 25
Juice Shop 47 64 47 60 29 29 49 49 20 229 33 104 19 19 19 19 4 7 4 8
InsecureWebApp 11 24 7 26 59 102 58 75 66 128 130 183 9 36 8 31 19 30 15 22
Cyclone Transfers 20 23 28 32 58 85 90 103 154 359 183 886 62 102 119 158 11 25 12 31
BodgeIt 19 49 12 39 126 149 102 125 51 145 90 252 70 89 134 110 74 94 70 92

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400
R

ep
or

te
d

V
ul

ne
ra

bi
lit

ie
s

Figure 2. Reported Vulnerabilities per Scanner and Test Application.

fewer findings than configuration S/A (e.g., 178 vs. 273 with
Arachni).

Likewise, Figure 2 demonstrates that the technical solution
to improve authenticated scans also works well. For instance,
when scanning Cyclone Transfer, Wapiti reports 62 findings
in configuration -/- and 119 findings in configuration -/A.
Also, scanning in configuration S/- delivers 102 vulnerabilities,
which can be increased to 158 in configuration S/A. And
finally, this also holds true over all applications, as for most
scanners, the bars in Figure 2 are higher in configuration -
/A compared to -/- and in configuration S/A compared to S/-.
Note that to make sure that authenticated scans were carried
out reliably, the involved requests and responses were analyzed
after each scan. This showed that it was indeed possible to
maintain authentication during the entire scan, which further
undermines that the technical approach is sound.

Intuitively, additionally seeding a scanner or performing
authenticated scans should always also report all vulnerabilities
that are detected when scanning without additional seeding
or without authentication. However, this is not the case. To
demonstrate this, it was analyzed how many of the vulnerabil-
ities reported in the basic configuration are also found when
scanning in other configurations. To do this, the reports of the
scanners were first processed with ThreadFix [12]. ThreadFix
allows to normalize reports of different scanners, to eliminate
duplicates, and to compare the results of different scanners or
different runs by the same scanner. Figure 3 shows the results
of the analysis for the findings reported by Arachni. Note that
because of the processing with ThreadFix and in contrast to
Figure 2, the bars now represent the number of unique findings
that were reported.

First of all, Figure 3 undermines what was observed above:
Additional seeding and authenticated scans result in a greater
number of reported findings, as can be seen by comparing the
heights of the bars. In addition, as the bars represent unique
vulnerabilities, the additional findings are not just duplicates
of already detected findings, but they are truly new findings.
Beyond this, Figure 3 confirms that when using additional
seeding and/or authenticated scans, not all vulnerabilities that
are reported in the basic configuration -/- are detected again.
For example, considering BodgeIt, Arachni reports 16 findings
in configuration -/-. When using configuration S/-, then 21
findings are reported in total, of which 10 are “new” findings
compared to -/- (indicated by the green part of the bar). How-
ever, only 11 of the 16 vulnerabilities reported in configuration
-/- are detected again (“old” findings, indicated by the gray part
of the bar) and 5 are missing. The same can be observed with
the other configurations and with all test applications, which
means that in general, additional seeding and/or authenticated
scans deliver a significant number of new findings, but also
misses several of the findings that are reported in the basic
configuration. Note that the same behavior can be observed
with all scanners, but only the results of Arachni are included
due to space restrictions.

Determining the exact reasons for this behavior would
require a detailed analysis of the crawling components of the
scanners and the web applications in the test set, which is be-
yond the scope of this work. Therefore, only a few arguments
are given that show the observed behavior is reasonable:

• Providing the crawler component of a scanner with
additional seeds has a direct impact on the order
in which the pages are requested. A different order

26Copyright (c) IARIA, 2018. ISBN: 978-1-61208-652-1

ICIMP 2018 : The Thirteenth International Conference on Internet Monitoring and Protection

-/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A
BodgeIt Cyclone Transfers InsecureWebApp Juice Shop NodeGoat Peruggia WackoPicko

New Vulnerabilities 16 10 3 10 17 11 9 18 11 15 5 15 41 36 15 37 19 8 16 29 4 15 1 16 33 34 10 36
Old Vulnerabilities 0 11 8 9 0 9 15 10 0 4 2 6 0 22 28 17 0 10 3 1 0 2 3 1 0 8 20 9

0

10

20

30

40

50

60
R

ep
or

te
d

V
ul

ne
ra

bi
lit

ie
s

by
 A

ra
ch

ni

Figure 3. Reported Unique Vulnerabilities by Arachni and per Test Application.

implies different internal state changes within the web
application under test [7], which typically leads to a
different behavior of the web application and therefore
to different findings.

• When doing authenticated scans, some of the re-
sources that do not require authentication are often no
longer reachable, e.g., registration, login and forgotten
password pages. As deliberately insecure web appli-
cations often use these resources to place common
vulnerabilities, this has a major impact in this test
setting.

The consequence of this observation is that when scanning
a web application, the scanners should be used in all four
configurations to maximize the number of reported findings.
And obviously, although this was not analyzed in detail, when
an application provides different protected areas for different
roles, scanning should be done with users of all roles.

C. Detailed Evaluation
The evaluation in Section III-B demonstrates that when

considering just the number of reported vulnerabilities,
JARVIS works well. However, its still unclear whether there’s
a true benefit in practice because it may be that the additionally
found vulnerabilities are mainly false positives or non-critical
issues.

To get a better understanding, a more detailed analysis
focusing on SQL injection (SQLi) and cross-site scripting
(XSS) vulnerabilities was done. To do this, all reported vul-
nerabilities of these types were manually verified to identify
them as either true or false positives. This required a lot of
effort, which is the main reason why the focus was set on
these two types. Nevertheless, this serves well to evaluate the
true potential of JARVIS as both vulnerabilities are highly
relevant in practice and highly security-critical. In addition,
the test applications contain several of them, which means
SQLi and XSS vulnerabilities represent a meaningful sample
size. Figure 4 shows the results of this analysis. Just like in
Figure 3, the bars represent the number of unique findings that
were reported.

Looking only at the true positives (green bars), Figure 4
confirms that JARVIS indeed works well in the sense that using
additional seeding and authenticated scans allows the scanners
to detect highly relevant and security-critical vulnerabilities
that are not reported in the basic configuration, which is true
for all scanners. The results also undermine that it’s important

to perform scans in all four configurations (named configu-
ration All), as the sums of the detected vulnerabilities (bars
labeled with All) are always greater than the vulnerabilities
detected in any of the other configurations. Furthermore, the
results demonstrate that for each of the five scanners, com-
bining the results of all configurations yields more than twice
as many vulnerabilities (true positives) as when performing
scans only in the basic configuration -/-, so JARVIS results in
an improvement of over 100%.

In addition, Figure 4 shows that scanners that tend towards
reporting false positives (red bars) do so also in the advanced
configurations, but overall, the fraction of false positives re-
mains more or less constant independent of the configuration.
That’s an important results as it demonstrates that the technical
improvements result in more true findings without an increased
percentage of false positives. And finally, Figure 4 allows
to compare the scanners. In particular, based on the test
applications and focusing on SQLi and XSS vulnerabilities, it
shows that Arachni performs best (without producing a single
false positive) and Skipfish performs quite poorly, especially
with respect to false positives. This also puts into perspective
the results of the first evaluation (see Figure 2), where Skipfish
reported many more vulnerabilities than the other scanners.

D. Combining Multiple Scanners

In the final evaluation, the benefits of using multiple
scanners in parallel are analyzed. Figure 5 shows the com-
bined unique true and false positives when using individual
scanners and different combinations thereof and when using
the scanners in the basic configuration -/- or in configuration
All. The results are ranked from left to right according to the
number of true positives that are identified in configuration All.

Looking at the results in configuration All, the rightmost
bar combines the results of all five scanners, which obviously
delivers most true positives (51), but which also delivers most
false positives (86). The results also show that in this test
setting, Arachni performs very well on its own, as it finds 41
true positives (without a single false positive), which means
that the other four scanners combined can only detect 10
true positives that are not found by Arachni. Looking at
combinations of scanners, then Arachni & Wapiti (Ar/Wa)
perform well and identify 45 of the 51 true positives with-
out any false positive. Combining Arachni, OWASP ZAP &
Wapiti (Ar/OZ/Wa) is also a good choice as it finds 47 true
positives with only a few false positives. This demonstrates

27Copyright (c) IARIA, 2018. ISBN: 978-1-61208-652-1

ICIMP 2018 : The Thirteenth International Conference on Internet Monitoring and Protection

-/- S/- -/A S,A All -/- S/- -/A S/A All -/- S/- -/A S/A All -/- S/- -/A S/A All -/- S/- -/A S/A All
Arachni OWASP ZAP Skipfish Wapiti w3af

False Positives 0 0 0 0 0 0 0 3 5 5 9 24 15 24 60 0 0 0 0 0 4 8 1 11 21
True Positives 17 23 20 36 41 12 18 11 22 27 0 3 7 10 13 7 20 12 18 22 12 17 13 20 25

0
10
20
30
40
50
60
70
80

R
ep

or
te

d
SQ

Li
 a

nd
 X

SS

V
ul

ne
ra

bi
lit

ie
s

Figure 4. Reported Unique SQLi and XSS Vulnerabilities per Scanner, over all Test Applications.

-/- All -/- All -/- All -/- All -/- All -/- All -/- All -/- All -/- All -/- All -/- All
Skipfish Wapiti w3af OW. ZAP Arachni Ar/OZ Ar/Wa Ar/w3 Ar/OZ/Wa A/O/W/w All

False Positives 9 60 0 0 4 21 0 5 0 0 0 5 0 0 4 21 0 5 4 26 13 86
True Positives 0 13 7 22 12 25 12 27 17 41 19 43 17 45 21 46 19 47 22 49 22 51

0
20
40
60
80

100
120
140

R
ep

or
te

d
SQ

Li
 a

nd
 X

SS

V
ul

ne
ra

bi
lit

ie
s

Figure 5. Reported Unique SQLi and XSS Vulnerabilities using different Scanner Combinations, over all Test Applications.

that combining multiple scanners is beneficial to increase the
number of detected true positives without a significant negative
impact on the number of reported false positives. However,
blindly combining as many scanners as possible (e.g., all five
scanners used here) is not a good idea in general as although
this results in most true positives, it also combines all false
positives. Finally, comparing the results in configuration All
with the ones in configuration -/- demonstrates that even when
combining multiple scanners, configuration All increases the
number of detected true positives always by more than 100%,
which again undermines the benefits of JARVIS.

Note that since seven test web applications that cover
several technologies are used, the results are at least an indica-
tion that the combinations of scanners proposed above should
perform well in many scenarios. However, this is certainly no
proof and it may be that other combinations of scanners are
better suited depending on the web application under test. This
means that in practice, one has to experiment with different
combinations to determine the one that is best suited in a
specific scenario.

IV. RELATED WORK

Several work has been published on the crawling coverage
and detection performance of web application vulnerability
scanners. In [2], more than ten scanners were compared, with
the main results that good crawling coverage is paramount to
detect many vulnerabilities and that freely available scanners
perform as well as commercial ones. The same is confirmed by
[3], which covers more than 50 free and commercial scanners

and which is updated regularly. In [4], Suto concludes that
when carefully training or configuring a scanner, detection
performance is improved, but this also significantly increases
the complexity and time effort needed to use a scanner.
Furthermore, Bau et al. demonstrate that the eight scanners
they used in their analysis have different strengths, i.e. they
find different vulnerabilities [5].

Other work specifically aimed at improving the coverage
of vulnerability scanning. In [7], it is demonstrated that by
taking into account the state changes of a web application
when it processes requests, crawling and therefore scanning
performance can be improved. In [8], van Deursen et al.
present a Selenium WebDriver-based crawler called Crawljax,
which improves crawling of Ajax-based web applications. The
same is achieved by Pellegrino et al. by dynamically analyzing
JavaScript code in web pages [9].

Our work presented in this paper builds upon this previous
work as it delivers practical and effective technical solutions to
overcome the limitations and exploit the potential identified by
others. What sets our approach apart from other work is that
it addresses not only crawling coverage but also the reliability
of authenticated scans, that it is scanner-independent, and
that it can easily be applied to most vulnerability scanners
available today. In addition, we provide a detailed evaluation
using several scanners and several test applications that truly
demonstrates the benefits and practicability of our technical
solutions.

28Copyright (c) IARIA, 2018. ISBN: 978-1-61208-652-1

ICIMP 2018 : The Thirteenth International Conference on Internet Monitoring and Protection

V. CONCLUSION

In this paper, we presented JARVIS, which provides tech-
nical solutions to overcome some of the limitations – notably
crawling coverage and reliability of authenticated scans – of
web application vulnerability scanners. As JARVIS is inde-
pendent of specific scanners and implemented as a proxy,
it can be applied to a wide range of existing vulnerability
scanners. The evaluation based on five freely available scanners
and seven test web applications covering various technologies
demonstrates that JARVIS works well in practice and that
the vulnerability detection rate (true positives) of the scanners
can by improved by more than 100% compared to using the
scanners in their basic configuration.

The configuration effort to use JARVIS is small and the
configurations are scanner-independent. Therefore, JARVIS
also provides an important basis to use multiple scanners
in parallel in an efficient way. The provided analysis shows
that combining multiple scanners is indeed beneficial as it
increases the number of true positives, which is not surprising
as different scanners detect different vulnerabilities. However,
it was also demonstrated that blindly combining as many
scanners as possible is not a good idea in general because
although this results in most true positives, it also delivers
the sum of all false positives reported by the scanners. In the
evaluation, the combination of Arachni & Wapiti or Arachni,
OWASP ZAP & Wapiti yielded the best compromise between a
high rate of true positives and a low rate of false positives. As a
representative set of web application technologies was used in
the evaluation, it can be expected that these combinations work
well in many scenarios, but this is no proof and in practice, one
has to experiment with different combinations to determine the
one that is best suited in a specific scenario.

ACKNOWLEDGEMENT

This work was partly funded by the Swiss Confederation’s
innovation promotion agency CTI (project 18876.1 PFES-ES).

REFERENCES
[1] WhiteHat Security, “2017 application security statistics report,” Tech.

Rep., 2017, URL: https://www.whitehatsec.com/resources-category/
premium-content/web-application-stats-report-2017/ [accessed: 2018-
05-15].

[2] A. Doupé, M. Cova, and G. Vigna, “Why johnny can’t pentest: An
analysis of black-box web vulnerability scanners,” in Proceedings of the
7th International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment, ser. DIMVA’10. Berlin, Heidelberg:
Springer-Verlag, 2010, pp. 111–131.

[3] S. Chen, “SECTOOL market,” 2016, URL: http://
www.sectoolmarket.com/price-and-feature-comparison-of-web-
application-scanners-unified-list.html [accessed: 2018-05-15].

[4] L. Suto, “Analyzing the accuracy and time costs of web
application security scanners,” Tech. Rep., 2010, URL:
https://www.beyondtrust.com/wp-content/uploads/Analyzing-the-
Accuracy-and-Time-Costs-of-Web-Application-Security-Scanners.pdf
[accessed: 2018-05-15].

[5] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell, “State of the art: Auto-
mated black-box web application vulnerability testing,” in Proceedings
of the 2010 IEEE Symposium on Security and Privacy, 2010, pp. 332–
345.

[6] PortSwigger, “Burp Suite,” URL: https://portswigger.net/burp [ac-
cessed: 2018-05-15].

[7] A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna, “Enemy of the state:
A state-aware black-box web vulnerability scanner,” in Proceedings
of the 21st USENIX Security Symposium (USENIX Security 12).
Bellevue, WA: USENIX, 2012, pp. 523–538.

[8] A. v. Deursen, A. Mesbah, and A. Nederlof, “Crawl-based analysis
of web applications: Prospects and challenges,” Science of Computer
Programming, vol. 97, 2015, pp. 173 – 180.

[9] G. Pellegrino, C. Tschürtz, E. Bodden, and C. Rossow, “jäk: Using
dynamic analysis to crawl and test modern web applications,” in
Research in Attacks, Intrusions, and Defenses, H. Bos, F. Monrose,
and G. Blanc, Eds. Cham: Springer International Publishing, 2015,
pp. 295–316.

[10] ThreadFix, “ThreadFix endpoint CLI,” URL: https://github.com/
denimgroup/threadfix/tree/master/threadfix-cli-endpoints [accessed:
2018-05-15].

[11] B. Urgun, “WIVET: Web input vector extractor teaser,” URL: https:
//github.com/bedirhan/wivet [accessed: 2018-05-15].

[12] ThreadFix, “Application vulnerability correlation with ThreadFix,”
URL: https://threadfix.it [accessed: 2018-05-15].

29Copyright (c) IARIA, 2018. ISBN: 978-1-61208-652-1

ICIMP 2018 : The Thirteenth International Conference on Internet Monitoring and Protection

