
Visualization and Monitoring for the Identification and Analysis of DNS Issues

Christopher Amin, Massimo Candela, Daniel Karrenberg, Robert Kisteleki and Andreas Strikos
Réseaux IP Européens (RIPE) Network Coordination Centre

Amsterdam, Netherlands
Email: camin@ripe.net, mcandela@ripe.net, daniel.karrenberg@ripe.net, robert@ripe.net, astrikos@ripe.net

Abstract—The user experience of an Internet service depends
partly on the availability and speed of the Domain Name System
(DNS). DNS operators continually need to identify and solve
problems that can be located at the end user, a name server, or
somewhere in between. In this paper, we show how DNSMON, a
production service for measuring and comparing the availability
and responsiveness of key name servers, correlates and visualizes
different types of measurements collected by RIPE Atlas vantage
points worldwide. DNSMON offers an interactive view, both
historic and near real-time, at different levels of detail. It has
successfully revealed and allowed analysis of many operational
issues, including less obvious ones.

Keywords–DNSMON; DNS; monitoring; network visualization.

I. INTRODUCTION

The Internet Domain Name System (DNS) [1][2] provides
a mapping from user-visible domain names to other identifiers,
such as network layer addresses. The performance of most
Internet services can be perceptibly influenced by the quality
and responsiveness of the DNS. Since it is a distributed system,
its performance depends in turn on a number of elements, such
as the authoritative name servers, caching name servers, local
resolvers and the network in between. Due to the importance of
this infrastructure, there have been many monitoring projects
collecting data about different aspects of DNS, such as stabil-
ity, security, performance, and traffic. Some of these projects
also provide visualizations for administrators and decision
makers — especially the DNS operators at various levels.

The visualization of Internet measurements in general has
seen a growing interest in recent years. This is mainly due
to the huge amount of data collected by Internet measure-
ments projects, which cannot be fully understood and explored
without meaningful visual representations. There are various
free and commercially available DNS visualization tools, some
examples being: DNSViz [3], which, given a domain name,
visualizes the chain of name servers and certificates involved
in the DNSSEC chain of trust; Flying Term [4], which offers
a visualization to help administrators identify and understand
DNS querying behavior due to anomalies such as misconfigu-
ration and security events; DNSential [5], which allows users
to issue custom IP address or domain name queries returning
a graphical depiction of IP/domain relationships over time;
RTIVS [6], which helps administrators to display and detect
DNS amplification attacks; and VisualK [7], a system that
visualizes how and when the clients of K-root name server
migrate from one instance to another.

DNSMON [8] is a monitoring project started in 2001 to
actively measure authoritative DNS servers at the root and
top-level domain (TLD) level, from a large enough number
of vantage points to reliably identify issues at or close to
the servers themselves. While the majority of the DNS tools,

including the tools cited above, focus on data collected by a
specific server or through DNS resolutions from the resolver
point of view, DNSMON aims to constantly monitor all
the name servers belonging to entire zones — considered
strategic for the functioning of the whole Internet — through
performance measurements. It was initially conceived as a
response to claims that root name servers performed poorly.
Such claims were often based on measurements from one or
— at most — a handful of vantage points and thus heavily
influenced by network performance on a small number of
network paths. The first implementation of DNSMON was
based on a small process running on the nodes of the RIPE
Test Traffic Measurement (TTM) [9] network. This process
executed DNS queries and reported response times to a central
server which stored them in round-robin database (RRD) [10]
files. Users were able to monitor name servers and DNS
zones through several automatically generated, non-interactive
images. Due to the limitations of RRD and the static images,
it was not possible to view results from arbitrary time periods
at arbitrary levels of detail, nor to interactively access related
measurements.

The project has proven its usefulness amongst operators
and has evolved over time. In this paper, we will present
the latest stage of DNSMON. The system is now based on
the RIPE Atlas [11] network measurement project, which
currently counts around 8000 active probes and 100 anchors
worldwide carrying out more than 2000 network measurements
per second. An anchor is a high-end machine colocated in a
professional data center with defined network requirements;
a probe is a small device usually located at end user sites.
We decided to use measurements performed by anchors rather
than probes in the interest of providing more accurate, reliable
and consistent information without needing to compensate for
erratic uptimes. It is also beneficial to avoid possible noise
present in end user networks, since the focus is to identify
issues near to core services.

Although this tool targets mostly network operators, the
services they operate are sufficiently important that by facili-
tating analysis and quality of service improvement to diverse
locations around the world, significant benefits are conferred
to all users of the wider Internet.

Figure 1 shows a snapshot of the DNSMON interface.
The main objectives of the system are as follows. The user
selects a DNS zone z and an interval of time T , the system
shows a visual overview of the results of the measurements
performed by the anchors against the set S of name servers
belongong to z over time. The servers in S are detected
in advance by performing an Name Server (NS) lookup on
the zone, and collecting all unique IP addresses found in
referenced A or AAAA records. This type of visualization

1Copyright (c) IARIA, 2015. ISBN: 978-1-61208-413-8

ICIMP 2015 : The Tenth International Conference on Internet Monitoring and Protection

Figure 1. The main interface of DNSMON.

should be effective in giving a close to real-time overview
of the quality of the entire zone at a glance and flexible and
interactive enough to increase the details during analysis, while
also correlating different types of measurement results and
distinguishing abnormal from ordinary situations. The back
end should only provide the data while the visualization and
data correlation should be completely client-side, accessible
from a web browser without third-party plug-ins. A typical
use of our system is the following. Let γ be a geographical
region in which the anchor α is deployed. Suppose that during
T the DNS resolution of z exhibited some packet loss or high
latency problem. Is there a specific name server s involved in
the problem? Is the problem bound to γ? How can we exclude
the possibility that the problem is related to a malfunction of
α? Moreover, how did α reach s before and after the issue
and what DNS responses were received?

The paper is organized as follows. In Section II, we
describe the adopted visualization approach and introduce
some formal terminology. Section III gives an overview of
the general method for finding and solving problems using the
tool, as well as some specific examples. In Section IV, we
describe the collection and processing of measurement data
used to support the visualization. In Section V, we outline the
implementation of our tool and the technical challenges we

faced. In Section VI, we present our conclusions and mention
future directions.

II. VISUALIZATION APPROACH

For each monitored zone in DNSMON, we look up all the
name servers defined for that zone, and schedule DNS mea-
surements against them. The primary scheduled measurements
are periodic Start of Authority (SOA) queries executed by a
common subset of the RIPE Atlas anchors. Assumptions about
the periodicity of the measurements are not hardcoded and may
be varied in the future, depending on the monitoring needs.

As stated in the user requirements in Section I, the user
should be able to monitor an arbitrary interval T , up to the
entire available history in the system. Therefore, the visual-
ization should be able to represent both the potentially large
number of results collected during T and to clearly convey the
zone status without requiring interaction.

The visualization methodology we adopted is presented
below together with supporting motivations. We discarded
solutions based on line charts or time animations. Line charts
are often used, in combination with downsampling algorithms,
to represent trends in large amounts of data. The purpose of the
downsampling is to try to retain the visual characteristics of
the original line using considerably fewer data points, which in

2Copyright (c) IARIA, 2015. ISBN: 978-1-61208-413-8

ICIMP 2015 : The Tenth International Conference on Internet Monitoring and Protection

a web application results in a helpful reduction in the number
of Document Object Model (DOM) elements to be handled
by the browser [12]. At the same time, line charts require
great attention to the axes, especially during comparisons
of different trends. Moreover, we need to represent multiple
trends concurrently and this requires too much space for an
intelligible representation. A time animation, instead, can solve
the space problem by representing a portion of T at a time,
but requires the user to interact with the system and it does
not provide an immediate overview of the whole T , violating
two base requirements.

We decided to follow Shneiderman’s mantra of “overview
first, zoom and filter, then details-on demand” [13] and to
adopt a matrix with two axes. Each cell represents a measured
value for the visualized zone z by using colors. Since the
canvas space is limited and a single cell should be big enough
to be clearly distinguishable and allow the user to interact
with it, a data aggregation mechanism has been adopted
representing groups of results instead of single values. T is
represented on the x-axis and is divided into sub-intervals.
Each cell represents an evaluation of the aggregation of all
the results collected by the system in a certain sub-interval.
The aggregation drastically reduces the number of represented
elements, making it possible to use a performant and purely
client-side browser visualization approach. We use the term
“native resolution” for the case in which T is so small that
each sub-interval contains a single measurement result.

In addition to z and T , a name server s can be specified
as an input. If s is specified, the set of anchors A monitoring
z is represented on the y-axis. In this case, a cell refers to a
measurement executed by a specific anchor and involving s at
a sub-interval t ∈ T . Instead, if s is not specified, all the name
servers in S are represented on the y-axis. In this second case,
a cell refers to the aggregation of all the data collected by
all the anchors in A against a specific name server in S at a
sub-interval t ∈ T . By default s is not specified, a choice
aligned with the aim of fostering incremental information
enrichment, but it is possible to specify it by clicking on a
name server label on the y-axis. The elements on the y-axis
are grouped by using colored rectangles placed on the left of
the axis labels. The colors are computed with the algorithm
described in [14] to ensure that they are distinguishable from
each other. The IP addresses, both IPv4 and IPv6, derived
from lookups of the same NS record are visually close and
grouped together, allowing a comparison between protocols
and isolation of possible protocol-specific routing problems,
while also satisfying modern operators who are as concerned
with IPv6 reachability as IPv4. The anchors are grouped by
the country code [15] where they are deployed, adding the
possibility of seeing geographic correlations.

The user can select a point of view, or rather which qual-
itative aspect of the measurement to visualize. In particular,
in the actual release, the available points of view are: packet
loss, Round Trip Time (RTT), and relative RTT. Each cell
in the packet loss and RTT views depicts respectively the
percentage of packets lost and the amount of milliseconds of
RTT measured for the sub-interval represented by the cell.
The relative RTT view shows the percentage disparity of each
sub-interval relative to the minimum measured in each row,
highlighting unexpectedly high RTT values, and smoothing
ordinarily high latencies. As a first approach we tried to

represent more than one point of view at the same time,
but this solution was discarded for the following reasons: it
requires different graphical metaphors resulting in an increased
complexity of the scene; given the amount of data to be
represented, introducing additional elements into the scene
causes cluttering and performance issues; and some users may
be interested in only one qualitative aspect while, since the
points of view are strongly related, spotting a problem in
one will often indicate the same issue in another, causing an
unnecessary information overload.

The cells are colored according to a threshold pair c1, c2.
Cells corresponding to values below c1 are shown in green,
above c2 in red, and between c1 and c2 in a color from
a gradient domain between green and red. When a value is
not available, the coresponding cell is shown in gray. In the
measurements performed by DNSMON, lower values indicate
better results. For this reason the choice of the colors reflects
a transition from positive low values (green) to negative high
values (red) [16]. The aim of the two thresholds is to create
a visual separation between values considered good and bad,
reducing the noise on the matrix. This is achieved by creating
two separate ranges — the expected acceptable values, and the
unacceptable ones — showing the gradient only for the cells
between the two. A pair c1, c2 is defined for each point of
view, by default tollerant threshold values are set. The user
can easily tune c1, c2 to change the sensitivity of the tool and
adapt it to the specific case. In addition to the coloring, it is
possible to obtain the textual values of a cell, along with other
information, by hovering over it with the mouse.

The user interaction plays a major role in our visualization.
It is possible to zoom the viewport in and out in order to reduce
or increase the visualized interval T . When T changes, the
data resolution also changes. In addition, T can be shifted in
time, thereby maintaining the same data resolution. A time
overview at the bottom shows the current extent of T within
the total monitored period for that zone. The time can be easily
navigated by interacting with the control panel, with the time
overview, or simply by scrolling with the scroll wheel or by
using the arrow keys on the matrix. By clicking on a cell it
is possible to obtain different types of correlated measurement
results. This feature is very effective during issue analysis. The
reader can experiment with the current version of DNSMON
by visiting the address https://dnsmon.ripe.net.

III. DISCOVERING AND ANALYZING ABNORMALITIES

The visualization makes it easy for the user to spot abnor-
mal situations and, once discovered, to interactively provide
access to extra information helpful for analysis and diagnosis.
The first stage of the discovery is usually to look at the matrix
and attempt to discern visual patterns in the coloring of the
cells. Various patterns provide clues to the presence and nature
of an abnormality. For instance, the existence of one or more
horizontal red lines in the zone view may answer the question
of whether there is a problem that involves a specific name
server — if all but one row is green then we can probably
determine that there is. Similarly, in the server view, red cells
spanning multiple anchors in the same country may tell us that
a problem is bound to a particular region, e.g., when a routing
problem involving a particular internet exchange affects nearby
anchors. When there is a problematic row corresponding to a
single anchor, it is essential to understand whether that is a
hint of a genuine network problem, or whether the anchor

3Copyright (c) IARIA, 2015. ISBN: 978-1-61208-413-8

ICIMP 2015 : The Tenth International Conference on Internet Monitoring and Protection

itself is malfunctioning. In this case, the user can opt to see
the recent results from that anchor for every name server,
as shown in Figure 2(d). If similar problems are seen for
other name servers then it is likely that the anchor has some
general issue. Also interesting are the edges before and after
a visible period of disruption, as they may provide clues
as to the cause of the problem and subsequent recovery. It
is useful to request extra information for the cells here —
in particular, comparing traceroutes side-by-side can show
information about changes in packet routing behavior. Looking
at the results of approximately concurrent HOSTNAME.BIND
queries indicates which specific instance of a load-balanced or
anycast service is answering DNS queries. The details for the
SOA queries themselves allow more in-depth analysis, e.g., it
may be possible to guess that a response has passed through
an intermediate cache by looking for simplifications or other
forms of answer mangling.

Operators and researches can use clues in the visualization
and correlated data to determine the likely root causes, and
share specific views that describe the exact details.

We present the following examples of real network events,
which were spotted and analyzed thanks to our tool. Technical
details and names have been intentionally removed from two
of the examples to obscure identities of the affected services.

In our first case, depicted in Figure 2(a), a zone was
involved in a major outage. The situation was immediately
visible in DNSMON, where none of the anchors were suc-
cessful in executing the measurements. The start and end times
of the red areas are aligned perfectly across topologically and
geographically distinct anchors, which points out that all the
servers were affected at the same time suggesting a global
service cause. Notice the orange borders around the main
red area are due to the data aggregation, where positive and
negative responses fall within the same sub-interval. Further
zooming in revealed the exact start and end times of the event,
with a sharp transition between green cells, without packet
loss, to red cells, with 100% packet loss.

In our next example, shown in Figure 2(b), the visualized
matrix for a zone showed sparse failed measurement from all
locations. The zone was involved in a denial-of-service attack
and the overloaded name servers caused sporadic packet loss.
In this type of cases, our tool provides a ready-to-use, close to
real-time global overview of the importance of the attack that
can help to guide decisions.

The third example involved the “fr.” zone on 15 March
2014. Around 01:30 UTC a high packet loss rate pattern started
appearing on DNSMON as depicted in Figure 2(c). Some of
the anchors were no longer able to reach the “d.ext.nic.fr”
name server because its anycast instance located in Amsterdam
was out of order. Our tool played a key role in spotting the
issue early on, reducing the reaction time. As visible on the
matrix, the instance was quickly restored and the anchors were
able to reach again the name server a few hours later the same
day. It is conceivable that in other scenarios the problem could
be caused by BGP routing problems — where some of the
paths reaching the target end up in “routing black holes” —
and all the vantage points which end up on these paths share a
similar fate. In both scenarios, a comparison of the traceroutes
may help to identify where the disruption is located.

TABLE I. MEASUREMENTS USED BY DNSMON, INCLUDING DETAILS OF
DNS QUERY OPTIONS AND FREQUENCY.

Type Protocol Additional Options Frequency
CH TXT HOSTNAME.BIND UDP No Retries 240s
CH TXT VERSION.BIND UDP NSID, IPv4 UDP

Payload 1472 bytes,
IPv6 UDP Payload
1232 bytes, No
Retries

86400s

IN SOA UDP NSID, IPv4 UDP
Payload 1472 bytes,
IPv6 UDP Payload
1232 bytes, No
Retries

300s

IN SOA TCP No Retries 300s
Traceroute ICMP 300s

IV. DATA COLLECTION AND AGGREGATION

DNSMON uses the RIPE Atlas measurement network as
its data source — in particular, measurement results from RIPE
Atlas anchors. The exact set of anchors [17] used in DNSMON
is chosen to have as much network and geographical coverage
as possible. Currently, anchors are present in all the inhabited
continents, especially Europe and the United States, and im-
proving diversity of coverage is a main goal of the project.
Each anchor runs the same set of measurements towards the
same targets and periodically reports the results back to the
RIPE Atlas infrastructure. These results are forwarded and
stored in an Apache HBase [18] database that is hosted on
an Apache Hadoop [19] cluster. This combination gives us the
computational power that we need to process, aggregate and
analyze a lot of data, as well as the high availability and good
performance required for serving data to interactive clients.

Whenever we want to start monitoring a new zone, we
follow these steps: 1) we get the current NS records for this
zone; 2) for each record we resolve all available IPv4 and
IPv6 addresses; and 3) we start a predefined set of periodic
measurements against each address.

The system checks regularly for any changes to the set of
the name servers for each zone and, after a manual check,
updates the periodic measurements.

RIPE Atlas exposes a range of options per measurement
type. The set of measurements and options used by DNSMON
is shown in Table I. HOSTNAME.BIND [20] queries reveal
which instance of the target service is responding, and are
carried out frequently to make it easier to pinpoint routing
changes. VERSION.BIND [21] queries reveal the software
version of DNS servers, which is unlikely to change often, so
they are only carried out once per day. These names are used
because of their widespread adoption, but for servers that do
not support them, ID.SERVER [20] and VERSION.SERVER
would be used instead. The core measurements used by
DNSMON are UDP and TCP SOA queries, and are used as the
basis for the response times and loss rates in the visualization.
The VERSION.BIND and the UDP SOA measurements are
configured with the NSID [22] option enabled, which will
prompt some servers to include an instance identifier. This
may cause the response to be bigger, so we set a UDP response
payload size in order to avoid fragmentation issues: 1472 bytes
for IPv4 to fit a common MTU of 1500 bytes, minus 28 bytes
for the IPv4 and UDP headers; and 1232 bytes for IPv6, to
fit an MTU of 1280 bytes, minus 48 bytes for the IPv6 and
UDP headers. We perform traceroute measurements mainly

4Copyright (c) IARIA, 2015. ISBN: 978-1-61208-413-8

ICIMP 2015 : The Tenth International Conference on Internet Monitoring and Protection

(a) (b)

(c) (d)

Figure 2. Examples of problem analysis. In (a), (b) and (c) the main matrix is represented, with x-axis (time) and y-axis (anchors) removed to obscure
identities. (a) An outage where all anchors had severe problems reaching the server, causing a thick vertical band. (b) Partial denial-of-service attack, shown as

a scattered vertical band. (c) Outage affecting a subset of anchors, with solid horizontal rows. (d) Recent measurements by an anchor.

for investigative purposes as outlined in Section III. At the
time of writing this paper, DNSMON monitors 44 zones, by
measuring in total 268 servers from 47 anchors worldwide.
We have created 2,773 periodic measurements in total, and
we store and analyze around 714,000 results daily.

Once collected, the DNS raw results [23] are processed
into a streamlined format, containing only the fields necessary
for the visualization. The format contains: IDs for the anchor
and periodic measurement; the measurement time; an RCODE
[24], which may be an error code; and the round-trip time of
the query, if completed. Built upon this format are aggregations
over 10 minutes, 2 hours and 1 day, i.e., spaced by a factor
of twelve. The decision of which levels to use was driven
by the requirements of the visualization. There are two types
of aggregation (by name server, and by anchor and name
server), both of which contain: the number of queries in the
period; the number of responses by RCODE, to allow the
visualization to distinguish error responses; and the 5th, 50th
(median) and 95th percentile of the RTT of all queries that
received a reply. In general, aggregations are calculated and
stored permanently in HBase tables after a grace period to
allow all results to arrive. In order to enable presentation before

this point, provisional aggregations are generated on demand
and temporarily cached.

V. IMPLEMENTATION AND TECHNICAL CHALLENGES

In addition to the data collection and aggregation infras-
tructure, the implementation of DNSMON is split into two
other main aspects: a visualization front end and a data API.

The visualization front end is a self-contained Web applica-
tion which can be embedded in any HTML page. It allows the
user to view and navigate the interactive matrix. The main
interface is presented in Figure 1. It is composed of four
main elements: the control bar, the matrix canvas, the data
correlation panel, and the time overview bar. We detail their
functionality below.

The control bar is a toolbar located in the upper part
of the interface containing a set of controllers. The first two
components from the left are the point of view selector and
the colors legend. By changing the point of view, both the
matrix and the legend update accordingly. The values for the
color thresholds c1, c2 specific for the selected point of view
are represented in the legend. They can easily be tuned by
means of a slider bar appearing by clicking on the legend’s

5Copyright (c) IARIA, 2015. ISBN: 978-1-61208-413-8

ICIMP 2015 : The Tenth International Conference on Internet Monitoring and Protection

labels or on the appropriate button; the change is reflected in
real time in the color of the cells. The personalized thresholds
are stored locally in the browser to be reused on the next
access. The buttons on the right side of the control panel are
mainly focused on the time and data navigation, replicating
all the gestures accepted by the canvas. The button with the
funnel icon allows the user to specify filters on the data, e.g.,
to exclude: answers containing DNS errors, UDP or TCP, or an
IP protocol version. One of the main uses of DNSMON is the
continuous monitoring of a zone, for which the visualization
must be constantly updated with the latest measurement results
without any interaction, e.g., on a wall-mounted monitor where
it is essential to be able to see a current overview of a zone
a glance. This objective can be achieved by using the full
screen and auto update features accessible from buttons on the
control panel. The auto update function keeps the amount of
time monitored constant, as well as the data resolution. Newly
collected values are introduced as cells on the right side of the
matrix, while the old cells are smoothly shifted to the left.

The matrix canvas is the main element of the interface.
It displays the interactive matrix requested by the user. As
described in Section II, the matrix has two axes. The x-axis
always represents the selected time interval T , while the y-axis
can represent name servers or anchors. All the labels on the
y-axis are interactive. Hovering over a label with the mouse
provides the user with extra information about the element.
A particular name server s can be specified by clicking on a
server label, the matrix will automatically switch to the new
representation. Alternatively, by clicking on an anchor label,
the related anchor page can be opened. In addition to the zoom
and shift functionalities, the user can select a subset of the cells
in order to increase the data resolution on a sub-matrix. We
paid particular attention to providing the user with feedback
during interaction. While selecting, in addition to the usual
selection rectangle, the selected cells are colored in a blue
gradient resembling the original tonalities; this gives the user
a precise perception of which cells are involved in the selection
while keeping the same visual pattern in the background. The
transition between two statuses of the matrix is animated.

The data correlation panel is hidden by default, appearing
when the user clicks on a cell. It provides access to the raw data
and to correlated measurement results. In the upper part of the
panel, a series of links allow the user to download JSON files
from the data API containing the HOSTNAME.BIND, UDP
SOA, TCP SOA, traceroute, and VERSION.BIND measure-
ment results collected in the sub-interval represented by the
cell. In the lower part of the panel, tabs provide access to: a
human-readable DNS response; HOSTNAME.BIND answers
collected just before and after the selected cell; and traceroutes
collected just before and after the selected cell.

The presentation of the traceroutes is designed to facilitate
the kind of analysis shown in Section III by allowing side-
by-side comparison, and visually differentiating each line.
Traceroute output is enriched with links to get information
about IP addresses from RIPEstat [25].

The time overview bar is a crucial part of the system,
placed at the bottom of the interface. It is a timeline including
a resizable range slider that allows the user to select a temporal
interval of interest. When the user moves the range slider,
the matrix is animated accordingly, downloading or filtering
out measurement results. In order to make the interaction

easier, a snap to grid is placed along the timeline. With this
solution it is easy to precisely select multiple whole days: the
selection slider is rounded to the closest tick, accompanied by
an animation simulating a magnetic effect. All the components
of the system front end are constantly synchronized, providing
a consistent perception of time to the user.

The front end is written in JavaScript and HTML. The
whole visualization is rendered in the browser using D3.js
[26], a Scalable Vector Graphics library. The architecture is
based on the Model-View-Controller design pattern [27], while
a data layer provides a unified access point to different datasets.
The data layer is internally composed of specialized sublayers
providing fundamental functionalities, such as format isolation,
caching, error handling, and connection management,

The development of DNSMON followed a rigid series of
tests. In addition to unit tests, we used virtual machines to test
how the web application behaved on different operating system
and browser combinations. We had an internal beta stage
during which we deployed a data collection system gathering
usage data, performance scores and errors from the clients.
This allowed us to study the users’ interaction. The results
of our study, together with the introduced improvements, are
reported as follows.

1) Usually the user moves in time smoothly; after each inter-
action only a small portion of the matrix represents new
cells. The same applies when the auto update function
is active. We designed a client-side cache to minimize
redundant calls to the data API, selecting which portion
of the matrix to retrieve and combining the results with
ones from the cache. Analyzing this solution using the
performance logging system, we found that we were able
to save up to 88% in network bandwidth.

2) The user is often not decisive during mouse gestures
or input selection, trying to correct them incrementally,
resulting in useless data calls and redraws. We introduced
a layer able to temporarily prevent data calls and to give
fake user feedback during the interaction. This gives the
user the impression that the gestures are applied in real
time, while the redraw with the correct data is done when
an anti-flood timer expires.

3) We noticed high memory usage during heavily interactive
sections due to the large amount of instantiated cells not
yet garbage collected, which prompted us to opt for an
ad hoc management of the browser’s garbage collector in
combination with an Object Pool solution [28].

Due to the large amount of data to display, performance
and user experience were two big challenges during the imple-
mentation of DNSMON. Different browsers — and different
versions of the same browser — are able to handle different
numbers of DOM elements, which is why we paid particular
attention to always providing the visualization with the right
data resolution in order to not overload the browser with an ex-
cessive number of data points. With the same test environment
described above, we established the number of data points
β that the major browsers were able to display in our tool
without adversely affecting the user experience and rendering
time. In addition to this value, the visualization autonomously
computes the maximum number of cells ρ displayable on each
row, based on the total number of rows available in the scene,
the minimum width possible for a cell, and β. The widget
communicates this value to the data API, which provides the

6Copyright (c) IARIA, 2015. ISBN: 978-1-61208-413-8

ICIMP 2015 : The Tenth International Conference on Internet Monitoring and Protection

best data resolution covering T with at most ρ data points
per row. However, the animations and the real-time feedback
are much more expensive than the drawing of the cells. For
this reason we introduced a low-profile mode able to limit the
quality and number of the visual effects while keeping the
usability intact. The web application is able to automatically
switch to low-profile mode based on the browser version and
the actual computational load.

The data API is a JSON REST interface. The client
provides domain-specific parameters (zone, target, TCP/UDP),
which the server translates to periodic measurement IDs and
returns aggregated, native or raw data. A major design prin-
ciple for the API is that it requires minimal knowledge and
input from the client. For instance, no a priori knowledge of
available resolutions is required for querying, meaning that no
client-side changes are required if a new aggregation level is
added at a later date, e.g., in order to represent a decade of
data. The current levels are listed in the output so that the
client can predict a change of resolution when zooming. The
client can omit an explicit end time to get the latest data, and
possibly specify a length of time instead of an explicit start.
The API makes use of a server-side cache. The cached periods
are fine grained so as to avoid redundant, overlapping back end
queries and cache entries.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we described a network visualization method-
ology for monitoring and analyzing the availability and perfor-
mance of DNS zones worldwide. The incremental information
enrichment provided by our graphical metaphor enables the
operator to easily move from an overview of the overall quality
of a zone or server, to the resolution of single DNS queries,
while making it easy to correlate signals from different types of
network measurements, e.g., traceroutes. The data correlation
occurs in a continuous and persistent way, describing in detail
the evolution of a DNS quality issue by providing both real-
time and historic measurement results that would otherwise
need to be manually collected separately. The flexibility of our
visualization, including the ability to switch between different
points of view of the same scenario, supports, with a unified
interface, the investigation of various issues involving different
types of quality degradation.

We demonstrated the effectiveness of this tool at solving
real DNS operational problems, by describing strategies and
examples in Section III. As future work, we plan to introduce
automatic pattern recognition to visually highlight correlations
across different targets or vantage points in order to identify
a common cause of a hidden problem. Further investigation
is warranted into more comprehensive visualization of anycast
and load-balanced instances, correlation with routing data, and
the extension of the service to any user-defined zone.

REFERENCES

[1] P. V. Mockapetris, “Domain names - implementation and specification,”
IETF, RFC 1035, 1987.

[2] J. Postel, “Domain name system structure and delegation,” IETF, RFC
1591, 1994.

[3] C. Deccio, J. Sedayao, K. Kant, and P. Mohapatra, “A case for
comprehensive dnssec monitoring and analysis tools,” Presented at
SATIN 2011, UK, http://conferences.npl.co.uk/satin/papers/satin2011-
Deccio.pdf, [retrieved: 05, 2015].

[4] P. Ren, J. Kristoff, and B. Gooch, “Visualizing dns traffic,” in Proceed-
ings of the 3rd international workshop on Visualization for computer
security. ACM, 2006, pp. 23–30.

[5] SRC Cyber, “DNSential Domain Name Service Visualization Tool,”
http://www.srccyber.com/pdf/C07-050614 DNSentinel.pdf, [retrieved:
05, 2015].

[6] H. Yu, X. Dai, T. Baxley, and J. Xu, “A real-time interactive visual-
ization system for dns amplification attack challenges,” in Proceedings
of the Seventh IEEE/ACIS International Conference on Computer and
Information Science (Icis 2008), ser. ICIS ’08. Washington, DC, USA:
IEEE Computer Society, 2008, pp. 55–60.

[7] G. Di Battista, C. Squarcella, and W. Nagele, “How to visualize the
k-root name server,” in Graph Drawing. Springer, 2012, pp. 191–202.

[8] RIPE NCC, “DNSMON,” http://dnsmon.ripe.net/, [retrieved: 05, 2015].
[9] ——, “Test Traffic Measurement Service,” http://www.ripe.net/data-

tools/projects/archive/ttm/, [retrieved: 05, 2015].
[10] T. Oetiker, “Round-robin database,” http://oss.oetiker.ch/rrdtool/, [re-

trieved: 05, 2015].
[11] RIPE NCC, “RIPE Atlas,” http://atlas.ripe.net/, [retrieved: 05, 2015].
[12] S. Steinarsson, “Downsampling time series for visual representation,”

Master’s thesis, Faculty of Computer Science, University of Iceland,
2013.

[13] B. Shneiderman, “The eyes have it: A task by data type taxonomy
for information visualization.” Proc. IEEE Symposium on Visual
Languages ’96, 1996, pp. 336–343.

[14] G. Kistner, “Generating visually distinct colors,”
http://phrogz.net/css/distinct-colors.html, [retrieved: 05, 2015].

[15] International Organization for Standardization, “ISO 3166-1 alpha-2,”
https://www.iso.org/obp/ui/, [retrieved: 05, 2015].

[16] M. Hemphill, “A note on adults’ color–emotion associations,” The
Journal of genetic psychology, vol. 157, no. 3, 1996, pp. 275–280.

[17] RIPE NCC. RIPE Atlas anchors used by DNSMON.
https://atlas.ripe.net/dnsmon/probes. [retrieved: 05, 2015].

[18] A. HBase, “The apache hadoop project,” http://hbase.apache.org/, [re-
trieved: 05, 2015].

[19] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in Mass Storage Systems and Technologies
(MSST), 2010 IEEE 26th Symposium on. IEEE, 2010, pp. 1–10.

[20] S. Woolf and D. Conrad, “Requirements for a Mechanism Identifying a
Name Server Instance,” RFC 4892 (Informational), Internet Engineering
Task Force, Jun. 2007.

[21] I. S. Consortium et al., Bind 9 administrator reference manual. Bind,
2005.

[22] R. Austein, “DNS Name Server Identifier (NSID) Option,” RFC 5001
(Proposed Standard), Internet Engineering Task Force, Aug. 2007.

[23] RIPE NCC, “RIPE Atlas - raw data structure documentation,”
https://atlas.ripe.net/docs/data struct/#v4610 dns, [retrieved: 05, 2015].

[24] Eastlake, et al., “RFC 2929. Domain Name System (DNS) IANA
Considerations,” http://tools.ietf.org/html/rfc2929, [retrieved: 05, 2015].

[25] RIPE NCC, “RIPEstat,” https://stat.ripe.net/, [retrieved: 05, 2015].
[26] M. Bostock, V. Ogievetsky, and J. Heer, “D3 data-driven documents,”

Visualization and Computer Graphics, IEEE Transactions on, vol. 17,
no. 12, 2011, pp. 2301–2309.

[27] G. E. Krasner, S. T. Pope et al., “A description of the model-view-
controller user interface paradigm in the smalltalk-80 system,” Journal
of object oriented programming, vol. 1, no. 3, 1988, pp. 26–49.

[28] M. Kircher and P. Jain, “Pooling pattern,” Proceedings of EuroPlop
2002, 2002, pp. 497–510.

7Copyright (c) IARIA, 2015. ISBN: 978-1-61208-413-8

ICIMP 2015 : The Tenth International Conference on Internet Monitoring and Protection

